Scalable Constraint-based Virtual Data Center Allocation

Sam Bayless
Nodir Kodirov
Ivan Beschastnikh
Holger H. Hoos
Alan J. Hu

University of British Columbia

Computer Science
University of British Columbia
Data centers, data centers, for all
Data centers, data centers, for all

Flexible abstraction:

... Provider
Data centers, data centers, for all

Flexible abstraction:

get(VM) \[\text{Customer}\]

\[\text{ip}\]
Data centers, data centers, for all

- Cisco: traffic flowing through data centers will **triple** between 2014 and 2019 (reaching 10.4 ZB/year)

- Wide variety of applications being hosted [Benson et al. IMC’10, Kanev et al. ISCA’15]
More capacity + capabilities lead to more complex workloads

- Complex workload examples

 - Allocate a web-server, cache, database in a particular topology and with enough bandwidth to satisfy a certain QoS

 - Deploy a distributed compute task in which some nodes communicate a lot, and others rarely

 - Allocate a chain of NFV elements some of which require special hardware (GPUs)
VM allocation
VM allocation
VM allocation

ToR

Customer
VM allocation
VM allocation

ToR

Aggregation Switch

ToR

VM

VM

VM

Customer
VM allocation: multi-tenancy
Observation 1: get(VM)-style API is inappropriate
Observation 1:
get(VM)-style API is inappropriate

Observation 2:
It is more effective to allocate virtual data centers (VDCs), than virtual machines (VMs)
As DCs evolve, so must the **programming models and allocation mechanisms**

- Allocation one VM at a time: `get(VM)`
 - Sub-optimal for the provider **and** the customer
 - More info about an allocation: helps the provider plan and to effectively pack the data center
 - Customers benefit since they get the properties that they ultimately need
As DCs evolve, so do the programming models and allocation mechanisms

- Allocation one VM at a time
- Sub-optimal for the provider and the customer
- More info about an allocation: helps the provider plan and to effectively pack the data center
- Customers benefit since they get the properties that they ultimately need

AWS Lambda

Amazon EMR (Hadoop)
In this talk

• Introduce virtual data center (VDC) allocation

• Discuss prior work (there is lots of it, mostly in the networking community)

• Describe NetSolver: our approach to solve VDC allocation (based on MonoSAT SMT-solver)

• Show how NetSolver compares to other approaches
What’s the problem?

• Multi-path VDC allocation

 • **Input 1**: a (directed/undirected) physical DC topology (DC) with edge capacities/latencies and per-host constraints (disk/memory/CPU/GPU/etc)

 • **Input 2**: a virtual data center (VDC) that describe connectivity graph between VMs, and connectivity/VM requirements

• **Output**: assignment of VMs to hosts, and virtual edges to physical paths (possibly multi-path) s.t. all constraints (end-to-end bandw, and VM) are satisfied and respect DC
What’s the problem?

Physical DC topology:
What’s the problem?

Physical DC topology:

Virtual data center (VDC):
What’s the problem?

Physical DC topology:

Virtual data center (VDC):

Output: Mapping
Example NetSolver solution

Physical DC topology:

Virtual data center (VDC):

Mapping 1: VM -> host
Example NetSolver solution

Physical DC topology:

Virtual data center (VDC):

Mapping 1: VM -> host

Mapping 2: VM-VM edges -> paths
Example NetSolver solution

Physical DC topology:

Virtual data center (VDC):

Mapping 1: VM -> host

Mapping 2: VM-VM edges -> paths
Example NetSolver solution

Physical DC topology:

Virtual data center (VDC):

Mapping 1: VM -> host

Mapping 2: VM-VM edges -> paths
Related work dimensions

- Sound: respect end-to-end bandw. guarantees
- VDC topology: Star/Hose/All
- DC topology: Tree/All
- Complete: finds a solution if a solution exists
- Multi-VM: can map more than one VM to a host
- Multi-path: supports multi-path allocations
Related work break-down

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Sound</th>
<th>VDC Topology</th>
<th>Data Center Topology</th>
<th>Complete</th>
<th>Multi-VM</th>
<th>Multi-path</th>
</tr>
</thead>
<tbody>
<tr>
<td>SecondNet [29]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Importance Sampling [48]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oktopus [8]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDCPlanner [54]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HVC-ACE [43]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAR-SP/PS [50]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW-MM-SP/PS [15]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-ViNE [16]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASID [36]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VirtualRack [31]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z3-AR [51]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NETSOLVER (this paper)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

