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ABSTRACT

Automatically detecting bugs in programs has been a lond-he
goal in software engineering. Many techniques exist, trgiff
varying levels of automation, thoroughness of coverageadiam
behavior, precision of analysis, and scalability to largdecbases.
This paper presents theaCy sTO static checker, which achieves an
unprecedented combination of precision and scalability @om-
pletely automatic extended static checkeraL€sTO is interpro-
cedurally path-sensitive, fully context-sensitive, aitedzcurate in
modeling data operations — comparable coverage and pracisi
to very expensive formal analyses — yet scales comparatilyeto
leading, less precise, static-analysis-based tool foilaimroper-
ties. Using @Q\LYsTO, we have discovered dozens of bugs, com-
pletely automatically, in hundreds of thousands of lineprofiuc-
tion, open-source applications, with a very low rate ofdadsror
reports. This paper presents the design decisions, digwijtand
optimizations behind €LYSTO’s performance.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]:

General Terms
Verification

Keywords

formal verification, static checking, static analysis

1. INTRODUCTION

Error removal (verification/testing/debugging) is onele most
time-consuming parts of the software development life@yélc-
cordingly, an enormous range of techniques and tools haee be
developed to support this task.

We can classify these techniques and tools according togtie-t
offs they must make along four dimensions:
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Coverage How thoroughly are all possible execution paths and
data values covered by the analysis?

Automation How much manual effort is required?

Precision How precisely does the analysis correspond to the actual
software that is executed?

Scalability How large of a code base can be analyzed by the tech-
nique or tool?

For example, traditional software testing has perfectipi@e and
excellent scalability — because the tests run on the actdé c
— and can be highly automated as well. Coverage, however, is
the weakness, and many corner-case bugs elude traditestag.
Furthermore, as software grows, coverage drops off, ofitestin-
creases, exponentially, sparking interest in formal maghd-ully
formal verification promises perfect coverage — a proof ofect-
ness considers all possible executions and inputs — butissih
cally been painfully labor-intensive. Modern, semi-au&imtools
(e.g., ESC/Java [19]) are much better, but still requirggammer-
supplied loop, function, and class invariants, limitingegtance of
these tools in practice.

Model checking [11, 32] brought complete automation to farm
verification, but unfortunately, with a very harsh preciggralabil-
ity trade-off. At one extreme, some software model checlers,
Spin [23], Java PathFinder [36], CBMC [9]) can be applied di-
rectly to the code base, precisely capturing the true behatithe
program code, but with very limited scalability (or with ydim-
ited coverage, when used for bug-hunting by only partiatiyler-
ing the state space). Abstraction-based methods (e.g.VSBA
BLAST [21], Java PathFinder, Bandera/Bogor [33], SATABS])1
improve scalability, but at the cost of precision. As thetedrs
tions are refined, to regain precision, then scalabilitfesaf The
main direction of model-checking research has been to miaint
complete automation, thorough coverage, and acceptadésjon,
while trying to improve scalability.

In contrast, an alternative philosophy towards static oy
analysis, usually dubbed “static checking”, traces badktd25]:
scalability is paramount, and coverage and precision amifisad.
The tool doesn’'t promise to find all bugs, nor does it promin t
all bugs reported are real bugs. Ease-of-use is also a high pr
ity, so these tools are typically so automated that the used mot
write specifications. Instead, the tools are empiricallgdituned
to search for certain types of common programming errors: Be
cause of the scalability and ease-of-use, these tools lrinevad
moderate acceptance in practice. Unfortunately, the Isitiyede-
rives from approximate summarization of the state of thgmm,
losing precision and leading to their major weakness: gywolf
with false error reports (“false positives”). Programmeil often



use a static checker, because it's easy, but they will offeare the

results, because too many reports are wrong. Recent rbdeasc
moved toward more sophisticated analyses, borrowing tquba

from formal verification and static analysis, to reduce thied er-

ror rate and generalize the types of errors that can be éeltéely.,

MC [18], bddbddb [37], Clouseau [20], and Saturn [38]).

Extended static checkirig a term coined by Detlefs et al. [15]
for combining the usage model of static checking (easesef-pre-
targeting to specific common bugs, no guarantees of covamage
precision) with the machinery of formal verification (gei@ng
verification conditions and checking with a theorem provdife
promise is coverage comparable to formal verification, itk
tomation and scalability approaching that of simpler statieck-
ers. In addition, the formal-style analysis is general atiaicipled
— the same machinery applies to an enormous variety of errors
Unfortunately, their ESC/Modula-3 [15] and ESC/Java [119§ak-
ers are not fully automatic. To achieve scalability, therfatanaly-
ses aréntraprocedural, and the programmer must supply class and
method invariants by hand.

