
Mining temporal and
data-temporal specifications

Ivan Beschastnikh
Caroline Lemieux

Dennis Park

University of British Columbia
Computer Science

Software Practices Lab
Networks Systems Security Lab

University of British Columbia

Ivan Beschastnikh

Computer Science

Vancouver, Canada

University of British Columbia

Ivan Beschastnikh

Computer Science

Vancouver, Canada

Software Practices

University of British Columbia

Ivan Beschastnikh

Computer Science

Vancouver, Canada

Software Practices Networks Systems Security

University of British Columbia

Ivan Beschastnikh

Computer Science

Vancouver, Canada

Software Practices Networks Systems Security

Mining temporal and
data-temporal specifications

Ivan Beschastnikh
Caroline Lemieux

Dennis Park

University of British Columbia
Computer Science

Software Practices Lab
Networks Systems Security Lab

 University of British Columbia Ivan Beschastnikh

Program specifications

• Formally describe program behavior: what should happen
• Data:

• Temporal: eventually socket.close is invoked

• Interface contracts: preconditions, postconditions, invariants

• Helpful for numerous SE tasks:
• Bug detection (e.g., model checking, test case generation)

• Manageability (capture what’s important)

• Documentation and communication (more concise than code)

7

x  y

 University of British Columbia Ivan Beschastnikh

Program specifications

• Formally describe program behavior: what should happen
• Data:

• Temporal: eventually socket.close is invoked

• Interface contracts: preconditions, postconditions, invariants

• Helpful for numerous SE tasks:
• Bug detection (e.g., model checking, test case generation)

• Manageability (capture what’s important)

• Documentation and communication (more concise than code)

8

x  y

 University of British Columbia Ivan Beschastnikh

Challenge with program specifications

• Formally describe program behavior: what should happen
• Data:

• Temporal: eventually socket.close is invoked

• Interface contracts: preconditions, postconditions, invariants

• Helpful for numerous SE tasks:
• Bug detection (e.g., model checking, test case generation)

• Manageability (capture what’s important)

• Documentation and communication (more concise than code)

9

x  y

In practice, developers rarely
write formal specifications

 University of British Columbia Ivan Beschastnikh

Absence of program specifications

• Specification inference/mining
• Program implements some hidden specification

• Infer this specification using program analyses

10

 University of British Columbia Ivan Beschastnikh 11

Uses of Inferred Specs in Familiar Systems

•  program maintenance[1]
•  confirm expected behavior[2]

•  bug detection[2]
•  test generation[3]

familiar
system

inferred
specs

P

unfamiliar
system

inferred
specs

?

•  system comprehension[4]
•  system modeling[4]
•  reverse
 engineering[1]

class C{
oo()
ar()
...

}

class B{
ping()
pongar()
...

}

class A{
foo()
bar()
...

}

foo()
always
precedes
bar()
...

foo()
always
precedes
bar()
...

4

 [1] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford. Automated API Property Inference Techniques. TSE, 613-637, 2013.
[2] M. D. Ernst, J. Cockrell, W. G. Griswold and D. Notkin. Dynamically Discovering Likely Program Invariants to Support program evolution. TSE, 27(2):99–123, 2001.
[3] V Dallmeier, N. Knopp, C. Mallon, S. Hack and A. Zeller. Generating Test Cases for Specification Mining. ISSTA, 85-96, 2010.
[4] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan and M. D. Ernst .Leveraging existing instrumentation to automatically infer invariant-constrained models. FSE, 267–277, 2011.

 University of British Columbia Ivan Beschastnikh 12

Inferred Specs in Unfamiliar Systems

•  program maintenance[1]
•  confirm expected behavior[2]

•  bug detection[2]
•  test generation[3]

familiar
system

inferred
specs

P

unfamiliar
system

inferred
specs

?

•  system comprehension[4]
•  system modeling[4]
•  reverse
 engineering[1]

class C{
oo()
ar()
...

}

class B{
ping()
pongar()
...

}

class A{
foo()
bar()
...

}

foo()
always
precedes
bar()
...

foo()
always
precedes
bar()
...

5

 [1] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford. Automated API Property Inference Techniques. TSE, 613-637, 2013.
[2] M. D. Ernst, J. Cockrell, W. G. Griswold and D. Notkin. Dynamically Discovering Likely Program Invariants to Support program evolution. TSE, 27(2):99–123, 2001.
[3] V Dallmeier, N. Knopp, C. Mallon, S. Hack and A. Zeller. Generating Test Cases for Specification Mining. ISSTA, 85-96, 2010.
[4] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan and M. D. Ernst .Leveraging existing instrumentation to automatically infer invariant-constrained models. FSE, 267–277, 2011.

 University of British Columbia Ivan Beschastnikh

Absence of program specifications

• Specification inference/mining
• Program implements some hidden specification

• Infer this specification using program analyses

• Sources of information
• Source code

• Code comments

• Documentation

13

• Test oracles (asserts)

• Exceptional control flow

• Dynamic behavior

 University of British Columbia Ivan Beschastnikh

Absence of program specifications

• Specification inference/mining
• Program implements some hidden specification

• Infer this specification using program analyses

• Sources of information
• Source code

• Code comments

• Documentation

14

• Dynamic behavior

• Test oracles (asserts)

• Exceptional control flow

 University of British Columbia Ivan Beschastnikh

Inference using dynamic behavior

• Advantages
• Precise

• Independent of programming language (mostly)

• Quality depends on data, can always generate more data

• Disadvantages
• Semantic gap: what to capture in a trace?

• Gap between inferred spec and program code

• Neither sound nor complete (false positives/negatives possible)

18

 University of British Columbia Ivan Beschastnikh

In this talk

• Overview linear temporal logic (LTL)

• Texada: a tool to mine general LTL properties

• Overview Daikon: a data property miner

• Quarry: a tool that combines Daikon and Texada to mine
data-temporal properties
• Work in progress

19

For more details see ASE 2015 paper:
“General LTL Specification Mining”, by

Lemieux et al.

