Mining temporal and
data-temporal specifications

lvan Beschastnikh
Caroline Lemieux
Dennis Park

BC Software Practices Lab
e nem | Networks Systems Security Lab
D N\ W LA A

U Computer Science

University of British Columbia

lvan Beschastnikh

Computer Science
University of British Columbia

Vancouver, Canada

lvan Beschastnikh

Computer Science
University of British Columbia

Vancouver, Canada

lvan Beschastnikh

Computer Science
University of British Columbia

Vancouver, Canada

etworks Systems Security
ST |

lvan Beschastnikh

Computer Science
University of British Columbia

Vancouver, Canada

Mining temporal and
data-temporal specifications

lvan Beschastnikh
Caroline Lemieux
Dennis Park

BC Software Practices Lab
e nem | Networks Systems Security Lab
D N\ W LA A

U Computer Science

University of British Columbia

Program specifications

* Formally describe program behavior: what should happen
e Data:x < y
e Temporal: eventually socket.close is invoked

e |nterface contracts: preconditions, postconditions, invariants

lvan Beschastnikh University of British Columbia 7

Program specifications

e Helpful for numerous SE tasks:
e Bug detection (e.g., model checking, test case generation)
e Manageability (capture what’s important)

¢ Documentation and communication (more concise than code)

lvan Beschastnikh University of British Columbia 8

Challenge with program specifications

In practice, developers rarely
write formal specifications

lvan Beschastnikh University of British Columbia 9

Absence of program specifications

e Specification inference/mining
e Program implements some hidden specification

e |nfer this specification using program analyses

lvan Beschastnikh University of British Columbia 10

Uses of Inferred Specs in Familiar Systems

]
|

class A{ “eo ()

foo O q::j always
bar () precedes
e bar ()

- }

familiar inferred
system specs

« program maintenancel’l
« confirm expected behaviorl?]
* bug detection!?] ‘

- test generation!®! ﬂ

[1] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford. Automated API Property Inference Techniques. TSE, 613-637, 2013.

[2] M. D. Ernst, J. Cockrell, W. G. Griswold and D. Notkin. Dynamically Discovering Likely Program Invariants to Support program evolution. TSE, 27(2):99-123, 2001.

[3] V Dallmeier, N. Knopp, C. Mallon, S. Hack and A. Zeller. Generating Test Cases for Specification Mining. ISSTA, 85-96, 2010.

[4] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan and M. D. Ernst .Leveraging existing instrumentation to automatically infer invariant-constrained models. FSE, 267-277, 2011.

Inferred Specs in Unfamiliar Systems

foo ()
q h always
precedes

i

- bar ()
unfamiliar inferred
system specs

 system comprehensionl4
 system modeling!¥!
* reverse

engineeringl’]

[1]1 M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford. Automated API Property Inference Techniques. TSE, 613-637, 2013.

[2] M. D. Ernst, J. Cockrell, W. G. Griswold and D. Notkin. Dynamically Discovering Likely Program Invariants to Support program evolution. TSE, 27(2):99-123, 2001.

[3] V Dallmeier, N. Knopp, C. Mallon, S. Hack and A. Zeller. Generating Test Cases for Specification Mining. ISSTA, 85-96, 2010. 5
[4] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan and M. D. Ernst .Leveraging existing instrumentation to automatically infer invariant-constrained models. FSE, 267-277, 2011.

Absence of program specifications

e Specification inference/mining
e Program implements some hidden specification

e |nfer this specification using program analyses

e Sources of information

e Source code e Test oracles (asserts)
e Code comments e Exceptional control flow
e Documentation ¢ Dynamic behavior

lvan Beschastnikh University of British Columbia |3

Absence of program specifications

e Specification inference/mining
e Program implements some hidden specification

e |nfer this specification using program analyses

e Sources of information

e Source code e Test oracles (asserts)
e Code comments e Exceptional control flow
e Documentation e Dynamic behavior

lvan Beschastnikh University of British Columbia |4

Inference using dynamic behavior

e Advantages

* Precise

e |Independent of programming language (mostly)

e Quality depends on data, can always generate more data
e Disadvantages

e Semantic gap: what to capture in a trace?