48: Tantawi, MASCOTS’12 43: Rost et al. CCR’15 16: Chowdhury et al, INFOCOM’09
8: Ballani et al. CCR’11 50: Yu et al. SIGCOMM’08 36: Lischika et al., VISA’09 51: Yuan, FMCAD’13
Related work break-down

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Sound</th>
<th>VDC Topology</th>
<th>Data Center Topology</th>
<th>Complete</th>
<th>Multi-VM</th>
<th>Multi-path</th>
</tr>
</thead>
<tbody>
<tr>
<td>SecondNet [29]</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Importance Sampling [48]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oktopus [8]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDCPlanner [54]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HVC-ACE [43]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAR-SP/PS [50]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW-MM-SP/PS [15]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-ViNE [16]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASID [36]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VirtualRack [31]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z3-AR [51]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NETSOLVER (this paper)</td>
<td>✓</td>
<td>All</td>
<td>All</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

29: Guo et al. CoNEXT’10
48: Tantawi, MASCOTS’12
8: Ballani et al. CCR’11
54: Zhani et al. INM’13
15: Cheng et al. CCR’11
31: Huang et al., ICC 2014
43: Rost et al. CCR’15
16: Chowdhury et al, INFOCOM’09
50: Yu et al. SIGCOMM’08
36: Lischika et al., VISA’09
51: Yuan, FMCAD’13
Related work break-down

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Sound</th>
<th>VDC Topology</th>
<th>Data Center Topology</th>
<th>Complete</th>
<th>Multi-VM</th>
<th>Multi-path</th>
</tr>
</thead>
<tbody>
<tr>
<td>SecondNet [29]</td>
<td>✓</td>
<td>All</td>
<td>All</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Importance Sampling [48]</td>
<td>✓</td>
<td>All</td>
<td>Tree</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oktopus [8]</td>
<td>✓</td>
<td>Star</td>
<td>All</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDCPlanner [54]</td>
<td>✓</td>
<td>All</td>
<td>All</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HVC-ACE [43]</td>
<td>✓</td>
<td>Hose</td>
<td>All</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>GAR-SP/PS [50]</td>
<td>✓</td>
<td>All</td>
<td>< 200 nodes</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>RW-MM-SP/PS [15]</td>
<td>✓</td>
<td>All</td>
<td>< 200 nodes</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>D-ViNE [16]</td>
<td>✓</td>
<td>All</td>
<td>< 200 nodes</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>ASID [36]</td>
<td>✓</td>
<td>All</td>
<td>< 200 nodes</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>VirtualRack [31]</td>
<td>✓</td>
<td>Hose</td>
<td>All</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Z3-AR [51]</td>
<td>✓</td>
<td>All</td>
<td>Tree</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>NETSOLVER (this paper)</td>
<td>✓</td>
<td>All</td>
<td>All</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

29: Guo et al. CoNEXT’10
48: Tantawi, MASCOTS’12
8: Ballani et al. CCR’11
54: Zhani et al. INM’13
15: Cheng et al. CCR’11
31: Huang et al., ICC 2014
43: Rost et al. CCR’15
16: Chowdhury et al, INFOCOM’09
50: Yu et al. SIGCOMM’08
36: Lischika et al., VISA’09
51: Yuan, FMCAD’13
Related work break-down

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Sound</th>
<th>VDC Topology</th>
<th>Data Center Topology</th>
<th>Complete</th>
<th>Multi-VM</th>
<th>Multi-path</th>
</tr>
</thead>
<tbody>
<tr>
<td>SecondNet [29]</td>
<td>✓</td>
<td>All</td>
<td>All</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Importance Sampling</td>
<td>✓</td>
<td>All</td>
<td>Tree</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oktopus [8]</td>
<td>✓</td>
<td>Star</td>
<td>All</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDCPlanner [54]</td>
<td>✓</td>
<td>All</td>
<td>All</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HVC-ACE [43]</td>
<td>✓</td>
<td>Hose</td>
<td>All</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>GAR-SP/PS [50]</td>
<td>✓</td>
<td>All</td>
<td>< 200 nodes</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>RW-MM-SP/PS [15]</td>
<td>✓</td>
<td>All</td>
<td>< 200 nodes</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>D-ViNE [16]</td>
<td>✓</td>
<td>All</td>
<td>< 200 nodes</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ASID [36]</td>
<td>✓</td>
<td>All</td>
<td>< 200 nodes</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>VirtualRack [31]</td>
<td>✓</td>
<td>Hose</td>
<td>All</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z3-AR [51]</td>
<td>✓</td>
<td>All</td>
<td>Tree</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NETSOLVER (this paper)</td>
<td>✓</td>
<td>All</td>
<td>All</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

