SPEAR Theorem Prover

Domagoj Babi¢
(Theorem prover architect)
University of British Columbia

Abstract

SPEARIS a modular arithmetic theorem prover designed for prov-
ing software verification conditions. The core of the theorover
is a fast and simple SAT solver, which is described in thisspap

Keywords Theorem proving, boolean satisfiability, parameter op-
timization, modular arithmetic

1. Introduction

SPEAR is a theorem prover for modular arithmetic, designed for
software verification, but is also fast on other industriaipems,
like bounded hardware modelchecking. When given modultdr-ar
metic constraints, SEAR performs elaborate encoding and opti-
mization of constraints. Together with structural infotioa, the
encoded formula is passed to the core SAT solver. Given CNF in
put, SPEARacts like an ordinary SAT solver, and does not attempt
to reconstruct structural information, which is typicalgst when
the industrial instances are encoded into CNF.

Three versions of the solver were submitted to the SAT 2007
competition:

e SPEAR V0.8 — Search parameters were manually optimized
according to a “this should work” heuristic. Expensive siimp
fications, like variable and clause elimination, are disdbl

e SPEAR V0.8 FH — Search parameters were found by Frank
Hutter using ParamILS [4], an automatic tool for parameter
optimization based on iterated local search in configunatio
space. Expensive simplifications are disabled as well.

e SPEAR V0.8 FHS — Manual modification of the FH set of
parameters so as to include expensive simplifications.

The following sections describe the main features eE&R
architecture, and parameter optimization.

2. Architecture

The core of $EARIs a simple lightweight DPLL SAT solver with
highly optimized boolean constraint propagation (BCP)y\&m-
ilar to the BCP routine in MPERSAT [1]. Several other features
were borrowed from MPERSAT: phase selection heuristic and al-
gorithm for finding the next watched literal. Clause repntaton
is similar as well. Several other features were modelleer &ftin-
isat [3]: frequent restarts and learned clause miniminafitie im-
plementation of the clause minimization was improved iresav
ways. For instance, Minisat uses stack-based work quewtsfiase
minimization, while $EAR uses FIFO, which has a much more
predictable memory access pattern, and is easier to ogtimiz
Although the phase selection heuristic has been considered
relevant, we found that phase selection can have signifeféatt

*His research is supported by a Microsoft Graduate Fellgwshi

Frank Hutter
(Search parameter optimization)

University of British Columbia

on the overall performance. A simple heuristic that alwaigkp
false phase first for each decision literal tends to perform well on
instances generated from circuits. However, we found trexty-
PERSAT phase selection heuristic performs much better in géner
Depending on the average length of implication chaingpERr-
SAT picks either the phase with more or less enqueued clauses
watched lists. If implication chains are long, implying thbase
that results in more unsatisfied clauses increases théhlikoal of
running into a conflict, effectively decreasing the aversgeth

of implication chains. If the chains are short (more frequzase
for industrial benchmarks), picking the phase that safisfi®re
watched clauses tends to reduce the total amount of congutat
Since the second case is more frequent, that is the defaatteph
selection heuristic in SEAR.

SPEAR is very configurable. Almost all search parameters
(roughly 25 parameters) are modifiable from the command line
Besides setting individual parameter®,E3R also supports prede-
fined parameter sets for specific problems. This is an impbfta-
ture, because various combinations of parameters can hastcd
effects on the runtimes. For instance, even with very lighght
parameter optimization over a diverse set of instances, liwve o
served> 56 X performance improvement on software verification
instances. With default parameters, 287 software veridican-
stances were solved in 18211 sec, with 38 timeouts, while with
the optimized parameters (FH version), the same set ofriceta
is solved in 2857 sec, without timeouts. This large improvement
was achieved without optimizing the parameters specijidalt
software verification problems, so we expect even more fogmit
speedup once we optimize the parameters specifically fovac
verification problems. The next section presents paranmogity
mization in more detail.

3. Parameter Optimization

Determining appropriate values for an algorithm’s freeapagters
is a challenging and cumbersome task in the design of eftecti
algorithms for hard problems. It is, however, well worth tféort
since good parameter settings often make the differenceecket
solving a problem in seconds and solving it in hours (or netlxt

We argue that for complex parameter tuning tasks automatic
(or semi-automatic) approaches can outperform manuabappes
while at the same time considerably reducing the time algori
designers need to spend for tuning their algorithms. Dudag
velopment, algorithm designers typically only track pemfiance
on a few instances, limiting expensive batch experimentsfte-
guent intervals. This bears the risk of “over-tuning” penfiance
to the used instances with poor generalization to othernitsts,
even ones with very similar characteristics [2, 4]. Furthemans
tend to focus on single algorithm components instead ofpgngs
the complex interplay of all components taken together.

2007/2/11

Automatic tools for parameter optimization also pave thg wa
to an automatic algorithm design, viewed as the combinatfi-
ternative building blocks. For example, two tree searclordtigms
that only differ in their preprocessing and variable hdiggscan be
seen as a single algorithm with two nominal parameters. Tdars
structing the best algorithm for a domain can be seen as enptea
optimization problem.