* Gap between inferred spec and program code

e Neither sound nor complete (false positives/negatives possible)

lvan Beschastnikh University of British Columbia |8

In this talk

e Overview linear temporal logic (LTL)

e Texada: a tool to mine general LTL properties

For more details see ASE 2015 paper:
“General LTL Specification Mining”, by
Lemieux et al.

e Overview Daikon: a data property miner

e Quarry: a tool that combines Daikon and Texada to mine
data-temporal properties

e Work in progress

lvan Beschastnikh University of British Columbia 19

Linear temporal logic (LTL)

e | TL formulas assert a condition over time

e Extends propositional logic with temporal operators
e U: until
® X: next
e F: eventually
e G: always
o W: weak until
e R: release

e M: strong release

lvan Beschastnikh University of British Columbia 20

Linear temporal logic (LTL)

e | TL formulas assert a condition over time

e Extends propositional logic with temporal operators

e U: until
Base operators
® X: next

Derived operators

lvan Beschastnikh University of British Columbia 21

Linear temporal logic (LTL)

e | TL formulas assert a condition over time

e Extends propositional logic with temporal operators

e U: until
e X: next _
Used in the talk
e F: eventually

e G: always

lvan Beschastnikh University of British Columbia 22

Linear temporal logic (LTL)

e | TL formulas assert a condition over time

e Extends propositional logic with temporal operators
e U: until

e ¢ =p U q: exists an event where q is true and p is true on all
events before first g event

e X: next

@) trace satisfyingy :pppparrqpr
>

e F: eventually

e (G: always

€) trace violating v:ppprqgrrqpr

>

lvan Beschastnikh University of British Columbia 23

Linear temporal logic (LTL)

Two key differences from classic LTL

e Atomic propositions are event strings

e Finite trace semantics

@) trace satisfyingy :pppparrqpr
>

€) trace violating v:ppprqgrrqpr

>

lvan Beschastnikh University of British Columbia 24

Linear temporal logic (LTL)

e | TL formulas assert a condition over time

e Extends propositional logic with temporal operators
e U: until
e X: next
e) =X p: the next event is p
e [: eventually

/) trace satisfyingy :pqrrqpr

e (: always >

€ trace violating Y:rqrrqpr

lvan Beschastnikh University of British Columbia 25

Linear temporal logic (LTL)

e | TL formulas assert a condition over time

e Extends propositional logic with temporal operators

* U unti /) trace satisfyingy :qrrgprpp

e X: next g
r violatin rqrrqrr

e [: eventually Q trace violating ¥ q q >

e) =F p : eventually there is a p event

e (: always

lvan Beschastnikh University of British Columbia 26

Linear temporal logic (LTL)

e | TL formulas assert a condition over time

e Extends propositional logic with temporal operators

 U: until /) trace satisfyingy :ppppppp

e X: next]
. F: eventually €} trace violating Y:rqrrqrr R
e (: always

e y=Gp:all events are p

lvan Beschastnikh University of British Columbia 27

Linear temporal logic (LTL)

e | TL formulas assert a condition over time

e Extends propositional logic with temporal operators
e U: until e F: eventually

e X: next e (: always

= G(p—XF q):pis always followed by g

lvan Beschastnikh University of British Columbia 28

Linear temporal logic (LTL)

e | TL formulas assert a condition over time

e Extends propositional logic with temporal operators
e U: until e F: eventually

e X: next e (: always

= G(p—XF q):pis always followed by g

T

Eventually you should see a g

Whenever you see a p

Must be valid on entire trace

lvan Beschastnikh University of British Columbia 29

Linear temporal logic (LTL)

e | TL formulas assert a condition over time

e Extends propositional logic with temporal operators
e U: until e F: eventually

e X: next e (: always
= G(p—XF q):pis always followed by g

@) trace satisfyingy :rsrrprsqrgq

>

€) trace violating ¥:rqrrrps

lvan Beschastnikh University of British Columbia 30

(related work)
Mining temporal specifications

van der Aalst et al.

e Linear LTL checker; finite traces (process mining) | ycs 2005

e Perracotta: 8 templates + chaining |vang et al. ICSE 2006

e Javert: alternating + resource ownership |Gabel et al. FSE 2008

Gabel et al.
ICSE 2008

: alternating + resource allocation using BDDs

Lo et al.

e Response pattern with support/confidence thresholds | sye 2008

e OCD: anomaly detection, Perracotta types |Gabel et al. ICSE 2010

Many of these use REs; can be expressed with LTL

lvan Beschastnikh University of British Columbia 31

(related work)
Mining temporal specifications

e Perracotta: 8 templates + chaining |vang etal. ICSE 2006

Pattern Reg. Ex. LTL
Response y¥(xx*yy*)* | G(x — XFy)
Alternating | (xy)* (—y W x)AG((x = X(—x U y))A
(y = X(—y W x)))

MultiEffect | (xyy*)* (my Wx)AG(x— X(—x U y))
MultiCause | (xx*y)* (—y W xRAG(y = X(—y W x))
EffectFirst | y*(xy)* G((x = X(—x U y))A

(v = X(my Wx)))
CauseFirst | (xx*yy¥*) (—y W x) AG(x = XFy)
OneCause y¥*(xyy*)* G(x— X(—x Uy))
OneEffect y¥*(xx*y)* G(y = X(—y W x))

lvan Beschastnikh University of British Columbia 32

Specification patterns taxonomy

Dwyer et al.

csE 1909 | fOrmulate “specification patterns” by manually
reading many example system specifications

e Pattern: relation between propositions/events

e Scope: where the pattern must be true

lvan Beschastnikh University of British Columbia 33

Specification patterns taxonomy

Dwyer et al.