This paper presentsALYSTO, our extended static checkera€
LYsSTO was inspired and influenced by ESC/Java, CBMC, and es-
pecially, Saturn. @LYSTO embraces the ESC philosophy of com-
bining the ease-of-use of static checking with the poweahdly-
ses of formal verification. Unlike ESC/Java, thougsLE€sTO is
fully automatic, performing interprocedural analysis.sélunlike
ESC/Java, @LYsTO handles data operations bit-accurately, so ef-
fects like overflow are precisely modeled.AGYsTO’s complete
automation, interprocedural path-sensitivity, and béesion re-
semble the model checker CBMC. Both tools are based on bit-
accurate symbolic execution and are fully interprocedyinzéth-
sensitive (i.e., different program paths are accuratetiydistinctly
analyzed, even through procedure calls) and truly corgersitive
(i.e., the analysis of a procedure precisely considers hmfram
where it was called). CBMC, however, typically can handlé/on
up to a few thousand lines of code, whereas. 1O has scaled
to real applications of hundreds of thousands of lines oecdthe
closest work to @GLYSTO is the static checker Saturn. Saturn has
also demonstrated scalability to hundreds of thousandmes bf
real code, while checking similar errors [17]. Saturn, hesveis
bit-accurate only for the most common integer operatogs,(addi-
tion, subtraction, bitwise operators), and, more impdlyars only
intraprocedurally path-sensitive. Interprocedural analysisased
on automatically computed summaries, which abstract thenbe
ior of procedures by projecting their effects onto smalltérstate
property automata, thereby losing precision. Similarlgfudn’s
context-sensitivity is also only with respect to these i@uststates.
CALYSTO combines the virtues of CBMC and Saturn, achieving
better scalability than anything with comparable precisiad cov-
erage, and better precision and coverage than anythingoaiti
parable scalability.

Fundamentally, @LYsTO is based on a fully formal analysis, but
with some unsound approximations to dodge classical uddbitt
ity results in software verification (e.g., loops, recursiand heap-
allocated data structures). Extensive optimizations —eritlgm
and data structure improvements, abstraction-refinemame-
works, heuristics, careful implementation — are then negglito
make such an expensive approach scalable in practice. iEger
tal evaluation shows that the overall system works: on heoflr
of thousands of lines of real, open-source applications,YSTO
identified real bugs, completely automatically, that resliin de-
velopers issuing patches. The false error rate was below Z8%
paper describes howALYSTO attains such an unprecedented com-
bination of coverage, automation, precision, and scatgbil
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Figure 1: High-Level CALYSTO Architecture

2. CALYSTO SYSTEM ARCHITECTURE

The high-level architecture of &LYsSTO is shown in Fig. 1. G-
LYsSTOis designed as a compiler pass, in the spirit of Hoare’s “ver-
ifying compiler” grand challenge [22]: it accepts the colaps
intermediate representation, in static single assignn{&&A)
form [14], performs various verification checks, issues tmgprts
and warnings, and then passes semantically unmodified SSA on
to the compiler backend. Designing a static checker in traga-m
ner has the obvious advantage of language independencalsbut
helps to check for errors in the compiler front-end (and atigeo
compiler passes that precede theL&€sT0 pass). Supporting a dif-
ferent programming language requires only a different thiend,
and, if required, a name demangler to improve the legibiftigug
reports. We are using LLVM [28] as our compiler frameworkt bu
SSAis standard in modern compilers, saL€sTo could be retar-
geted easily to another compiler framework or used as a slamel
application.

Internally, the @Q\LYSTO system consists of three stages, sup-
ported by an automatic theorem proveRE3R. The first stage is
a lightweight function pointer alias analysis. It constau@ sound
approximation of) the call graph, including indirect cattsough
function pointers. We sacrifice some precision, by usingumdp
flow-sensitive, but context-insensitive alias analysiacking only
the function pointers. This pass requires negligible reses) yet
is precise enough in practice.

The next stage is symbolic execution [26], which executes th
program using symbolic instead of concrete valuesaLYGTO
symbolically executes functions in the analyzed prograsmpmut-
ing symbolic definitions for each modified variable and memor
location. These symbolic definitions are used to creatdication
conditions(VCs) — logical formulas that are valid iff some cor-
rectness property holds of the program. The symbolic ei@tut
machinery allows generating VCs for any assertion at angtpoi
the program. @LYSTO currently supports user-supplied assertions
(written as boolean expressions in whatever programmimguage
the compiler front-end is parsing), but in the spirit of statheck-
ing, also automatically generates VCs to check that eadhtgroi
dereference cannot be NULL. The generated VCs are ess$gntial
formal verification conditions: all possible program pagimsl data
values are considered (except for the unsound approxinsate-
scribed in Sec. 3).