 University of British Columbia Ivan Beschastnikh

Linear temporal logic (LTL)

• LTL formulas assert a condition over time

• Extends propositional logic with temporal operators
• U: until

• X: next

• F: eventually

• G: always

• W: weak until

• R: release

• M: strong release

20

 University of British Columbia Ivan Beschastnikh

Linear temporal logic (LTL)

• LTL formulas assert a condition over time

• Extends propositional logic with temporal operators
• U: until

• X: next

• F: eventually

• G: always

• W: weak until

• R: release

• M: strong release

21

Derived operators

Base operators

 University of British Columbia Ivan Beschastnikh

Linear temporal logic (LTL)

• LTL formulas assert a condition over time

• Extends propositional logic with temporal operators
• U: until

• X: next

• F: eventually

• G: always

• W: weak until

• R: release

• M: strong release

22

Used in the talk

 University of British Columbia Ivan Beschastnikh

Linear temporal logic (LTL)

• LTL formulas assert a condition over time

• Extends propositional logic with temporal operators
• U: until

• = p U q : exists an event where q is true and p is true on all
events before first q event

• X: next

• F: eventually

• G: always

23

trace satisfying : p p p p q r r q p r

trace violating : p p p r q r r q p r

 University of British Columbia Ivan Beschastnikh

Linear temporal logic (LTL)

• LTL formulas assert a condition over time

• Extends propositional logic with temporal operators
• U: until

• = p U q : exists an event where q is true and p is true on all
events before first q event

• X: next

• F: eventually

• G: always

24

trace satisfying : p p p p q r r q p r

trace violating : p p p r q r r q p r

Two key differences from classic LTL

• Atomic propositions are event strings

• Finite trace semantics

 University of British Columbia Ivan Beschastnikh

Linear temporal logic (LTL)

• LTL formulas assert a condition over time

• Extends propositional logic with temporal operators
• U: until

• X: next

• = X p : the next event is p

• F: eventually

• G: always

25

trace satisfying : p q r r q p r

trace violating : r q r r q p r

 University of British Columbia Ivan Beschastnikh

Linear temporal logic (LTL)

• LTL formulas assert a condition over time

• Extends propositional logic with temporal operators
• U: until

• X: next

• F: eventually

• = F p : eventually there is a p event

• G: always

26

trace satisfying : q r r q p r p p

trace violating : r q r r q r r

 University of British Columbia Ivan Beschastnikh

Linear temporal logic (LTL)

• LTL formulas assert a condition over time

• Extends propositional logic with temporal operators
• U: until

• X: next

• F: eventually

• G: always

• = G p : all events are p

27

trace satisfying : p p p p p p p

trace violating : r q r r q r r

 University of British Columbia Ivan Beschastnikh

Linear temporal logic (LTL)

• LTL formulas assert a condition over time

• Extends propositional logic with temporal operators
• U: until

• X: next

28

 = G(p X F q) : p is always followed by q

• F: eventually

• G: always

!

 University of British Columbia Ivan Beschastnikh

Linear temporal logic (LTL)

• LTL formulas assert a condition over time

• Extends propositional logic with temporal operators
• U: until

• X: next

29

 = G(p X F q) : p is always followed by q

• F: eventually

• G: always

!

Must be valid on entire trace

Whenever you see a p

Eventually you should see a q

 University of British Columbia Ivan Beschastnikh

Linear temporal logic (LTL)

• LTL formulas assert a condition over time

• Extends propositional logic with temporal operators
• U: until

• X: next

30

trace satisfying : r s r r p r s q r q

trace violating : r q r r r p s

= G(p X F q) : p is always followed by q

• F: eventually

• G: always

!

 University of British Columbia Ivan Beschastnikh

Mining temporal specifications

• Linear LTL checker; finite traces (process mining)

• Perracotta: 8 templates + chaining

• Javert: alternating + resource ownership

• : alternating + resource allocation using BDDs

• Response pattern with support/confidence thresholds

• OCD: anomaly detection, Perracotta types

31

Lo et al.
JSME 2008

Gabel et al. FSE 2008

van der Aalst et al.
LNCS 2005

(related work)

Gabel et al. ICSE 2010

Gabel et al.
ICSE 2008

Yang et al. ICSE 2006

Many of these use REs; can be expressed with LTL

 University of British Columbia Ivan Beschastnikh

Mining temporal specifications

• Perracotta: 8 templates + chaining

32

Yang et al. ICSE 2006

(related work)

 University of British Columbia Ivan Beschastnikh

Specification patterns taxonomy

• formulate “specification patterns” by manually
reading many example system specifications
• Pattern: relation between propositions/events

• Scope: where the pattern must be true

33

Dwyer et al.
ICSE 1999

• formulate “specification patterns” by manually
reading many example system specifications
• Pattern: relation between propositions/events

• Scope: where the pattern must be true

 University of British Columbia Ivan Beschastnikh

Specification patterns taxonomy

34

Dwyer et al.
ICSE 1999

Patterns: Scopes:

X

 University of British Columbia Ivan Beschastnikh

Specification patterns taxonomy

35

Dwyer et al.
ICSE 1999• formulate “specification patterns” by manually
reading many example system specifications
• Pattern: relation between propositions/events

• Scope: where the pattern must be true

This taxonomy cannot be captured by prior
specification inference tools

 University of British Columbia Ivan Beschastnikh

Contribution: Texada

36

Dwyer et al.
ICSE 1999• formulate “specification patterns” by manually
reading many example system specifications
• Pattern: relation between propositions/events

• Scope: where the pattern must be trueTexada includes 67 LTL templates

• Specification patterns, Perracotta, etc

• No need to write LTL formulas of your own

• Supersedes prior temporal inference work

Texada: LTL property miner. Mines LTL properties from
a log using an LTL template (a parameterized LTL
formula) of arbitrary length and complexity

• Approximate confidence/support measures for LTL

• Concurrent system analysis (multi-propositional use)