® |t | fOrmulate “specification patterns” by manually
reading many example system specifications

e Pattern: relation between propositions/events

e Scope: where the pattern must be true

Patterns: Scopes:

Universality A given state/event occurs throughout a Global MMy
scope.

Precedence A state/event P must always be preceded Before @ [y
by a state/event Q within a scope. Figure 1 gives the X ABer @ _
key elements of the pattern. 1 A e AN

Response A state/event P must always be followed by Between Q and R Wm—.l
a state/event Q within a scope.

After Q until B [T Y
State Sequence l Q R Q Q R Q I

lvan Beschastnikh University of British Columbia 34

Specification patterns taxonomy

This taxonomy cannot be captured by prior
specification inference tools

lvan Beschastnikh University of British Columbia 35

Contribution: Texada

Texada: LTL property miner. Mines LTL properties from
a log using an LTL template (a parameterized LTL
formula) of arbitrary length and complexity

Texada includes 67 LTL templates
e Specification patterns, Perracotta, etc
e No need to write LTL formulas of your own

e Supersedes prior temporal inference work

e Approximate confidence/support measures for LTL

e Concurrent system analysis (multi-propositional use)

lvan Beschastnikh University of British Columbia 36

Texada in one slide

Input:

Log:

Trace 1

Trace 2

Trace 3

Trace 4

login attempt
auth failed
login attempt
auth failed

login attempt
guest login
auth failed
authorized

login attempt
auth failed
login attempt
authorized

login attempt
auth failed
login attempt
guest login
authorized

Property type: G(x — X F) or “x always followed by 7’

Ivan Beschastnikh

University of British Columbia

Texada in one slide

‘ Texada

Output: Property instances: G(guest login — X F authorized)

“guest login” is always followed by “authorized”

lvan Beschastnikh University of British Columbia 38

Texada in one slide

Input:

Log:

Trace 1

Trace 2

Trace 3

Trace 4

login attempt
auth failed
login attempt
auth failed

login attempt

guest login
auth failed
authorized

login attempt
auth failed
login attempt
authorized

login attempt
auth failed
login attempt

guest login
authorized

Property type: G(:Ij — X F y) or “X always followed by ¥ ”
‘ Texada

Output: Property instances:

Ivan Beschastnikh

“guest login” is always followed by “authorized”

G(guest login — X F authorized)

University of British Columbia

Texada overview

May 20 16:15:27 my-mac SecurityAgent
May 20 16:29:19 my-mac SecurityAgent
May 20 16:29:19 my-mac authorizationh
May 20 16:29:22 my-mac SecurityAgent
May 20 16:29:22 my-mac SecurityAgent

130]
130]
ost[1
130]

130!

: Showing Login Window

: User info context values set for jenny

29]: Failed to authenticate user <jenny> (tDirStatus: -14090).

: User info context values set for jenny
: Login Window Showing Progress

Log
+

Parsing
regular expressions

Ivan Beschastnikh

Glr— XF y)
Property type

University of British Columbia

40

Texada overview: parsing the log

Log
+

Parsing
regular expressions

Ivan Beschastnikh

Gr — XF y)
Property type

University of British Columbia

4]

Texada overview: parsing the log

login attempt
guest login

auth failed
authorized

login attempt
auth failed

login attempt
authorized

login attempt
auth failed

login attempt

guest login

authorized . G(Qj N XF y)
Traces PI‘OPGI"t)’ type

lvan Beschastnikh University of British Columbia 42

Texada overview: type instantiation

login attempt

guest login =G (guest login — X Fauthorized)

auth failed
authorized

login attempt
auth failed

login attempt
authorized

login attempt X — guest IOgin

auth failed
oot log” . y = authorized

authorized

A

Traces Property type

lvan Beschastnikh University of British Columbia 43

Texada overview: type instantiation

login attempt
guest login

auth failed
authorized Q

login attempt

auth aied @ =G(login attempt — X Fauthorized)

login attempt

authorized . O

oo e X = login attempt A

gustlogin” . y = authorized

aunorized | B T » G(r — XF y)
Traces Property type

lvan Beschastnikh University of British Columbia 44

Texada overview: type instantiation

N O

O
O
B o0
© OO0
_ -
Traces Property instances
G(x —> XF y)
Property type

lvan Beschastnikh University of British Columbia 45

Texada overview

=G (guest login — X Fauthorized)