The last stage consists of checking and filtering the vetifina
conditions. In principle, the VCs could be sent directly ttheo-
rem prover for checking, and this approach is used in mogroth
tools. We have found, however, that both efficiency and lisabi
can be improved by control and filtering of what VCs are chdcke
The main efficiency gain is described in Sec. 4.2. To imprae u
ability, if the theorem prover manages to find a falsifyingusion



(a potential bug), this stage reports the bug and filters aNl&Cs
corresponding to the same property within the same functam

instance, if a pointer that can be NULL is dereferenced atyman

different places within the same function, and that funcgan be
called in many different contexts,ACy STO will emit only one bug
report per context. This heuristic avoids overloading tragmm-
mer with reports that correspond to the same issue. For edgih f

fied VC, CaLysTo dumps a detailed graphical trace; if the falsified

VC depends on any global variables, the trace is given alivéne
from the root of the call graph (thmainfunction).

The actual validity-checking of VCs is done by&aR, which
is a sound and complete, fully automatic theorem provergshpt
ports Boolean logic, bit-vector operations, and bit-aateirarith-
metic. Unlike other static checkers, which use generapqse
SAT solvers or theorem proverspBARis custom-designed for the
software VCs generated byaCysT0, optimizing performance.

3. DESIGN CHOICES

Our goal was to combine the coverage and precision of formal

verification with the scalability of static checking. To &le this
goal, our basic design philosophy was to start with a priecip
fully formal, precise analysis, to make as few unsound appra-
tions as possible, and then to focus on improving scalgbilihis
approach helps separate the concerns of the correctnessafal-
yses from their efficient, practical implementation.

We made three key decisions to makaL&sTo significantly
more precise than is typical for static checkers:

can be much more efficient, because a function need be ana-
lyzed only once, regardless of how many different places it i
called, but this analysis must merge together the statdk at a
possible call sites, thereby losing information and prauiyic
false positives. Note that a “context-sensitive” analysia

still be very imprecise, e.g., many software model-chexker
abstract the state of the program onto a small set of predi-
cates, and the context-sensitivity is only with respechase
abstract states. ALYSTO goes further, keeping definitions of
interprocedural control-flow context, variables, and edust
memory locations to which pointers can point. Achieving
such precision is expensive in both time and space.

These decisions greatly increased the computational eoitypbf
our analyses, but enabled the low false positive rate.

We also had to make some design decisions that were unsound
(compromising coverage, thereby possibly missing bugajedisas
imprecise (possibly resulting in false positives):

e CaLYsTO currently does not support floating-point opera-
tions. Floating-point is handled unsoundly by converting
floating-point variables and constants to integral ones. In
theory, it is straightforward, but tedious, to add bit-aate
floating-point models to the theorem prover. A practically
efficient solution, however, will likely require more resela
We have not observed any false positives due to this handling
of floating-point in any of our benchmarks.

e Loops create the classical halting problem undecidabidity
sult. Accordingly, @QLYSTO unsoundly approximates loops

e The first decision was to be bit-precise, meaning that we
handle machine arithmetic precisely, including all bound-
ary conditions (underflows and overflows) and all standard
operators, including multiplication, division, remaimdand
shift. This precision incurs a high computational cost,veet
believe that the cost is justified. First, boundary condiio
themselves are frequent sources of bugs (e.g., [4]). Second
bounded integers are a prerequisite for deciding propertie
with non-linear operators,and we observed that non-linear
operators appear quite frequently in real code.

Interprocedural path-sensitivity was the second impoden
sign decision. Since the number of possible paths typically
grows exponentially in code size, this decision is also com-
putationally expensive, but we believe this, too, is justfi
For example, a common coding idiom that requires interpro-
cedural path-sensitivity is the handling of erroneous ¢ond
tions. Applications frequently use long chains of function
calls for handling erroneous and exceptional conditiorts, e
checking pre/post-conditions, detecting errors, printémd
logging messages, and finally exiting with an appropriate er
ror code. We have seen such sequences that are 5-7 func-
tion calls deep. Static checkers that are not interproadigur
path-sensitive can fail to precisely compute the condition
under which the sequence exits, resulting in false positive

A consequence of the interprocedural path-sensitivithés t
third key decision: @LysTo is fully, precisely context-
sensitive. Context-sensitive analyses differentiateeffects

of the state of the program at different call sites where a
function is called. In contrast, a context-insensitivelgsia
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by unrolling them once and terminating them with an as-
sumption that the loop test has failed, similarly to ESCdJav
[19]. This is a major source of missed bugs, because possible
program paths are not analyzed. For example, in the follow-
ing real code (abstracted from therBERS AT benchmark):

int cnt = 0;
bool c2 = false;
while ( cl1 /x some conditionx/ ) {
if (c2){
cnt++;
c2 = true;
}
== 0 ) { exit(1l); }

if ( cnt

variablec? is false in the first iteration, so thent counter

can be incremented only in the second iteration. If the loop
is unrolled only once, line 10 becomes unreachable. Since
CaLysTO does not check unreachable code, it can therefore
miss bugs. Fortunately, we have seen only a very few false
positives due to this handling of loops in preliminary exper
iments checking programmer-specified assertions, and none
at all when checking the automatically generated VCs.