 University of British Columbia Ivan Beschastnikh

Texada in one slide

37

login attempt
auth failed
login attempt
auth failed

login attempt
auth failed
login attempt
authorized

login attempt
auth failed
login attempt
guest login
authorized

login attempt
guest login
auth failed
authorized

Log:

Property type:

Texada

Trace 1 Trace 2 Trace 3 Trace 4

Property instances:

or “ always followed by ”G(x ! XF y)

G(guest login ! XF authorized)

x y

Input:

Output:

 University of British Columbia Ivan Beschastnikh

Texada in one slide

38

login attempt
auth failed
login attempt
auth failed

login attempt
auth failed
login attempt
authorized

login attempt
auth failed
login attempt
guest login
authorized

login attempt
guest login
auth failed
authorized

Log:

Property type:

Texada

Trace 1 Trace 2 Trace 3 Trace 4

Property instances:

or “ always followed by ”G(x ! XF y)

G(guest login ! XF authorized)

x y

Input:

Output:

“guest login” is always followed by “authorized”

 University of British Columbia Ivan Beschastnikh

Texada in one slide

39

login attempt
auth failed
login attempt
auth failed

login attempt
auth failed
login attempt
authorized

login attempt
auth failed
login attempt
guest login
authorized

login attempt
guest login
auth failed
authorized

Log:

Property type:

Texada

Trace 1 Trace 2 Trace 3 Trace 4

Property instances:

or “ always followed by ”G(x ! XF y)

G(guest login ! XF authorized)

x y

Input:

Output:

“guest login” is always followed by “authorized”

 University of British Columbia Ivan Beschastnikh

Texada overview

40

Log Property type
G(x ! XF y)

Parsing
regular expressions

+

May 20 16:15:27 my-mac SecurityAgent[130]: Showing Login Window
May 20 16:29:19 my-mac SecurityAgent[130]: User info context values set for jenny
May 20 16:29:19 my-mac authorizationhost[129]: Failed to authenticate user <jenny> (tDirStatus: -14090).
May 20 16:29:22 my-mac SecurityAgent[130]: User info context values set for jenny
May 20 16:29:22 my-mac SecurityAgent[130]: Login Window Showing Progress
….

 University of British Columbia Ivan Beschastnikh

Texada overview: parsing the log

41

Log
G(x ! XF y)

Parsing
regular expressions

+

Property type

 University of British Columbia Ivan Beschastnikh

Texada overview: parsing the log

42

Traces
G(x ! XF y)

login attempt
guest login
auth failed
authorized

login attempt
auth failed
login attempt
guest login
authorized

login attempt
auth failed
login attempt
authorized

Property type

 University of British Columbia Ivan Beschastnikh

Texada overview: type instantiation

43

Traces
G(x ! XF y)

x = guest login

 G(guest login ! XFauthorized)=

y = authorized

login attempt
guest login
auth failed
authorized

login attempt
auth failed
login attempt
guest login
authorized

login attempt
auth failed
login attempt
authorized

Property type

 University of British Columbia Ivan Beschastnikh

Texada overview: type instantiation

44

Traces
G(x ! XF y)

x = login attempt
y = authorized

G(login attempt ! XFauthorized)�=

login attempt
guest login
auth failed
authorized

login attempt
auth failed
login attempt
guest login
authorized

login attempt
auth failed
login attempt
authorized

Property type

 University of British Columbia Ivan Beschastnikh

Texada overview: type instantiation

45

Traces Property instances

G(x ! XF y)

Property type

 University of British Columbia Ivan Beschastnikh

Texada overview

46

Property instancesTraces

 G(guest login ! XFauthorized)=

G(x ! XF y)

Property type

 University of British Columbia Ivan Beschastnikh

Texada overview: check instances

47

Property instancesTraces

 G(guest login ! XFauthorized)=
login attempt
guest login
auth failed
authorized

login attempt
auth failed
login attempt
guest login
authorized

login attempt
auth failed
login attempt
authorized

Satisfies?

Satisfies?

Satisfies?

G(x ! XF y)

Property type

 University of British Columbia Ivan Beschastnikh

Texada overview: check instances

48

Property instancesTraces

 G(guest login ! XFauthorized)=

G(x ! XF y)

Property type

 University of British Columbia Ivan Beschastnikh

Texada overview: check instances

49

Property instancesTraces

 G(guest login ! XFauthorized)=

G(login attempt ! XFauthorized)�=

G(x ! XF y)

Property type

 University of British Columbia Ivan Beschastnikh

Texada overview: check instances

50

Property instancesTraces

 G(guest login ! XFauthorized)=

G(login attempt ! XFauthorized)�=

login attempt
guest login
auth failed
authorized

login attempt
auth failed
login attempt
authorized

Satisfies?

Satisfies?

Satisfies?
login attempt
auth failed
login attempt
auth failed

G(x ! XF y)

Property type

 University of British Columbia Ivan Beschastnikh

Texada overview: check instances

51

Property instancesTraces

 G(guest login ! XFauthorized)=

G(login attempt ! XFauthorized)�=

login attempt
guest login
auth failed
authorized

login attempt
auth failed
login attempt
authorized

login attempt
auth failed
login attempt
auth failed

G(x ! XF y)

Property type

 University of British Columbia Ivan Beschastnikh

Texada overview

52

Property instancesTraces

G(x ! XF y)

Property type

 University of British Columbia Ivan Beschastnikh

Texada overview

53

Property instancesTraces Texada output

Property instances
that are true on all
input traces

G(x ! XF y)

Property type

 University of British Columbia Ivan Beschastnikh

Trace representation

54

• Linear array of events

• Optimized representations
• Map (event to a list of positions inside a trace)

• Prefix tree (collapse identical prefixes)

a
b
c

Linear

a
b
d

a
c
d

a
b

c

d

c d

Prefix treeMap

a : 0
b : 1
c : 2
d :

a : 0
b : 1
c :
d : 2

a : 0
b :
c : 1
d : 2

 University of British Columbia Ivan Beschastnikh

Linear property instance checking

55

• LTL tree traversal and recursive trace traversal
(¬ authorized U guest login) ^G(guest login ! XF authorized)

 University of British Columbia Ivan Beschastnikh

Linear property instance checking

56

• LTL tree traversal and recursive trace traversal

U
^

!