O
O
B o0
© OO0
_ -
Traces Property instances
G(x —> XF y)
Property type

lvan Beschastnikh University of British Columbia 46

Texada overview: check instances

login attempt

guest login . @D G (guest login — X Fauthorized)

e F Satisfies!?

login at_tempt . / Q
e o Satisfies? 0 O O
authorized ./ Q
ogin st Satisfies? © OO

login atte_mpt
gues logn l/ O
Traces Property instances
A
Gz — XF vy)
Property type

lvan Beschastnikh University of British Columbia 47

Texada overview: check instances

lb G (guest login — X Fauthorized)

&

./@%QQQ

l/@ © OO
O

Traces Property instances
A

G(x —> XF y)
Property type

lvan Beschastnikh University of British Columbia 48

Texada overview: check instances

=G (guest login — X Fauthorized)

O
. O

O
i o0
SECNo N |
. O ¢= G (login attempt — X Fauthorized)
Traces Property instances
G(x —> XF y)
Property type

lvan Beschastnikh University of British Columbia 49

Texada overview: check instances

login attempt . .
auth fafed =G (guest login — X Fauthorized)
authorized l\ ‘

login attempt Sati Sﬁ es ? Q

auth failed

@0 ©
thorized l\SatiSﬁeS?% Q
login attempt O

auth failed —> . .
ogi aterp o @ =G (login attempt — X Fauthorized)
Traces Property instances
A
G(x —~ XF n
Property type

lvan Beschastnikh University of British Columbia 50

Texada overview: check instances

login attempt

guest login =G (guest login — X Fauthorized)

auth failed
authorized / ‘

login attempt

auth failed

l\@ © O QQ

o el | |
‘ - o @ =G (login attempt — X Fauthorized)

Traces Property instances
A

login attempt
auth failed

G(x —> XF y)
Property type

lvan Beschastnikh University of British Columbia 51

Texada overview

Traces

Ivan Beschastnikh

Property instances
A

G(x % XF y)
Property type

University of British Columbia

52

Texada overview

Traces

Ivan Beschastnikh

Property instances
A

G(x —> XF y)
Property type

Texada output

|

Property instances
that are true on all
Input traces

University of British Columbia 53

Trace representation

e | inear array of events

e Optimized representations
e Map (event to a list of positions inside a trace)

e Prefix tree (collapse identical prefixes)

a:0 a:0 a:o0 @<:@
a a a b:1 b:1 b: @< @
b b c c:2 C: c:1
c d | d d: d:2 d:2 @ @
Linear Map Prefix tree

lvan Beschastnikh University of British Columbia 54

Linear property instance checking

e L TL tree traversal and recursive trace traversal
(— authorized U guest login) A G(guest login — X I’ authorized)

lvan Beschastnikh University of British Columbia 55

Linear property instance checking

e L TL tree traversal and recursive trace traversal

(— authorized U guest login) A G(guest login — X I’ authorized)

)

guest
login

&

authorized

Ivan Beschastnikh

O

¢

guest
login

g
:

authorized

University of British Columbia

56

Linear property instance checking

e L TL tree traversal and recursive trace traversal

Ivan Beschastnikh

)

guest
login

&

authorized

Evaluate left child,

O

if false stop. Else,

return right child
@ result

guest
login

g
:

authorized

University of British Columbia

57

Linear property instance checking

e L TL tree traversal and recursive trace traversal

Find first instance /@\A
of right child,

evaluate left child '@‘ @
at each position

: : guest
authorized guest @

login

authorized

lvan Beschastnikh University of British Columbia 58

Linear property instance checking

e L TL tree traversal and recursive trace traversal

Ivan Beschastnikh

(@

guest
login

authorized

O

L

guest
login

If event at current position is

“guest login” return true, else

false.

authorized

University of British Columbia

59

Linear property instance checking

e L TL tree traversal and recursive trace traversal

(@

O

¢

guest
////////l Hosi
Return authorized guest
: login
negation of
child

Ivan Beschastnikh

g
:

authorized

University of British Columbia

60

Linear property instance checking

e L TL tree traversal and recursive trace traversal

(@

guest
login

authorized

A

If event at current position is
“authorized” return true, else
false.