Recursion creates the same undecidability problem as loops
and we handle it in a similar manner. Like Saturn [38}j-C
LysTo simply breaks cycles in the call graph, ignoring the
recursive call. This practice causes a small number of false
positives in practice. For example, in the application Post
fix,2 a safe allocatoxmalloctries to allocate memory on the
heap and, if successful, returns a valid pointer. If it's un-
successful, it calls the functiofatal, which prints an error

1Undecidability with (unbounded) integer multiplicationdaquan-
tifiers follows from Gddel’s Incompleteness Theorem. Evethw
out quantification, undecidability follows from the undaability

of Hilbert's Tenth Problem. See, e.g., [31].

2\/ersion 2.5.20070614. We could not compile Postfix compfete
with the LLVM front-end (some functions were not compilediain
the binaries), so we do not use Postfix for benchmarking in Sec



message and exits (doesn'’t return). The funcfaial, how-
ever, callsxmallocto construct its error message! To prevent
possibly infinite recursion, the programmers added a rerent
counter, and if the counter exceeds 2, tfeal exits without
trying to construct an error message. If our analysis cuts ou
the recursive call téatal, it cannot infer thakmalloccannot
return NULL, producing false positives.

Pointer arithmetic (and therefore arrays) is known to be un-
decidable in general [7]. We use a simpler memory model,
similar to the “logical memory model” [6], in whick(ptr +

i) and«ptr are assumed to refer to the same object, except
that our symbolic execution does distinguish those two-loca
tions if our expression simplifier (Sec. 4.1) can simplitp

a constant. Such constant offsets are often used for acress t
structure fields (making ALy sTo field-sensitive as well), so
this added precision is important in practice.

Obviously, there are no perfect solutions to the undecalgbbb-
lems, but these are well-studied issues, ardY3T0O’s design is
compatible with standard approaches to handling thesdemsb
soundly or at least more precisely than we do currently. Ker e
ample, there is no theoretical obstacle preventirgY3T0 from
checking and using user-supplied loop invariants to hatodips
soundly, but we chose to makeaCrsTo fully automatic. Heuris-
tics based on abstract interpretation [12] could be usedhftr i
loop invariants automatically, as in [30], providing autation and
sound handling of loops, but at the risk of introducing maised
positives. Similar techniques could be applied to inferction,
class, and heap invariants, with the same trade-off of sweswl
versus precision. We could also makel@sTo’s analysis pro-
gressively more precise by generalizing our current apprax
tions to some small, bounded depth, e.g., unrolling loopsrsé¢
times instead of just once, allowing a bounded number ofrsacel
calls, and modeling the first few elements of arrays pregibet
fore lumping the rest of the elements together. The tratibek
would be the greater computational complexity versus tleatgr
precision. In general, the overall goal is to achieve thetraes-
ful, practical balance between coverage, automationjgosg and
scalability. We based our design decisions on the statheshrt,
and our belief in the improvements we could make (Sec. 4). As
future research changes the balance (e.g., a more precigstite
for inferring loop invariants, a more efficient theorem pnwetc.),
these decisions should be revisited.

4. IMPROVING SCALABILITY

As mentioned, bit-precise and *-sensitive (path-, contesnd
field-sensitive) analysis is computationally extremelypensive;
our first attempts did not scale beyond a couple thousand bfe
code. This section describes the novel techniques we dme o
make Q\LYSTO practical. The three subsections correspond to the
three main parts of 8&.YsT0 in Fig. 1: the symbolic execution, the
verification condition filtering, and the theorem prover.

Three general principles underlie the improvements to tiad-a
yses: preserving and exploiting problem structure; usasg, fap-
proximate analyses to filter and simplify tasks before apgly
heavyweight, precise analyses; and caching to reuse psdyio
computed results. Indeed, even the top-level architecifi@a-
LysTo reflects the filtering idea — the function pointer analysis
stage is a lightweight, approximate analysis that simglifiee task
of the later, more expensive analyses.

4.1 Structure-Preserving Symbolic Execution

Symbolic Execution.

The two standard methods for computing verification condgi
(or other symbolic representations of programs) are syimeak-
cution [26] and weakest (liberal) precondition [16]. Thesfiis a
forward analysis; the second, backward. We chose forward sy
bolic execution for several reasons:

e Pointer definitions are known before the pointers are deref-
erenced. Knowing the pointer definition, our symbolic ex-
ecution can precisely simulate the effects of pointer reads
and writes, by simply executing them symbolically. Doing
the equivalent analysis backward is possible, in theory, bu
would produce excessively complex expressions represent-
ing all possible pointer definitions at program points betwe
the def and the use.