SPEAR is an excellent testbed for automatic parameter opti-
mization for the following reasons:

e It has a large number of parameters of various types. Its 25 pa
rameters include categorical choices between heuristorgj-
nal parameters, as well as integer and continuous paraneter

e It shows state-of-the-art performance for a practicallgwant
class of problem instances, and tuning it will thus be of high
practical relevance. In particular, in our experimentedlgsis
SPEARconsistently showed the best results for solving software
verification instances.

The second author is currently performing research in auto-
matic methods for parameter optimization (for both localrsk
and tree search algorithms) and we used &= for a case study in
parameter optimization. The algorithm designer (first aftipro-
vided a binary of 8EAR and information about its parameters and
loose sensible values for each of them; the default pararaete
ting, however, was not revealed. The goal of this study waset
whether the performance achieved with automatic methodklco
rival the performance achieved by the manually engineeedaidt
parameters.

The particular method used for parameter optimizationlisda
ParamILS and views parameter tuning as an optimisation-prob
lem [4]. In a nutshell, it performs an iterated local seancipa-
rameter configuration space, computing the objective fandb
be maximized as the geometric mean speedup over the default p
rameters. Since the optimization objective was good perdoice
for industrial instances in the SAT competition 2007, wedude
following instances for training and evaluation: the 176ustrial
instances from the SAT competition 2005, the 200 instanaes f
the SAT Race 2006, as well as 30 software verification ingtsnc
generated by the first author. 300 of these 404 instancesusece
for training, the remaining 104 test instances only beingdu®
get an unbiased performance estimate of our final tuned deam
setting.

During training, we took the risk of setting a low timeout of
10 seconds in order to save time. This bore the possibility of
over-tuning the solver for good performance on short runis bu
poor performance on longer runs, and the domain expert (tte fi
author) was indeed worried that the parameter setting wbald
too aggressive, leading to poor performance on harderriossa
However, our experimental results do not support this fear.

Figure 1 compares the performance of our automaticallydoun
parameter setting against the manually engineered defaiitg

1,000 seconds as a timeout for each of the 404 instances. The de-

fault timed out on 96 instances, the tuned one on 85 (74 iostan
remained unsolved by either approach). For the remainimggo
the tuned parameter setting achieved a geometric meanwugpeéd
21%, with a trend to perform better for larger instancesycéth
our worries about over-tuning to easy instances). In thedigue
distinguish training and test instances in order to testthdreper-
formance on the training instances would be much bettear@le
empirical results show no evidence of overfitting.

Overall, this result demonstrates that an automatic tuaing
proach can indeed outperform manually engineered parasete
tings. Performance speedups were especially large favaadtver-
ification instances: with an independent test set of 287aitss,

timeout} e exex
@
2
@ 1000 . .
§ ooy SL T {
by R 2 R
e w0 B :
IS « L
3 0
~ x /
) £33
E)/ 0.1 Tx X
£ b
- x R X
o 0.01f - x :
?j train
<0.01 * test

<0.01 001 01 1 10 100 1000 timeout
CPU time(s), default parameters

Figure 1. Performance of tuned F&AR parameters vs. its defaults on
training and test data.

the first author found a more than 56-fold speedup of the tpaed
rameter settings over the default.

Finally, parameter settingf&AR V0.8 FHS is a variation of
our tuned parameter settingSAR v0.8 FH that also includes ex-
pensive simplifications (which had not been implementediat t
ing time). The simplification parameters irSAR v0.8 FHS were
manually tuned on a few instances, and we cannot say anything
about their generalization performance. In the future, mecgpate
to speed up our optimization techniques, such that an @zeed
parameter tuning may become possible after each modificafio
the code base.

4. FutureWork

In the near future, SeAR will support Satisfiability Modulo The-
ories (SMT) modular arithmetic format with additional optza-
tions. The SAT solver will also get more structural inforioat
about the instance being solved, which, we hope, will reaudten
better performance.

On the parameter optimization side, we plan to optimize the
solver for several important industrial classes of protdgfiike
model checking and software verification) and offer moredpre
fined sets of options for those specific classes of problems.

References

[1] Domagoj Babit, Jesse Bingham, and Alan J. Hu. B-cubing:
New possibilities for efficient sat-solvinglEEE Trans. Comput.,
55(11):1315-1324, 2006.

[2] M. Birattari. The Problem of Tuning Metaheuristics as seen from
a Machine Learning perspective. PhD thesis, Universite Libre de
Bruxelles, Facult'e des Sciences Appligu’ees, IRIDIA,tiiug de
Recherches Interdisciplinaires et de D’eveloppementsitiigence
Artificielle, 2005.

[3] Niklas Eén and Armin Biere. Effective preprocessingsat through
variable and clause elimination. 8AT, volume 3569 of ecture Notes
in Computer Science, pages 61—-75. Springer, 2005.

[4] F. Hutter, H. H. Hoos, and T. Stutzle. Automatic algbnit configura-
tion based on local search. Under review.

2007/2/11