Ivan Beschastnikh

O

L

guest
login

authorized

University of British Columbia

61

Linear property instance checking

e L TL tree traversal and recursive trace traversal

Evaluate left child,
T%@(\A If false stop. Else,
return right child
@ result

guest
login

authorized

lvan Beschastnikh University of British Columbia 62

Linear property instance checking

e L TL tree traversal and recursive trace traversal

@\ Traverse all events

<—— and check child at

each one
guest
login

authorized

lvan Beschastnikh University of British Columbia 63

Key optimization: checking memoization

e Many property instances have a similar structure

®Y=G(cAN-e—=((a—=(—eU (bA—e)))W e))
S0 @0=G(dAN—e— ((a— (neU (bNA—e)))W e))

O
QQQ
© 00

O

lvan Beschastnikh University of British Columbia 64

Key optimization: checking memoization

e Many property instances have a similar structure

®Y=G(cAN-e—=((a—=(—eU (bA—e)))W e))
S0 @0=G(dAN—e— ((a— (neU (bNA—e)))W e))

@
QQQ
%é

O

lvan Beschastnikh University of British Columbia 65

Checking memoization

e Many property instances have a similar structure

®Y=G(cAN-e—=((a—=(—eU (bA—e)))W e))
S0 @0=G(dAN—e— ((a— (neU (bNA—e)))W e))

Q%Q G e
D G Y gy

° @2

] %

cllellalle|/lb|] |e| |e dile|la||le e

lvan Beschastnikh rsity of British Columbia 66

Checking memoization

e Many property instances have a similar structure

®Y=G(cAN-e—=((a—=(—eU (bA—e)))W e))
S0 @0=G(dAN—e— ((a— (neU (bNA—e)))W e))

®© @ /O
- ©
® e
® A& """"
Q\@ T

lvan Beschastnikh University of British Columbia 67

Checking memoization

e Many property instances have a similar structure

@ U =Glche—im)
SO @ ¢=GdA-e—iT)

® e /O
- ©
® dle
® A& """"
Q\@ T

lvan Beschastnikh University of British Columbia 68

Checking memoization

e Many property instances have a similar structure

b = Gle A Y * Can only re-use results if evaluated
O = GleN—e— }_-\--\‘) at same point in the trace
O = G(dA—e—iTy)
o © ® ® e Memory vs. compute trade-off
O O
- 7
© O|0
. @\&
ORI |
el b

lvan Beschastnikh University of British Columbia 69

Checking memoization

e Many property instances have a similar structure

@ U =Clch-e—im)
0 @ ¢P=G(dN-e—T)
® o /O

O
O OO Current strategy:

O e Memoize eval result at each
<tree node, location in the trace>

* Throw away memoized state after checking
one trace against all property instances

lvan Beschastnikh University of British Columbia 70

Support/confidence computation

e Consider checking G(a) on three traces
e Tracel: aaaaa ¢
e Trace2: aaaab @
* Trace3: abbbb €

lvan Beschastnikh University of British Columbia 71

Support/confidence computation

e Consider checking G(a) on three traces
e Tracel: aaaaa ¢
e Trace2: aaaab @
* Trace3: abbbb €

e But, TraceZ2 and Trace3 are qualitatively different
e Useful to differentiate these, depending on use-case
e Anomaly detection, bug finding, ...

* Want to get a handle on log incompleteness (finite log!)

lvan Beschastnikh University of British Columbia 72

Support/confidence computation

e Consider checking G(a) on three traces
e Tracel: aaaaa ¢
e Trace2: aaaab @
* Trace3: abbbb €

o Support of G(a) : number of positions in which ‘a’ appears
e Support potential of G(a) : length of the trace

* Confidence = support / support potential

lvan Beschastnikh University of British Columbia 73

Support/confidence computation

e Consider checking G(a) on three traces
e Tracel: aaaaa & sup: 5 conf: 1.0
e Trace2: aaaab € sup: 4 conf: 0.8
* Trace3: abbbb € sup: 1 conf: 0.2

o Support of G(a) : number of positions in which ‘a’ appears
e Support potential of G(a) : length of the trace

* Confidence = support / support potential

lvan Beschastnikh University of British Columbia 74

Support/confidence computation

Generalizing support/confidence for arbitrary property:
e Support: count locations where instance is true

e Support potential: compute whether a “false”
evaluation is possible (depending on trace contents)

lvan Beschastnikh University of British Columbia 75

Texada implementation

e Open source project, in C++
e Uses SPOT lib for parsing LTL property templates

* |Includes 67 pre-defined templates (no need to write your
own templates!)

e Dwyer et. al’s patterns (55)
e Perracotta patterns (8)

e Synoptic patterns (4)

lvan Beschastnikh University of British Columbia 76

Texada Evaluation

» (Can Texada mine a wide enough variety of temporal
properties?
» (Can Texada help comprehend unknown systems?

— Real estate web log
— StackAr

» (Can Texada confirm expected behavior of systems?
— Dining Philosophers
— Sleeping Barber

* |s Texada fast?
— Texada vs. Synoptic (Beschastnikh et al., ESEC/FSE 2011)
— Texada vs. Perracotta (Yang et al., ICSE 2016)

« Can we use Texada’s results to build other tools?
— Quarry prototype

Texada Evaluation

* Can Texada mine a wide enough variety of temporal
properties?