Going forward, one builds more complex expressions from
simpler ones, without performing substitutions. Thus, the
constructed expressions will not be modified later. Im-
mutability of the constructed expressions allows them to be
simplified while being built. For instance, consider a se-
guence of code like:

int x 1;

if (0 <x)y-=0;

return yxz;

A backward analysis substitutes the 1 foafter the entire
expressiodTE(0 < x,0,y) x z has already been constructed.
To simplify it to zero, the simplifier has to revisit all exgre
sions that contain the modified sub-expression. On the other
hand, a forward analysis would construct @ at theif state-
ment, which simplifies tarue, continue with TE(true, 0,y),
which simplifies to 0, and end up with0z, which simplifies

to 0. This early expression simplification saves a substanti
amount of memory.

Symbolic execution and weakest precondition can both
generate expressions exponential in the size of the code
(e.g., [13, 29]). Representing the expressions as graaits th
share common sub-expressions avoids that blowup [27]. Just
as with the early simplification, forward analysis faciléa
immediate common sub-expression elimination while the ex-
pressions are being built.

Our symbolic execution algorithm processes each function e
actly once, proceeding bottom-up in the call graph, conmgué
symbolic representation of the function’s effects. Progifanc-
tions can have multiple effects, e.g., returning a valuedifge
ing globals, and modifying memory locations reachable ugio
passed-in parameters. For each side-effest,ySTo computes a
symbolic expression. When a function is called, symboliores-
sions for small effects (up to 50 nodes) are inlined immedijat
while larger effects are represented in the symbolic egwashy
place-holding summary operators. The summary operatersxar
panded during VC-checking only if needed (Sec. 4.2).

Efficient Gated Single Assignment Form.

The basic step of symbolic execution is to find the correct-sym
bolic definition of each variable or memory location thatéad,
and then to update the correct symbolic definition of eaclt var
able/location that is written. These operations are peréal so
many times that their implementation needs to be extrenaely f



Plain SSA form doesn't directly provide the information ded
for fast lookup of definitions. At join points (i.e., placeshare
different program paths merge), SSA introduceg-&unction”
for each definition, which denotes somehow choosing thescbrr
definition depending on where the preceding flow of controhea
from. If the exact definition matters (and it does for verifica),

the analysis has to track where the flow of control came fraomd, a

pick the appropriate definition.

Gated Single Assignment (GSA) form solves this problem

(e.g. [35]). GSA extends SSA with a gating functigrthat re-
places thep-function. A y-function in a basic blociB can be in-
tuitively understood as an expression that determineshndedini-

tions reactB and under which conditions. Our symbolic execution

constructsy- from ¢-functions on the fly.

The challenging aspect of efficiently implementing GSA form

is in handling memory locations accessed through point&ia.
example, consider:
if (c) = &X;
else p = &y;
*p = 1;

It's easy to construct gfunction that gives the correct value pas

ITE(c,&x,&Y), but it’s less obvious how to update the new sym-

bolic values forx andy efficiently. CaLYSTO maintains partial,
conditional expressions, which compactly represent tlfferent
definitions that might be live from the different basic blechMiss-
ing definitions (which represent either infeasible pathvaues
dependent on the calling context) are represented by ahulbasy,
which is later substituted with a real definition during stural re-
finement (Sec. 4.2).

Preserving Structure.

As mentioned earlier, preserving and exploiting problemcst
ture was a key principle behind improving efficiency. Foetaty,
the graph-based representation of symbolic expressians/thuse
to prevent expression-size blow-up also captures and esthe
dataflow structure of the program. All computed expressanes
represented as maximally-shared graphs:

DEFINITION1 (MAXIMALLY -SHARED GRAPH).

Let G= (N,E,.Z) be a labeled, directed graph, where N is the set

of nodes, EC N x N is the set of edges, atef : N — O is a labeling
function from N to some set of operators O. |rétdenote the out-
degree of node n. For all nodes n, the arity of the operaftn)

must be equal t¢n|. Furthermore, assume the outgoing edges are
ordered, and let the node pointed-to by the i-th edge of a mode

be denoted as chil¢h). Two nodes pand np are defined to be
equivalent (a £ np) iff |ny| = |np|, Z(n1) = Z(nz), and:

YO <i < |ny| : childi(ny) 2 child; (np)

Graph G is maximally-shared #3ny,n, € N:ny #np Ang 2 no.