G

guest
login¬

authorized guest
login

authorized

X

F

(¬ authorized U guest login) ^G(guest login ! XF authorized)

 University of British Columbia Ivan Beschastnikh

Linear property instance checking

57

U
^

!

G

guest
login¬

authorized guest
login

authorized

X

F

Evaluate left child,
if false stop. Else,
return right child
result

• LTL tree traversal and recursive trace traversal

 University of British Columbia Ivan Beschastnikh

Linear property instance checking

58

U
^

!

G

guest
login¬

authorized guest
login

authorized

X

F

Find first instance
of right child,
evaluate left child
at each position
preceding right
child

• LTL tree traversal and recursive trace traversal

 University of British Columbia Ivan Beschastnikh

Linear property instance checking

59

U
^

!

G

guest
login¬

authorized guest
login

authorized

X

F

Find first instance
of right child,
evaluate left child
at each position
preceding right
child

If event at current position is
“guest login” return true, else
false.

• LTL tree traversal and recursive trace traversal

 University of British Columbia Ivan Beschastnikh

Linear property instance checking

60

U
^

!

G

guest
login¬

authorized guest
login

authorized

X

F

Find first instance
of right child,
evaluate left child
on each event
that precedes
right child

Return
negation of
child

• LTL tree traversal and recursive trace traversal

 University of British Columbia Ivan Beschastnikh

Linear property instance checking

61

U
^

!

G

guest
login¬

authorized guest
login

authorized

X

F

Find first instance
of right child,
evaluate left child
on each event
that precedes
right child

If event at current position is
“authorized” return true, else
false.

• LTL tree traversal and recursive trace traversal

 University of British Columbia Ivan Beschastnikh

Linear property instance checking

62

U
^

!

G

guest
login¬

authorized guest
login

authorized

X

F

True
Evaluate left child,
if false stop. Else,
return right child
result

• LTL tree traversal and recursive trace traversal

 University of British Columbia Ivan Beschastnikh

Linear property instance checking

63

U
^

!

G

guest
login¬

authorized guest
login

authorized

X

F

Traverse all events
and check child at
each one

• LTL tree traversal and recursive trace traversal

 University of British Columbia Ivan Beschastnikh

Key optimization: checking memoization

64

 = G(c ^ ¬e ! ((a ! (¬e U (b ^ ¬e)))W e))
� = G(d ^ ¬e ! ((a ! (¬e U (b ^ ¬e)))W e))

• Many property instances have a similar structure

 University of British Columbia Ivan Beschastnikh

Key optimization: checking memoization

65

 = G(c ^ ¬e ! ((a ! (¬e U (b ^ ¬e)))W e))
� = G(d ^ ¬e ! ((a ! (¬e U (b ^ ¬e)))W e))

• Many property instances have a similar structure

 University of British Columbia Ivan Beschastnikh

Checking memoization

66

 = G(c ^ ¬e ! ((a ! (¬e U (b ^ ¬e)))W e))
� = G(d ^ ¬e ! ((a ! (¬e U (b ^ ¬e)))W e))

^¬
U

!

^
!

G

W

e e ec

¬

a b

¬
e

^¬
U

!

^
!

G

W

e e ed

¬

a b

¬
e

• Many property instances have a similar structure

 University of British Columbia Ivan Beschastnikh

Checking memoization

67

 = G(c ^ ¬e ! ((a ! (¬e U (b ^ ¬e)))W e))
� = G(d ^ ¬e ! ((a ! (¬e U (b ^ ¬e)))W e))

^¬
U

!

^
!

G

W

e e ec

¬

a b

¬
e

T

^
!

G

ed

¬ T

• Many property instances have a similar structure

 University of British Columbia Ivan Beschastnikh

Checking memoization

68

^¬
U

!

^
!

G

W

e e ec

¬

a b

¬
e

T

^
!

G

ed

¬ T

 = G(c ^ ¬e !)T

� = G(d ^ ¬e !)T

• Many property instances have a similar structure

 University of British Columbia Ivan Beschastnikh

Checking memoization

69

^¬
U

!

^
!

G

W

e e ec

¬

a b

¬
e

T

^
!

G

ed

¬ T

 = G(c ^ ¬e !)T

� = G(d ^ ¬e !)T

• Many property instances have a similar structure

• Can only re-use results if evaluated
at same point in the trace

• Memory vs. compute trade-off

 University of British Columbia Ivan Beschastnikh

Checking memoization

70

 = G(c ^ ¬e !)T

� = G(d ^ ¬e !)T

• Many property instances have a similar structure

Current strategy:

• Memoize eval result at each
<tree node, location in the trace>

• Throw away memoized state after checking
one trace against all property instances

 University of British Columbia Ivan Beschastnikh

Support/confidence computation

71

• Consider checking G(a) on three traces

• Trace1: aaaaa

• Trace2: aaaab

• Trace3: abbbb

 University of British Columbia Ivan Beschastnikh

Support/confidence computation

72

• But, Trace2 and Trace3 are qualitatively different

• Useful to differentiate these, depending on use-case

• Anomaly detection, bug finding, …

• Want to get a handle on log incompleteness (finite log!)