» (Can Texada confirm expected behavior of systems?
— Dining Philosophers

o 0. For more details see ASE 2015 paper:
Is Texada fast* | “General LTL Specification Mining”, by
— Texada vs. Synoptic Lemieux et al.

— Texada vs. Perracotta

Expressiveness of Property Types

« Texada can express properties from prior work

Name Regex LTL
Always Followed by G(x—XFy)
— SynoptiC[” Never Followed by G(x—XGly)
Always Precedes ('y W x)
[Alternating (xy)* ('y Wx) & G((x—=X(Ix U y)) & (y— X(ly W x)))

MultiEffect (xyy*)* ('y Wx) & G(x—=X(Ix U y))

— Perracottal? _ MultiCause (xx*y)* ('y W x) & G((x—XFy) & (y—=X(ly W x)))
EffectFirst y*(xy)* G((x—=X(Ix U y)) & (y— X(ly W x)))
OneCause y*(xyy*)* G(x—X(IxUYy))

CauseFirst (xx*yy*)* (ly W x) & G(x—XFy)
__ OneEffect y*(xx*y)* G((x—=XFy) & (y—=X(ly W x)))

— Patterns in Property Specifications for Finite-State Verification
[Dwyer et al. ICSE'99]

[1] 1. Beschastnikh, Y. Brun, S. Schneider, M. Sloan and M. D. Ernst. Leveraging Existing Instrumentation to Automatically Infer Invariant-Constrained
Models. FSE11.
[2] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, Manuvir Das. Perracotta: Mining Temporal API Rules from Imperfect Traces. ICSE06.

Expressiveness of Property Types

» Texada can mine a wide variety of properties

* Texada can mine concurrent sys. properties
» Texada has reasonable performance

Dining Philosophers

« Classic concurrency problem: philosophers sit around a
table, thinking, hungry, or eating.

needs two 0
chopsticks ' i
but this pair
to eat \ can eat at the
4 ’ same time
so this pair
can’t eat at

the same time

 These specs could not be checked with previous
temporal spec miners!

51

Multi-Propositional Traces

« LTL: multiple atomic propositions may hold at a time
« Standard log model: one event at each time point

« Texada supports multi-propositional logs: multiple
events can occur at one time point

* Dining philosophers log: 5 one minute traces, 6.5K lines

g

0 is THINKING
. 1 is HUNGRY

multiple events at _J | 5 jo THINKING
single time point 3 is THINKING
14 is THINKING

/"é):]is THINKING
1 is EATING

time point 5 i THINKING
separator |3 is THINKING
4 is THINKING

Dining Phil. Mutex (safety property)

* Two adjacent philosophers never eat at the same time
* Property pattern: G(x —!y) “if x occurs, y does not”

G(3 is EATING — !4 is EATING)

L}

G(4 is EATING —!3 is EATING)

« Texada output for G(x —!y) includes

@

O is
0

@

1s

@
[}

1s

Q)
N

is

(
(
(
(
(

@

3 1is

EATING —!1
EATING — !4
EATING — ! 2
EATING — |3
EATING — !4

is
is
is
is

1s

EATING
EATING
EATING
EATING
EATING

together, mean that two
adjacent philosophers

never eat at the same time

Dining Phil. Efficiency (liveness property)

* Non-adjacent philosophers eventually eat at the same time

* Property pattern: F(x & y) “eventually x and y occur together’

0

(4) 1

3 9

F(2 is EATING & 4 is EATING)

L}

F(4 is EATING & 2 is EATING)

« Texada output for F(x & y) includes

m T T M
=

n

(
(
(
(
(

¢)
¢)

2

is
is
is
is

1s

EATING & 2
EATING & 3
EATING & 3
EATING & 4
EATING & 4

is
is
is
is

1s

EATING)
EATING)
EATING)
EATING)
EATING)

—

together, mean that non-
= adjacent philosophers
eventually eat at the same time

54

Dining Phil. Efficiency (liveness property)

» Texada can mine a wide variety of properties

* Texada can mine concurrent sys. properties
» Texada has reasonable performance

Texada vs.

Synoptic

« Texada performs favourably against Synoptic’s miner on
three property types it is specialized to mine.

60
50
40
30
20

Time (s)

0

| | | |
B Synoptc =l |
- E| - Linear miner L=~ 1
—e— Map miner
10 FTHICTE T L A L b b p ™ -
0 50 100 150 200 250 300

Number of traces per log

* More results in paper.

« Texada algs benefit from log-level short-circuiting.

56

Texada vs. Perracotta

« Perracotta performs favourably against Texada:

Unique events Perracotta Texada
(10K events/trace, 20 (map miner)
traces/log)
120 0.85s 242 s
160 0.97s 4.07s
260 142 s 10.21s

« Perracotta’s algorithm particularly effective at reducing
instantiation effect on runtime.