The following code helps illustrate how maximally-shared

graphs preserve the flow of data in the program:
int glob; // Global

void f(int a) {

bool flip = false;
if (a<0){

a =-a;

flip = true;
}

if (flip) {
assert(a != 0);// Al

Def of glob

Results of
symb.
exec

Assertion ]

false

Figure 2: Example of a Maximally-Shared Graph. The ini-
tial values at function entry are shown at the bottom, while he
computed symbolic values at function exit are at the top of tk
graph. Implication is represented as=>, disequality as/ =,
signed division as/s, unary minus as —, while other operators
have standard meanings. Given the initial values oflob and a
(bottom), symbolic values ofglob and the VC corresponding to
Al at function exit are represented by thelTE node I1 and the
implication node => (top).

glob /= a;
}

return ;

}

Function f modifies a global and contains assertion Al. Fig. 2
shows the result of symbolic execution of functiébn two sym-
bolic expressions, representing the effectgtob and the VC cor-
responding to Al. Note that Al is unreachablea it 0, so the VC
is vacuouslytrue in that case, hence the implication node.
Maximally-shared graphs provide several benefits:

e Node nj is reachable from node; if and only if nj is
data-dependent on. Thus, irrelevant sub-expressions are

automatically sliced away. Slicing is crucial for efficient
VC checking, since redundant subexpressions and variables
significantly slow down theorem provers and confuse their
heuristics.

e Common sub-expressions are always shared. Aside from the
obvious savings in memory, this knowledge can be exploited
to speed up the theorem-proving phase. For example, as-
sume that some functiog calls f and after the call checks
some property that is either data- or control-dependent on
glob modified by f. Denote the assertion that checks that
property A2. Symbolic expressions computed for A1 and
A2 share at leadfTE; in Fig. 2. Theorem provers can ex-
ploit this sharing to avoid solving the same sub-expression
multiple times (as in [2]).

e The structure of the graph can be exploited for abstraction
and refinement. Note that the validity of assertion Al is inde
pendent of the actual value af even though the implication
node is data-flow dependent anIf a> 0, the VC is vacu-
ously true. Otherwise, ifa < 0, thenITE, will be equal to
—a, and the VC is agaitrue because < 0= (—a# 0). So,
if we have some complex functidmthat returns an integer,
and we callf with the result ot as a parameter:



f(h());

we do not even need to analyze whaeturns, because what-
ever it returns, assertion Al will hold. This is the core idea
of structural abstraction in Sec. 4.2.

Our use of maximally-shared graphs is similar to the use of
BDDs [8] in bddbddb [37] and, to a lesser degree, in Saturh [38
Both data structures exploit sharing to (try to) avoid ancexm-
tial space blow-up, and in both data structures, the sharectsre
enables caching and re-using previously computed resdite
key difference is that maximally-shared graphs are not mi@ab
representations of functions. The maximally-shared gsgmie-
serve program structure, and are therefore linear in the iz
the program (if we don't in-line function effects). BecalBBDs
are canonical, they provabmustblow-up exponentially for most
functions, including common operations such as multipidce[8].
Maximally-shared graphs are the lightweight, good-enosgli-
tion, with the theorem prover as backup; the canonicity oEBDs
heavy-weight overkill for this task.

Expression Simplifier.

The lack of canonicity of maximally-shared graphs could-pro
duce inefficiency, because two functionally equivalentesoohight
not be structurally equivalent. In theory, the symbolic @k®n
stage could prevent this problem by callinge\Rr to check for
functionally equivalent nodes, but such an approach woeldrb-
hibitively expensive, analogous to using BDDs. Instead ag@in
rely on the principle of a fast, good-enough solution for toen-
mon cases, leaving the hard cases for the theorem prover late

As the symbolic execution builds symbolic expressionssé¢ho
expressions are immediately simplified with a light-weighpres-
sion simplifier. The simplifier is mostly not recursive andks at
only one operator node at the time. There is one exception: si
plification of conjunctions. We experimentally found thantrol-
flow context expressions frequently contain sub-expresstbat
are composed of 2—20 conjuncts, which occasionally coittrad
each other. Simplifying such contradicting conjuncts sas@me
memory with minimal cost in runtime.

Interestingly, the expression simplification has littléeef on
theorem-prover runtimes later, when the VCs are checkedst Mo
simplifications are just constant propagation, and thequeovers
are extremely efficient at propagation of such facts. Thewdig
from the expression simplifier is the savings in space, chbye
the early pruning of duplicate nodes and infeasible paths.

4.2 Structural Abstraction

Structural abstraction is the key scalability breakthfougthe
verification condition filtering stage ofALysToO [3]. Itis an auto-
matic abstraction/refinement framework, so it first attentpsolve
an abstracted, approximate, easier VC, and then progebsser
fines the VC as needed. The key difference versus other aebstra
tion/refinement approaches for software verification ig thath
the abstraction and refinement are entirely based on exgdhe
structure available in the program (hence the importanceret
serving this structure in the symbolic execution stage)cdBse
they are structural, the abstraction and refinement stepseay
fast; unlike many other abstraction/refinement schemesetis no
need for expensive proofs of unsatisfiability.

Recall that the symbolic execution stage builds a maximally
shared graph for each function, and that function callgéathan
50 nodes) are not inlined, but indicated by a placeholdeenBe-

turning to the example in Sec. 4.1, suppose we have a funittain
calls f, with code like:

f(h());

assert glob < 1;// A2
The symbolic expression for the VC for assertion A2 would (ig
noring the inlining of small function effects) simply be aagh
comparing a placeholder node to 1. The placeholder nodedwoul
indicate that it is the effect on the global variable globcalling f
with a parameter that is the result of callihgbut this effect is not
computed, yet.