29: Guo et al. CoNEXT’10
48: Tantawi, MASCOTS’12
8: Ballani et al. CCR’11
15: Cheng et al. CCR’11
31: Huang et al., ICC 2014
43: Rost et al. CCR’15
16: Chowdhury et al, INFOCOM’09
50: Yu et al. SIGCOMM'08
36: Lischika et al., VISA’09
51: Yuan, FMCAD’13
Related work break-down

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Sound</th>
<th>VDC Topology</th>
<th>Data Center Topology</th>
<th>Complete</th>
<th>Multi-VM</th>
<th>Multi-path</th>
</tr>
</thead>
<tbody>
<tr>
<td>SecondNet [29]</td>
<td>✓</td>
<td>All</td>
<td>All</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Importance Sampling [48]</td>
<td>✓</td>
<td>All</td>
<td>Tree</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oktopus [8]</td>
<td>✓</td>
<td>Star</td>
<td>All</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>VDCPlanner [54]</td>
<td>✓</td>
<td>All</td>
<td>All</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HVC-ACE [43]</td>
<td>✓</td>
<td>Hose</td>
<td>All</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>GAR-SP/PS [50]</td>
<td>✓</td>
<td>All</td>
<td>< 200 nodes</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW-MM-SP/PS [15]</td>
<td>✓</td>
<td>All</td>
<td>< 200 nodes</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>D-ViNE [16]</td>
<td>✓</td>
<td>All</td>
<td>< 200 nodes</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ASID [36]</td>
<td>✓</td>
<td>All</td>
<td>< 200 nodes</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>VirtualRack [31]</td>
<td>✓</td>
<td>Hose</td>
<td>All</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Z3-AR [51]</td>
<td>✓</td>
<td>All</td>
<td>Tree</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NETSOLVER (this paper)</td>
<td>✓</td>
<td>All</td>
<td>All</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

29: Guo et al. CoNEXT’10
48: Tantawi, MASCOTS’12
8: Ballani et al. CCR’11
54: Zhani et al. INM’13
43: Rost et al. CCR’15
15: Cheng et al. CCR’11
31: Huang et al., ICC 2014
16: Chowdhury et al, INFOCOM’09
50: Yu et al. SIGCOMM’08
36: Lischika et al., VISA’09
51: Yuan, FMCAD’13
Related work break-down

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Sound</th>
<th>VDC Topology</th>
<th>Data Center Topology</th>
<th>Complete</th>
<th>Multi-VM</th>
<th>Multi-path</th>
</tr>
</thead>
<tbody>
<tr>
<td>SecondNet [29]</td>
<td>✓</td>
<td>All</td>
<td>All</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Importance Sampling [48]</td>
<td>✓</td>
<td>All</td>
<td>Tree</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Oktopus [8]</td>
<td>✓</td>
<td>Star</td>
<td>All</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>VDCPlanner [54]</td>
<td>✓</td>
<td>All</td>
<td>All</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>HVC-ACE [43]</td>
<td>✓</td>
<td>Hose</td>
<td>All</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>GAR-SP/PS [50]</td>
<td>✓</td>
<td>All</td>
<td>< 200 nodes</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>RW-MM-SP/PS [15]</td>
<td>✓</td>
<td>All</td>
<td>< 200 nodes</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>D-ViNE [16]</td>
<td>✓</td>
<td>All</td>
<td>< 200 nodes</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>ASID [36]</td>
<td>✓</td>
<td>All</td>
<td>< 200 nodes</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>VirtualRack [31]</td>
<td>✓</td>
<td>Hose</td>
<td>All</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Z3-AR [51]</td>
<td>✓</td>
<td>All</td>
<td>Tree</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NETSOLVER (this paper)</td>
<td>✓</td>
<td>All</td>
<td>All</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

29: Guo et al. CoNEXT’10
48: Tantawi, MASCOTS’12
8: Ballani et al. CCR’11
43: Rost et al. CCR’15
15: Cheng et al. CCR’11
31: Huang et al., ICC 2014
54: Zhani et al. INM’13
50: Yu et al. SIGCOMM’08
16: Chowdhury et al, INFOCOM’09
36: Lischika et al., VISA’09
51: Yuan, FMCAD’13
MonoSAT background

- Switch to other slide-deck
The **MonoSAT** constraint solver

MonoSAT is an SMT solver for monotonic theories. **MonoSAT** supports:

- Graph constraints (shortest paths, maximum flows...)
- Finite state machines & string acceptance
- Temporal logic (CTL) synthesis
- 2D polygonal geometry constraints
- Bounded integer & cardinality constraints
- Propositional logic (Boolean satisfiability)
- Has C++, Python, and Java bindings
Finite Monotonic Predicates