« Further memoization work (along with good expiration
policies) might help reduce instantiation effect

Texada vs. Perracotta

« Texada can mine a wide variety of properties

* Texada can mine concurrent sys. properties
* Texada has reasonable performance

Texada demo

Project page:

https://bitbucket.org/bestchai/texada

Online tool:

http://bestchai.bitbucket.org/texada/

Ivan Beschastnikh

Log:

login attempt
guest login
auth failed
authorized

login attempt
auth failed &
login attempt
authorized

login attempt
auth failed
login attempt
guest login
authorized

Args:

£ 'G(x > XF y)'-|

Mine property instances

University of British Columbia

79

In this talk

e Overview linear temporal logic (LTL)

e Texada: a tool to mine general LTL properties

lvan Beschastnikh University of British Columbia 88

In this talk

e Overview Daikon: a data property miner

e Quarry: a tool that combines Daikon and Texada to mine
data-temporal properties

e Work in progress

lvan Beschastnikh University of British Columbia 89

Daikon

Ivan Beschastnikh

Tests

PP1:
X=2,y=3
PP2:
x=1,y=1

PP2:
x=0,y=0
PP1:
x=0,y=1

PP1:
x=1,y=2

Program
Source

> PP2:
x=0,y=0

Daikon

PP1:
X=y-1
> PP2:

Data traces

|

Likely data invariants

Concrete program values +

program points (control flow)

X: =y

University of British Columbia

90

Daikon applied to a queue

e | ikely invariants |

vars : {size, capacity, isFull}
® size <= capacity

e isFull one of {true, false}

lvan Beschastnikh University of British Columbia 91

Ongoing work: mining data-temporal specs

Data invariants

(Daikon)
size == 0
size == 1
at exit of

size == 1

enqueue (),
size == 2 size >= 1
size == 2
size == 4

Describe data at specific
program points

Temporal invariants

(Texada)

create()
enqueue (5)
enqueue (3)
dequeue ()
enqueue (7)
enqueue (2)
enqueue (25)
dequeue ()
dequeue ()
enqueue (8)
enqueue (16)
dequeue ()

enqueue ()
is always

followed by

dequeue ()

Relate events
through time.

Ongoing work: mining data-temporal specs

Data invariants Temporal invariants
(Daikon) (Texada)

But: data values may

Interact through time

Daikon applied to a queue

e | ikely invariants
® size <= capacity
e isFull one of {true, false}

e True over all time : G(size <= capacity)

What if we consider non-global scope!

lvan Beschastnikh University of British Columbia 92

Daikon applied to a queue

e | ikely invariants
® size <= capacity
e isFull one of {true, false}

e True over all time : G(size <= capacity)

What if we consider non-global scope!

e Example:

* (isFull == false) U (size == capacity)

lvan Beschastnikh University of British Columbia 93

Tests

PP1:
X=2,y=3
PP2:
x=1,y=1

PP2:
x=0,y=0
PRl
x=0,y=1

PP1:
x=1,y=2
> PP2:

Program
Source

Ivan Beschastnikh

x=0,y=0

Da:i kon

Quarry

PP1:
X=y-1,x<=2
> PP2:

Data traces

|

Concrete program values +
program points (control flow)

x==y, x in {0,1}
Likely data invariants

University of British Columbia 94

Tests

PP1:
X=2,y=3
PP2:
x=1,y=1

PP2:
x=0,y=0
PRl
x=0,y=1

PP1:
x=1,y=2
> PP2:

Program
Source

x=0,y=0

Da:i kon

>

Data traces

A4

PP1:
X=y-1,x<=2
PP2:
x==y, x in {0,1}

\4

PP1:
X=y-1,x<=2
PP2:
x==y, x in {0,1}

PP2:

x==y. X in {0,1}

PP1:

X=y-1,x<=2

PP1:

PP2:

X=y-1,x<=2

x==y, x in {0,1}

Multi-pro

Ivan Beschastnikh

bositional invariant traces

Quarry

Likely data invariants

University of British Columbia 95

Tests

PP1:
X=2,y=3
PP2:
x=1,y=1

PP2:
x=0,y=0
PRl
x=0,y=1

PP1:
x=1,y=2
> PP2:

Program
Source

x=0,y=0

Da:i kon

>

Data traces

A4

PP1:
X=y-1,x<=2
PP2:
x==y, x in {0,1}

Tégada

\4

PP1:
X=y-1,x<=2
PP2:
x==y, x in {0,1}

PP2:

x==y. X in {0,1}

PP1:

X=y-1,x<=2

PP1:

PP2:

X=y-1,x<=2

x==y, x in {0,1}

v

Quarry

Likely data invariants

Data-temporal
>

Multi-pro

Ivan Beschastnikh

bositional invariant traces

properties

University of British Columbia 96

Quarry applied to a queue

e (5(size <= capacity)
* (isFull == false) U (size == capacity)

e 5(this.back <= size(this.theArray[]) - 1)

e True with confidence < 100%

e Either bug, or initialization behavior

e Ongoing work

e Data invariant semantics for atomic propositions (instead of
string semantics)

lvan Beschastnikh University of British Columbia 97

Challenges in data-temporal spec mining

« Data invariant semantics for atomic propositions
— Does “size >= 3" always hold on the following trace?