• Consider checking G(a) on three traces

• Trace1: aaaaa

• Trace2: aaaab

• Trace3: abbbb

 University of British Columbia Ivan Beschastnikh

Support/confidence computation

73

• Support of G(a) : number of positions in which ‘a’ appears

• Support potential of G(a) : length of the trace

• Confidence = support / support potential

• Consider checking G(a) on three traces

• Trace1: aaaaa

• Trace2: aaaab

• Trace3: abbbb

 University of British Columbia Ivan Beschastnikh

Support/confidence computation

74

• Support of G(a) : number of positions in which ‘a’ appears

• Support potential of G(a) : length of the trace

• Confidence = support / support potential

• Consider checking G(a) on three traces

• Trace1: aaaaa sup: 5 conf: 1.0

• Trace2: aaaab sup: 4 conf: 0.8

• Trace3: abbbb sup: 1 conf: 0.2

 University of British Columbia Ivan Beschastnikh

Support/confidence computation

75

• Support of G(a) : number of positions in which ‘a’ appears

• Support potential of G(a) : length of the trace

• Confidence = support / support potential

• Consider checking G(a) on three traces

• Trace1: aaaaa sup: 5 conf: 1.0

• Trace2: aaaab sup: 4 conf: 0.8

• Trace3: abbbb sup: 1 conf: 0.2
Generalizing support/confidence for arbitrary property:

• Support: count locations where instance is true

• Support potential: compute whether a “false”
evaluation is possible (depending on trace contents)

 University of British Columbia Ivan Beschastnikh

Texada implementation

76

• Open source project, in C++

• Uses SPOT lib for parsing LTL property templates

• Includes 67 pre-defined templates (no need to write your
own templates!)
• Dwyer et. al’s patterns (55)

• Perracotta patterns (8)

• Synoptic patterns (4)

 University of British Columbia Ivan Beschastnikh 77

Texada Evaluation

21

•  Can Texada mine a wide enough variety of temporal
properties?

•  Can Texada help comprehend unknown systems?
–  Real estate web log
–  StackAr

•  Can Texada confirm expected behavior of systems?
–  Dining Philosophers
–  Sleeping Barber

•  Is Texada fast?
–  Texada vs. Synoptic (Beschastnikh et al., ESEC/FSE 2011)
–  Texada vs. Perracotta (Yang et al., ICSE 2016)

•  Can we use Texada’s results to build other tools?
–  Quarry prototype

 University of British Columbia Ivan Beschastnikh 78

Texada Evaluation

22

•  Can Texada mine a wide enough variety of temporal
properties?

•  Can Texada help comprehend unknown systems?
–  Real estate web log
–  StackAr

•  Can Texada confirm expected behavior of systems?
–  Dining Philosophers
–  Sleeping Barber

•  Is Texada fast?
–  Texada vs. Synoptic
–  Texada vs. Perracotta

•  Can we use Texada’s results to build other tools?
–  Quarry prototype

For more details see ASE 2015 paper:
“General LTL Specification Mining”, by

Lemieux et al.

Expressiveness of Property Types
• Texada can express properties from prior work

– Synoptic[1]

– Perracotta[2]

– Patterns in Property Specifications for Finite-State Verification
 [Dwyer et al. ICSE’99]

49
[1] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan and M. D. Ernst. Leveraging Existing Instrumentation to Automatically Infer Invariant-Constrained
Models. FSE11.
[2] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, Manuvir Das. Perracotta: Mining Temporal API Rules from Imperfect Traces. ICSE06.

Name Regex LTL
Always Followed by G(x→XFy)

Never Followed by G(x→XG!y)

Always Precedes (!y W x)
Alternating (xy)* (!y W x) & G((x→X(!x U y)) & (y→ X(!y W x)))

MultiEffect (xyy*)* (!y W x) & G(x→X(!x U y))

MultiCause (xx*y)* (!y W x) & G((x→XFy) & (y→X(!y W x)))
EffectFirst y*(xy)* G((x→X(!x U y)) & (y→ X(!y W x)))

OneCause y*(xyy*)* G(x→X(!x U y))

CauseFirst (xx*yy*)* (!y W x) & G(x→XFy)

OneEffect y*(xx*y)* G((x→XFy) & (y→X(!y W x)))

Expressiveness of Property Types
• Texada can express properties from prior work

– Synoptic[1]

– Perracotta[2]

– Patterns in Property Specifications for Finite-State Verification
 [Dwyer et al. ICSE’99]

50
[1] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan and M. D. Ernst. Leveraging Existing Instrumentation to Automatically Infer Invariant-Constrained
Models. FSE11.
[2] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, Manuvir Das. Perracotta: Mining Temporal API Rules from Imperfect Traces. ICSE06.

Name Regex LTL
Always Followed by G(x→XFy)

Never Followed by G(x→XG!y)

Always Precedes (!y W x)
Alternating (xy)* (!y W x) & G((x→X(!x U y)) & (y→ X(!y W x)))

MultiEffect (xyy*)* (!y W x) & G(x→X(!x U y))

MultiCause (xx*y)* (!y W x) & G((x→XFy) & (y→X(!y W x)))
EffectFirst y*(xy)* G((x→X(!x U y)) & (y→ X(!y W x)))

OneCause y*(xyy*)* G(x→X(!x U y))

CauseFirst (xx*yy*)* (!y W x) & G(x→XFy)

OneEffect y*(xx*y)* G((x→XFy) & (y→X(!y W x)))

• Texada can mine a wide variety of properties
• Texada can mine concurrent sys. properties
• Texada has reasonable performance

3

Dining Philosophers
• Classic concurrency problem: philosophers sit around a

table, thinking, hungry, or eating.

• These specs could not be checked with previous

temporal spec miners!