A predicate p is positive monotonic iff:
- $p(\ldots, x, \ldots), x \leq y \implies p(\ldots, y, \ldots)$

A predicate p is negative monotonic iff:
- $\neg p(\ldots, x, \ldots), x \leq y \implies \neg p(\ldots, y, \ldots)$
Many useful predicates are monotonic:

- **Graph Predicates:**
 - Reachability
 - Shortest paths
 - Maximum $s - t$ flow
 - Minimum Spanning Tree
 - Acyclicility
Monotonic predicates

‘Reachability’ is monotonic with respect to edges:
Monotonic predicates

‘Reachability’ is monotonic with respect to edges:

1 → 2
 ↑ ↓
 3 4
Monotonic predicates

‘Reachability’ is monotonic with respect to edges:
Monotonic predicates

‘Reachability’ is monotonic with respect to edges:
Graph constraints in MonoSAT

MonoSAT supports constraints over one or more finite graphs:

- Combines arbitrary Boolean constraints with high performance graph constraints.
- Supported graph constraints
 - Reachability
 - Shortest paths
 - Maximum $s-t$ flow
 - Minimum spanning tree
 - Acyclicity
- Graphs can be directed
- Edges can have bit vector weights/capacities
- Scales to 100,000s of nodes and edges
Graph constraints in **MonoSAT**

\[
(\neg a \lor \neg b) \land (\neg d \lor \neg e) \land \text{reaches}(s_0, s_3) \land \neg \text{reaches}(s_1, s_3)
\]

Figure: A directed graph with edge inclusion controlled by Booleans \{a, b, c, d, e\}, and a formula constraining the graph.
Graph constraints in **MONOSAT**

$\neg a \lor \neg b \land \neg d \lor \neg e \land reaches(s_0, s_3) \land \neg reaches(s_1, s_3)$

Figure: A directed graph with edge inclusion controlled by Booleans $\{a, b, c, d, e\}$, and a formula constraining the graph.

Figure: Satisfying (left) and unsatisfying (right) solutions.
Weighted graph constraints in MonoSAT

\[(x > 1) \land (x < y) \land (y < 4) \land (z = y) \land (\text{shortestPath}(s_0, s_2) \leq 3)\]

Figure: A directed graph with variable edge weights, and a formula constraining those weights.
Weighted graph constraints in **MONOSAT**

\[(x > 1) \land (x < y) \land (y < 4) \land (z = y) \land (\text{shortestPath}(s_0, s_2) \leq 3)\]

Figure: A directed graph with variable edge weights, and a formula constraining those weights.

Figure: Satisfying (left) and unsatisfying (right) solutions.
Maximum-flow graph constraints in \textsc{MonoSAT}

\[(x \leq z \leq 2) \land (x > y) \land (z > v) \land (2 \leq \text{maximumFlow}(s_0, s_2) \leq 3)\]

\textbf{Figure}: A directed graph with variable edge weights, and a formula constraining those weights.
Maximum-flow graph constraints in **MONOSAT**

\[
(x \leq z \leq 2) \land (x > y) \land (z > v) \land (2 \leq \text{maximumFlow}(s_0, s_2) \leq 3)
\]

Figure: A directed graph with variable edge weights, and a formula constraining those weights.

Figure: Two satisfying solutions.
Combined graph constraints in MonoSAT

\[\neg \text{reaches}(s_0, s_2) \land \text{shortestPath}(s_2, s_3) = \text{maximumFlow}(s_0, s_3) \]

Figure: A graph with edge inclusion controlled by Booleans \(\{a, b, c, d, e\} \), and edge weights \(\{v, w, x, y, z\} \).
Combined graph constraints in **MonoSAT**

\[\neg \text{reaches}(s_0, s_2) \land \text{shortestPath}(s_2, s_3) = \text{maximumFlow}(s_0, s_3) \]

Figure: A graph with edge inclusion controlled by Booleans \{a, b, c, d, e\}, and edge weights \{v, w, x, y, z\}.