These placeholder nodes form an abstraction boundary #tat n
urally corresponds to typical programming style: prograsrsrtry
to modularize their code to minimize dependencies acrasgifin
calls. In structural abstraction, when a VC is checked fdiditg,
the theorem prover at first considers the placeholder nadess in-
constrained variables. If the theorem prover still managgsove
validity, the checked VC is valid no matter what the placebo
actually represent. The assertion is OK. If the VC can faiwh
ever, it might be a false positive, because the unconsttainkie
might not be a possible effect of the function call. Thus, weda
refinement step to eliminate the false positive.

In structural refinement, one placeholder node is expandéd w
the maximally-shared graph of the function call it représeihis
enlarges the graph for the VC, making it more precise andingfin
the abstraction. This new VC is again checked for validity the
abstraction/refinement loop continues, inlining placdbolnodes
one-by-one, until either the VC becomes valid or the VC cih st
fail but every relevant placeholder node has been inlineav(iich
case a bug has been discovered).

Continuing the example, checking the initial, abstract \6Ces-
sertion A2 will fail, because the unconstrained placehotde take
on an arbitrary value, say, 2, that is greater than 1. Thusststral
refinement will expand the placeholder node, and the refinéd V
for A2 will check that the effect of on glob is less than 1. Graph-
ically, we would add a new comparison node to Fig. 2, comparin
ITE node 11 to a constant node 1. The node labelatthe bottom
of the figure would be a placeholder node for the return vafue o
This new VC would be checked by the theorem prover. Depend-
ing on what is known about the original value of glob, the ne@ V
might be valid (e.g., if glob were equal to 0 before the calfjo
If not, the structural refinement would next expand the fatder
node for the call td, and the process would continue.

The choice of which definitions of placeholder nodes to mlin
is important. Q\LYSTO uses a don't-care analysis to isolate the
reason why the VC still fails and to inline only definitionstlare
logically related to that reason. For instance, if an AND rapar
node has two branches, and the value of one branéiisis that
branch is a sufficient explanation for the value of the AND eod
and it suffices to refine only that branch. The refinement igdbas
on structure and the falsifying assignment returned bytiberem
prover, so it is simple and fast.

An additional feature of structural refinement is that thesvVC
change monotonically: each refinement only adds informatio
Thus, an incremental theorem prover can re-use all of itkwor
(learned clauses and implications) from solving the VC om iber-
ation as it re-solves the modified VC on the next iteratiore @lose
cooperation between the analysis stages and the theorerarpro
provide opportunities for improved efficiency.

4.3 Application-Specific Theorem Prover

CALYSTO generates highly complex VCs, so a significant por-
tion of runtime is spent in theorem prover calls. To handlehsu



VCs, we had to develop a theorem prover for bit-vector (maehi
arithmetic, $EAR. The core of BEAR is essentially a Boolean
satisfiability (SAT) solver, but with layers of added furctality
to support the needs of software verificatiorRE3R won the bit-
vector arithmetic category in the SMT 2007 competitfon.

SPEAR is designed to work closely with ALYSTO, so it un-
derstands the structure of the VCs. For examplkg AR can use
information from the VCs to modify its heuristics, e.g., osing
different orderings of constraints or variables. Als@E3Ris in-
cremental, so it capitalizes on the incremental queriesrgeed by
structural refinement.

In addition to the structure-based techniques, two otheinfa
that significantly improved the overall scalability oRCrsTO are
the way in which ®EARencodes arithmetic operators and the-C
LYsTO-specific tuning of BEAR.

Gate-Optimal Encoding.

Programs contain non-linear operators, and to be bit-peeone
must have a theorem prover that supports them. A numberfef-dif
ent methods have been developed for linear bit-vectorrasitic,
but few of them are applicable to non-linear operators. Téeal
approach is bit-blasting: Variables are encoded as biveof
suitable size, and operators are replaced by digital ¢gadgrre-
sponding to that operator. In effect, VCs become large aligit-
cuits, which can be converted to conjunctive normal form EEN
using the Tseitin transform [34] and given to a boolean Sakid-
ity (SAT) solver.

Benchmark

| LOC (total) ]| LOC (code)| Modules |

bftpd 1.8 4532 3306 1
bftpd 1.9.2 4602 3368 1
HYPERSAT 1.7 9123 6022 1
spin 4.3.0 28394 20481 1
openssh 4.6pl 81908 45304 11
inn 2.4.3 122727 71102 46
ntp 4.2.4p2-RC5 185865 74230 10
ntp 4.2.5p66 192019 74277 9
bind 9.4.1p1 393318 184204 26
openldap 2.4.4a 374266 223595 27
[ TOTAL [ 1406754 685408] 133]

Table 1: Benchmarks Used for Experiments. The second and
third columns show the number of lines of code before and af-
ter preprocessing (“LOC(code)” does not include comments,
empty lines, and pragma-disabled code). The fourth column
gives the number of compilation units produced by LLVM’s
front-end.