0

51

3 2

4 1

needs two
chopsticks

to eat

so this pair
can’t eat at

the same time

but this pair
can eat at the

same time

Multi-Propositional Traces

52

• LTL: multiple atomic propositions may hold at a time
• Standard log model: one event at each time point
• Texada supports multi-propositional logs: multiple

events can occur at one time point
• Dining philosophers log: 5 one minute traces, 6.5K lines

0 is THINKING
1 is HUNGRY
2 is THINKING
3 is THINKING
4 is THINKING
..
0 is THINKING
1 is EATING
2 is THINKING
3 is THINKING
4 is THINKING
..
 ...

time point
separator

multiple events at
single time point

Dining Phil. Mutex (safety property)

• Two adjacent philosophers never eat at the same time
• Property pattern: G(x →!y) “if x occurs, y does not”

• Texada output for G(x →!y) includes

53

1

0

4

3 2

G(3 is EATING → ! 4 is EATING)

G(0 is EATING → ! 4 is EATING)
G(0 is EATING → ! 1 is EATING)

G(2 is EATING → ! 3 is EATING)
G(1 is EATING → ! 2 is EATING)

G(4 is EATING → ! 3 is EATING)

G(3 is EATING → ! 4 is EATING)

together, mean that two
adjacent philosophers

never eat at the same time

Dining Phil. Efficiency (liveness property)

• Non-adjacent philosophers eventually eat at the same time
• Property pattern: F(x & y) “eventually x and y occur together”

• Texada output for F(x & y) includes

54

1

0

4

3 2

F(2 is EATING & 4 is EATING)

F(4 is EATING & 2 is EATING)

F(0 is EATING & 3 is EATING)
F(0 is EATING & 2 is EATING)

F(1 is EATING & 4 is EATING)
F(1 is EATING & 3 is EATING)

F(2 is EATING & 4 is EATING)

together, mean that non-
adjacent philosophers

eventually eat at the same time

Dining Phil. Efficiency (liveness property)

• Non-adjacent philosophers eventually eat at the same time
• Property pattern: F(x & y) “eventually x and y occur together”

• Texada output for F(x & y) includes

55

1

0

4

3 2

F(2 is EATING & 4 is EATING)

F(4 is EATING & 2 is EATING)

F(0 is EATING & 3 is EATING)
F(0 is EATING & 2 is EATING)

F(1 is EATING & 4 is EATING)
F(1 is EATING & 3 is EATING)

F(2 is EATING & 4 is EATING)

together, mean that non-
adjacent philosophers

eventually eat at the same time

• Texada can mine a wide variety of properties
• Texada can mine concurrent sys. properties
• Texada has reasonable performance

3 3

Texada vs. Synoptic
• Texada performs favourably against Synoptic’s miner on

three property types it is specialized to mine.

• More results in paper.
• Texada algs benefit from log-level short-circuiting.

56

Texada vs. Perracotta
• Perracotta performs favourably against Texada:

• Perracotta’s algorithm particularly effective at reducing
instantiation effect on runtime.

• Further memoization work (along with good expiration
policies) might help reduce instantiation effect

57

Unique events
(10K events/trace, 20

traces/log)

Perracotta Texada
(map miner)

120 0.85 s 2.42 s

160 0.97 s 4.07 s

260 1.42 s 10.21 s

Texada vs. Perracotta
• Perracotta performs favourably against Texada:

• Perracotta’s algorithm particularly effective at reducing
instantiation effect on runtime.

• Further memoization work (along with good expiration
policies) might help reduce instantiation effect

58

Unique events
(10K events/trace, 20

traces/log)

Perracotta Texada
(map miner)

120 0.85 s 2.42 s

160 0.97 s 4.07 s

260 1.42 s 10.21 s

• Texada can mine a wide variety of properties
• Texada can mine concurrent sys. properties
• Texada has reasonable performance

3 3
3

 University of British Columbia Ivan Beschastnikh

Texada demo

79

Online tool:
http://bestchai.bitbucket.org/texada/

Project page:
https://bitbucket.org/bestchai/texada

 University of British Columbia Ivan Beschastnikh

In this talk

• Overview linear temporal logic (LTL)

• Texada: a tool to mine general LTL properties

• Overview Daikon: a data property miner

• Quarry: a tool that combines Daikon and Texada to mine
data-temporal properties

88

 University of British Columbia Ivan Beschastnikh

In this talk

• Overview linear temporal logic (LTL)

• Texada: a tool to mine general LTL properties

• Overview Daikon: a data property miner

• Quarry: a tool that combines Daikon and Texada to mine
data-temporal properties
• Work in progress

89

 University of British Columbia Ivan Beschastnikh

Daikon

90

Program
Source

Tests

Data traces

Daikon

Likely data invariants

PP1:
x = y -1
PP2:
x==y

Concrete program values +
program points (control flow)

PP2:
x=0,y=0
PP1:
x=0,y=1
PP1:
x=1,y=2
PP2:
x=0,y=0

PP1:
x=2,y=3
PP2:
x=1,y=1

 University of British Columbia Ivan Beschastnikh

Daikon applied to a queue

91

• Likely invariants
• size <= capacity

• isFull one of {true, false}

vars : {size, capacity, isFull}

Ongoing work: mining data-temporal specs

Data invariants
(Daikon)

Describe data at specific
program points

enqueue()::enter
size == 0
enqueue()::exit
size == 1
enqueue()::enter
size == 1
enqueue()::exit
size == 2
dequeue()::enter
size == 2
dequeue()::exit
size == 4

at exit of
enqueue(),
size >= 1

 Temporal invariants
 (Texada)

Relate events
through time.

enqueue()
is always

followed by
dequeue()

create()
enqueue(5)
enqueue(3)
dequeue()
enqueue(7)
enqueue(2)
enqueue(25)
dequeue()
dequeue()
enqueue(8)
enqueue(16)
dequeue()

Ongoing work: mining data-temporal specs

Data invariants
(Daikon)

Describe data at specific
program points

enqueue()::enter
size == 0
enqueue()::exit
size == 1
enqueue()::enter
size == 1
enqueue()::exit
size == 2
dequeue()::enter
size == 2
dequeue()::exit
size == 4

at exit of
enqueue(),
size >= 1

 Temporal invariants
 (Texada)

Relate events
through time.

enqueue()
is always

followed by
dequeue()

create()
enqueue(5)
enqueue(3)
dequeue()
enqueue(7)
enqueue(2)
enqueue(25)
dequeue()
dequeue()
enqueue(8)
enqueue(16)
dequeue()

But: data values may
interact through time

 University of British Columbia Ivan Beschastnikh

Daikon applied to a queue

92

• Likely invariants
• size <= capacity

• isFull one of {true, false}

• True over all time : G(size <= capacity)

What if we consider non-global scope?