Figure: A satisfying solution.
NetSolver design

• Basic idea: encode VDC allocation as a MonoSAT query. Either outputs a solution or one does not exist
 • Global constraints: connectivity and bandwidth
 • Local constraints: VMs respect host resources

• Challenge: efficiency (e.g., each VM-VM path can be modeled as a max-flow constraint, these are expensive)
Global constraints

- **Assume**: that we know the VM-host assignments

- Given:

 - Directed graph $G = (V, E)$ and integer constraints $c(u, v)$ on each edge $(u, v) \in E$

 - K commodity demands, $i \in K, i = (s_i, t_i, d_i)$ representing demand d_i between $s_i \in V$ and $t_i \in V$
Global constraints

- **Assume**: that we know the VM to host assignment

- Given:

 - Directed graph $G = (V, E)$ and integer constraints $c(u, v)$ on each edge $(u, v) \in E$

 - K commodity demands, $i \in K, i = (s_i, t_i, d_i)$ representing demand d_i between $s_i \in V$ and $t_i \in V$

- Integral multi-commodity flow problem:

 - Find feasible flow such that each d_i satisfied

 - For each edge (u, v) total flow of all capacities is $\leq c(u, v)$
Commodity flow encoding

• Create graphs $G_1 \ldots |K|$: one per demand with same topology as G

• For each edge $(u, v)_i \in G_i$ create a new **symbolic** capacity $c(u, v)_i \leq c(u, v)$

• **Assert:** that $\sum_i c(u, v)_i \leq c(u, v)$

• **Assert:** for each demand $i = (s_i, t_i, d_i)$, \max-flow$(s_i, t_i) \geq d$

• Solver’s task: find partitioning of capacities across K graphs while satisfying lower-bounds across all demands
Modeling local constraints

- Construct a graph G that is the VDC and one node for each VM
- For each VM v and each server $s \in G$, create directed symbolic edge e_{vs} with unlimited capacity; e_{vs} controls allocation of v to servers
- **Assert**: for each VM v, exactly on e_{vs} enabled
- **Assert**: for each server s, set of VMs assigned to s obey server’s local resources
- **Assert**: G satisfies flow (s_i, t_i, d_i) for each commodity constraint
Further technical innovations

- Naive encoding slow: $|V|^2$ max-flow constraints in worst case. Optimize by merging demands from same source

- So far assumed that VDC topology constant: only works for allocating sequence of identical VDCs

- To allocate diverse VDCs, encode superset of VDCs and use MonoSAT’s assumption mechanism to disable parts of this superset during allocation
NetSolver Evaluation

• Key questions:
 • Can a sound+complete scale to realistic topologies?
 • Are there any practical benefits to being complete?
 • How does NetSolver compare to related work?
 • SecondNet (CoNEXT’10)
 • Z3-based abstraction refinement technique (FMCAD’13)
Identical VDC packing and median alloc runtime (Tree)

2000 servers, 16 cores; varying VDC sizes; Tree DC topologies
Identical VDC packing and median alloc runtime (BCube/FatTree)

512 servers, 16 cores; varying VDC sizes; BCube DC topologies

432 servers, 16 cores; varying VDC sizes; FatTree DC topologies
NFV chain allocation

Intrusion Prevention System → 2 → Firewall → 2 → Video Optimizer → 2 → Cache → 2 → Parental Control

- Intrusion Prevention System: 4 CPU core, 0 GPU core, 8 GB RAM, 0 TB SSD
- Firewall: 4 CPU core, 0 GPU core, 8 GB RAM, 0 TB SSD
- Video Optimizer: 2 CPU core, 4 GPU core, 8 GB RAM, 0 TB SSD
- Cache: 2 CPU core, 0 GPU core, 4 GB RAM, 10 TB SSD
- Parental Control: 4 CPU core, 0 GPU core, 8 GB RAM, 0 TB SSD
NFV chain allocation

Intrusion Prevention System → 2 → Firewall → 2 → Video Optimizer → 2 → Cache → 2 → Parental Control

- Intrusion Prevention System: 4 CPU core, 0 GPU core, 8 GB RAM, 0 TB SSD
- Firewall: 4 CPU core, 0 GPU core, 8 GB RAM, 0 TB SSD
- Video Optimizer: 2 CPU core, 4 GPU core, 8 GB RAM, 0 TB SSD
- Cache: 2 CPU core, 0 GPU core, 4 GB RAM, 10 TB SSD
- Parental Control: 4 CPU core, 0 GPU core, 8 GB RAM, 0 TB SSD

1200 servers; commercial DC topology; increasing chain bandwidth constraint
Extensibility

- NetSolver supports a variety of additional constraints

Affinity

No hotspots

Minimize utilized servers
Contributions

• Developed NetSolver, a new VDC allocator

• NetSolver encodes problem into MonoSAT. Can be reused for other problems: NFV placement, data migration, task distribution, etc

• Improves DC capacity utilization by 300% over prior work (but slower than incomplete approaches)

• Constraints-based approach flexibly extends to other kinds of constraints, such as (anti-)affinity