. size >=
Current string N
semantics: no size >=
size >= 3 and :
size == 4 size ==
are different strings
size >=

3

3

4

3

Data invariant
semantics:

size == 4
is stronger than
size >= 3

« What does it mean for “size >= 3" to be true at a program

point where size is not in scope?

Conclusion

Program specifications: important, but often missing

e Texada: a tool to mine LTL properties from traces
e General-purpose, 67 pre-defined LTL property types

e Fast: 1T million log lines in 3s

e Quarry: a tool that combines Daikon and Texada to mine
data-temporal properties

e Work in progress

Open source and ready for use:
https://bitbucket.org/bestchai/texada

lvan Beschastnikh University of British Columbia 98

Texada evaluation: performance

e Compared performance of Texada against Synoptic’s
miner on three property types

e x always followed by y : G(z — XF y) An optimized

Java miner for

e x never followed by vy : G(a:' — G(_'y)) these property

* x always precedesy: F' y — (—y U x) types

* x immediately followed by y : G(z — Xy)

e Synthetic logs, uniformly randomly distributed events

e Average tool runtime over 5 executions on log input

lvan Beschastnikh University of British Columbia 80

Eval: vary number of traces

e 10K events/trace, 50 event types

60
50
40
30
20

10]ﬂim!lliiiiUiI!

g VA‘.'A‘.'A‘.'A‘

F o 'A

Time (s)

T T D E N -
L L=k 2 sl alalalalalafala i
.'A‘.'A‘.'A‘l' o W mw— W T A"""""""

0 \'\vﬁﬁ%?'".‘?i?i;i;i;f.ﬁiA'A'A'Auu:uu

0 50 100 150 200 250 300
Number of traces per log

lvan Beschastnikh University of British Columbia 8l

Eval: vary number of traces

Ivan Beschastnikh

Synoptic miner:
| million log lines : 21s
2 million log lines : 42s

Texada map miner:
| million log lines : 3s
2 million log lines : 6s

University of British Columbia 82

Eval: vary trace length

e 20 traces, 100 event types

100
90
80
/70
60
50
40
30
20
10

0

Time (s)

Ivan Beschastnikh

| | | | | —= 71 |
—I—— Synophc """"""""""""""""""""""""" — - A=
- |---| - Linear miner.....___ j’ _________________
—e— Map miner [T _ / b

10 15000 20000 25000 30000 35000

Number of events per trace

University of British Columbia

83

Eval: vary event types

e 20 traces, 100 events/trace

250
200
150
100

Time ()

Ivan Beschastnikh

| I I
, —|— Synoptic__

. - |---| - Linear miner

""" ,' —e— Map miner-

Unique events

University of British Columbia 84

Texada evaluation: utility

e Run Texada on an anonymized real estate website HTTP

access log

Ghezzi et al. ICSE 2014

Ohmann et al. ASE 2014

e 12K events, 13 event types

e Use a subset of the property types from |Dwyer et al. ICSE 1999

e Texada’s runtime < 1s

Ivan Beschastnikh

University of British Columbia

85

Texada evaluation: utility

e HTTP access log for a real estate website

Users who visit news article pages eventually visit a
sales announcement page.

Users do not visit the search page as they navigate to
the homepage from the contacts and news pages.

|

G((contacts A ~homepage ANF homepage) —

(—search U homepage))

G((—homepage N\ news_page ANF homepage) —

(—search U homepage))

lvan Beschastnikh University of British Columbia 86

Support/confidence in LTL mining

e Number of instances mined for “always followed by”

template on the HTTP access log, varying global
support/confidence thresholds.

supp—""t | 1 095 09 085 08 07 06 05 03 0.1
Default
settings 0 11 120 141 150 165 169 175 182 182 182
200 | 5 105 122 127 142 145 150 155 155 155
500 | 2 96 111 116 130 133 138 143 143 143
5000 | 0 87 100 105 118 121 126 130 130 130
15000 [0 71 78 81 90 93 97 99 99 99
50000 0 47 51 53 59 61 63 64 64 64
100000 | 0 29 32 33 35 37 39 39 39 39
200000 | 0 17 18 19 21 21 21 21 21 2l

Ivan Beschastnikh

University of British Columbia

87