 University of British Columbia Ivan Beschastnikh

Daikon applied to a queue

93

• Likely invariants
• size <= capacity

• isFull one of {true, false}

• True over all time : G(size <= capacity)

What if we consider non-global scope?

• Example:

• (isFull == false) U (size == capacity)

 University of British Columbia Ivan Beschastnikh

Quarry

94

Program
Source

Tests

Data traces

Daikon

Concrete program values +
program points (control flow)

PP2:
x=0,y=0
PP1:
x=0,y=1
PP1:
x=1,y=2
PP2:
x=0,y=0

PP1:
x=2,y=3
PP2:
x=1,y=1

Likely data invariants

PP1:
x = y -1, x <= 2
PP2:
x==y, x in {0,1}

 University of British Columbia Ivan Beschastnikh 95

Program
Source

Tests

Data traces

Daikon

Likely data invariants

PP2:
x=0,y=0
PP1:
x=0,y=1
PP1:
x=1,y=2
PP2:
x=0,y=0

PP1:
x=2,y=3
PP2:
x=1,y=1

Quarry

PP2:
x==y, x in {0,1}
PP1:
x = y -1, x <= 2

Multi-propositional invariant traces

PP1:
x = y -1, x <= 2
PP2:
x==y, x in {0,1}

PP1:
x = y -1, x <= 2
PP2:
x==y, x in {0,1}

PP1:
x = y -1, x <= 2
PP2:
x==y, x in {0,1}

 University of British Columbia Ivan Beschastnikh 96

Program
Source

Tests

Data traces

Daikon
PP1:
x = y -1, x <= 2
PP2:
x==y, x in {0,1}

PP2:
x=0,y=0
PP1:
x=0,y=1
PP1:
x=1,y=2
PP2:
x=0,y=0

PP1:
x=2,y=3
PP2:
x=1,y=1

PP2:
x==y, x in {0,1}
PP1:
x = y -1, x <= 2

Texada

Data-temporal
properties

Multi-propositional invariant traces

Quarry

PP1:
x = y -1, x <= 2
PP2:
x==y, x in {0,1}

PP1:
x = y -1, x <= 2
PP2:
x==y, x in {0,1}

Likely data invariants

 University of British Columbia Ivan Beschastnikh

Quarry applied to a queue

97

• G(size <= capacity)

• (isFull == false) U (size == capacity)

• G(this.back <= size(this.theArray[]) - 1)
• True with confidence < 100%

• Either bug, or initialization behavior

• Ongoing work
• Data invariant semantics for atomic propositions (instead of

string semantics)

Challenges in data-temporal spec mining

•  Data invariant semantics for atomic propositions
–  Does “size >= 3” always hold on the following trace?

•  What does it mean for “size >= 3” to be true at a program
point where size is not in scope?

size >= 3
..
size >= 3
..
size == 4
..
size >= 3
..

size >= 3 and
size == 4

are different strings

size == 4
is stronger than
size >= 3

Current string
semantics: no

Data invariant
semantics: yes

 University of British Columbia Ivan Beschastnikh

Conclusion

• Texada: a tool to mine LTL properties from traces
• General-purpose, 67 pre-defined LTL property types

• Fast: 1 million log lines in 3s

• Quarry: a tool that combines Daikon and Texada to mine
data-temporal properties
• Work in progress

98

Open source and ready for use:
https://bitbucket.org/bestchai/texada

Program specifications: important, but often missing

 University of British Columbia Ivan Beschastnikh

Texada evaluation: performance

80

• Compared performance of Texada against Synoptic’s
miner on three property types

• x always followed by y :

• x never followed by y :

• x always precedes y :

• x immediately followed by y :

• Synthetic logs, uniformly randomly distributed events

• Average tool runtime over 5 executions on log input

G(x ! XF y)

G(x ! G(¬y))

F y ! (¬y U x)

An optimized
Java miner for
these property
types

G(x ! Xy)

 University of British Columbia Ivan Beschastnikh

Eval: vary number of traces

81

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300

T
im

e
 (

s)

Number of traces per log

Synoptic

Linear miner

Map miner

• 10K events/trace, 50 event types

 University of British Columbia Ivan Beschastnikh

Eval: vary number of traces

82

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300

T
im

e
 (

s)

Number of traces per log

Synoptic

Linear miner

Map miner

• 10K events/trace, 50 event types
Synoptic miner:
1 million log lines : 21s
2 million log lines : 42s

Texada map miner:
1 million log lines : 3s
2 million log lines : 6s

 University of British Columbia Ivan Beschastnikh

Eval: vary trace length

83

• 20 traces, 100 event types

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5000 10000 15000 20000 25000 30000 35000

T
im

e
 (

s)

Number of events per trace

Synoptic

Linear miner

Map miner

 University of British Columbia Ivan Beschastnikh

Eval: vary event types

84

• 20 traces, 100 events/trace

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
 (

s)

Unique events

Synoptic

Linear miner

Map miner

 University of British Columbia Ivan Beschastnikh

Texada evaluation: utility

85

• Run Texada on an anonymized real estate website HTTP
access log

• 12K events, 13 event types

• Use a subset of the property types from

• Texada’s runtime < 1s

Ghezzi et al. ICSE 2014 Ohmann et al. ASE 2014

Dwyer et al. ICSE 1999

 University of British Columbia Ivan Beschastnikh

Texada evaluation: utility

86

• HTTP access log for a real estate website

Users who visit news article pages eventually visit a
sales announcement page.

Users do not visit the search page as they navigate to
the homepage from the contacts and news pages.

 University of British Columbia Ivan Beschastnikh

Support/confidence in LTL mining
• Number of instances mined for “always followed by”

template on the HTTP access log, varying global
support/confidence thresholds.

87

events) requires checking 5,040 property instances8. At the rate of
5 KiB per property instance, this process will generate about 25
MiB of memoized state. We aim to improve on the memory use of
memoized state by developing expiration policies to regularly delete
memoized state that is not going be reused.

7.3 Mining patterns of user activity
To evaluate Texada’s utility we applied it to a web log used to

evaluate the BEAR framework [22] and Perfume [31]. This log
records web requests for a real estate website on which users browse
or search for houses and apartments to rent or buy. Each request has
a timestamp and an anonymized IP address; we use these to interpret
the log as separate executions of the web-site, one execution per
client who accesses the site, where events are the visited site pages.

We reused the event types from the BEAR study by pre-processing
the log to remove irrelevant events, like those generated by web
crawlers, and by assigning semantically identical events to the same
label. The pre-processed log contained about 12,000 lines, with 13
different events. We used Texada revision e436 [37] to mine the
property types in Table 2 with the linear miner, comparing results
for different support and confidence thresholds. In the analysis we
ignored 4 rarely occurring events to simplify inspection. Due to
space constraints we discuss the implications of a select set of mined
property instances. The log had no ground truth to compare our
results to, but we believe the following results show utility. For each
result below we report a runtime that is an average over 5 runs.

1. F news_page ! (!news_page U news_article)

Visits to news article always precede visits to the news page. (Texada
runtime: 1.6s, instances returned: 15, support threshold: 8,000,
confidence threshold: 0.98.) This is an instantiation of “x always
precedes y” in Table 3 and has 0.99 confidence and 9,605 support.

This instantiation suggests that the news articles generate much
more initial interest than the news page, and that this page is only
accessed by users who have taken the time to access an article and
want more content. It may indicate the news page needs to be
redesigned for broader appeal.

2. G(sales_anncs ! XG(¬news_page))

After visiting the sales announcements, the news page is never vis-
ited. (Texada runtime: 9.7s, instances returned: 6, support threshold:
200,000, confidence threshold: 0.98.) This is an instantiation of
“x is never followed by y” in Table 3 and has .987 confidence and
202,772 support.

As with the first property, this instantiation indicates the news
page lacks appeal, but also suggests that users do not spend time
on both the sales and the news portions of the website. A better
integration of the two may increase users’ time spent on the website.

3. G(sales_page ! XF(¬sales_anncs))

After visiting a sales page, the sales announcement pages is always
visited. (Texada runtime: 7.5s, instances returned: 3, confidence
threshold: 0.80.) This is an instantiation of “x is always followed by
y” in Table 3 and has 0.87 confidence and 2,232 support.

We expect users interested in buying or selling a property to navi-
gate from the main sales page to the sales announcements. However,
the lower confidence of the property suggests there may be a block
to easy navigation between the two. The sales page could be revised
to better funnel users towards announcements.
8The default configuration is to generate bindings without replace-
ment: no two variables are bound to the same event.

aaaaaasupp.
conf. 1 0.95 0.9 0.85 0.8 0.7 0.6 0.5 0.3 0.1

0 11 120 141 150 165 169 175 182 182 182
200 5 105 122 127 142 145 150 155 155 155
500 2 96 111 116 130 133 138 143 143 143

5,000 0 87 100 105 118 121 126 130 130 130
15,000 0 71 78 81 90 93 97 99 99 99
50,000 0 47 51 53 59 61 63 64 64 64

100,000 0 29 32 33 35 37 39 39 39 39
200,000 0 17 18 19 21 21 21 21 21 21

Table 4: Number of instances of G(x ! XG(¬y)) mined from
the BEAR log with the linear miner using varying global sup-
port and global confidence thresholds. The cell highlighted in
the upper left corresponds to the default Texada thresholds.

4.
G(search ! G((news_article^XF renting_anncs) !

X(¬renting_anncs U (renting_anncs^F sales_anncs))))

Users who visit news article pages eventually visit a sales announce-
ment page. (Texada runtime: 12.8s, instances returned: 158) We ran
this property with confidence threshold 1 and support threshold 0.
This is an instantiation of “p responds to s, t after q” in Table 2.

This property says that after a search, every time a user accesses
a news article and then a renting announcement, the user will then
subsequently access a sales announcement (something that does not
happen every time users visit a renting announcement after search).
This may indicate that news articles impact users’ navigation, which
can prompt work on news article accessibility.

The support and confidence thresholds allow us to focus on the
most likely instantiations. The filtering effect due to support and
confidence is illustrated in Table 4, where increasing global con-
fidence and support thresholds decrease the number of instances
of the never followed by property found on the BEAR log. We
also see that high-support automatically filters out low-confidence
properties; the bottom row of the table shows that there were no
additional properties with support at least 200,000 and a confidence
value below 0.8. The properties in the bottom row likely reflect the
most important patterns in the log.

Overall, two features distinguish the above property instances
from results derived using other tools on the same log [22, 31]. (1)
Texada-generated property instances are concise and allow a devel-
oper to focus on and filter by a set of relevant events without needing
to understand other events in the trace. (2) The property instances
have a well-defined LTL structure stipulated by the property type.
The flexibility of the LTL formalism allows developers to compose
advanced log queries, for example by setting the scope of a property
type to range between two events of interest.

7.4 Mining data-temporal properties
Texada can be used to develop more advanced program analyses.

We prototyped a tool that combines Texada with Daikon [17], a
tool which infers likely data invariants from program traces. The
resulting prototype infers likely data-temporal properties.

As an example, consider a Queue class with fields size and
capacity, which represent the current size and the maximum size
of the queue, respectively. For this class Daikon may infer a data
invariant like size capacity. With Texada, we can infer temporal
relations between these data invariants. For example, the Queue

may also have an isFull flag. Daikon can infer a data invariant
like (isFull == true) () (size == capacity) at some program
points, but a more powerful property can be formulated temporally:

(isFull == false) U (size == capacity)
This can be read as “isFull is false until size is equal to

capacity”; it is an instance of “x holds until y becomes true”. This
data-temporal property captures an important correctness condition:

9

Default
settings