5. EXPERIMENTAL RESULTS

To evaluate @GLYSTO, we checked a number of publicly avail-
able, real-world applications: the openssh remote accoas®rs
and client, the inn Usenet system, the ntp network time proto
col server and client, the bind DNS system, and the OpenLDAP
Lightweight Directory Access Protocol system. Those bematks

Numerous circuits have been proposed for each standard op-2€ the largest open-source benchmarks that we could sfgites

eration. Choosing the right circuit for CNF encoding is dédit
researched but important problem — properly selected iticeun
easily make the theorem prover an order of magnitude fastes.
heuristic we found most effective is to use gate-optimatidis,
i.e., circuits that have the minimal number of gates. Such
cuits tend to generate the fewest variables during Tseitioding,
which avoids flooding the SAT solver with redundant variable

Ci

Automatic Optimization of Parameters.

Parameterized heuristics abound in automated theorenmgtov
and manual tuning of the respective parameters is difficultene-
consuming. Typically each class of problems exhibits dedpe-
cific characteristics, and parameter settings that work feebne
do not necessarily work well for another.

We have used Al techniques to automatically tune the paemet
controlling the heuristics used by8ARto optimize performance
for the kinds of VCs generated byaCysTo [24]. The approach
is stochastic local search: the optimization algorithmfqrens a
simple hill-climbing to find local minima and perturbation és-
cape local minima. The probability of finding the global nimim
grows with longer runtimes.

The tuning process is extremely slow. We therefore tuned on
a small set of VCs. The optimization technique also adalgtive
chooses the number of training instances to use for eacimptea
setting: while poor settings can be discarded after a feardgn
runs, promising ones are evaluated on more instances.

We then evaluated the automatically-tuned parametengsttin
a separate test set of VCs, measuring a 500-fold speeduphmver
manually optimized version off&£ARoN CALYSTO-computed ver-
ification conditions. (All tuning was completed before we the
benchmarks in Sec. 5.) The speedup madeYySTo much more
practical, and also gave us insights into the relation betwshar-
acteristics of @LysTo-generated VCs and search parameters.

3For details, see http://www.smtcomp.org/

compile with both LLVM’s front-end and with Saturn. We also
used some smaller applications where we were able to gétypart
larly prompt and precise feedback from the developers: fiyedB
FTP server, the MPERSAT boolean satisfiability solver, and the
Spin explicit-state model-checker. Table 5 lists the bementks.

We checked the automatically generated assertions thefieder
enced pointers cannot be NULL. This is an excellent proprty
use to evaluate a static checker because: (i) the propevtglis
defined and automatic, (ii) pointers are often passed tiraug
long sequence of calls, which necessitates interprockduedy-
sis, (iii) pointer manipulation in programs depends on hddka-
and control-flow of the program, exercising all the compasef
a static checker, and (iv) pointers are dereferenced veguéntly
in code — the number of produced VCs is probably larger than
what would be generated by any other property (proper lagkin
for instance), and the sheer number of VCs pushes statikefsec
to their limits.

Initially, we started sending raw reports to developerst bu
quickly found that developers were very unwilling to separaut
real bugs from false positives (inadvertently validating esearch
goal of minimizing false positives!). We began filtering tieports
ourselves, omitting all reports that we could prove infekesi All
remaining reports were sent to the developers. At that poiat
ran into an unexpected problem: the developers would eitter
a very defensive stance, claiming that a particular bug tasre
irrelevant or very improbable, or would take a very cautistasice,
fixing everything in the code just to be safe, without muchuttat
about whether a bug was feasible or not. To be rigorous, we hav
defined a bug strictly as follows:

e Only a dereference of a pointer which is either uninitialize
or NULL is considered a bug.

e There must exist a feasible path from the point where the
pointer was initially defined to the point where it was deref-
erenced. For ELYSTO’s evaluation, we also required that if



any globals are included in the trace, the trace must be given erences. We used the best known parameter settings for@alch t

all the way from the main function (root of the call graph).
For Saturn’s evaluation, we waived this constraint.

e Every feasible NULL pointer dereference was considered a
bug, no matter how improbable or irrelevant it might be.

e Many applications contained pointer checks. Usually, such
checks exit if the pointer is NULL and print/log an appropri-

For CaLYSTO, we used the default options, with a 10 second time-
out per VC and limiting the number of VCs per function to 500, e
fectively setting the timeout per function to 5000 secor®kurn’s
tutorial recommends using a 60 second timeout per functio@ajl

the experiments presented in tabular form were obtainedjube
60sec timeout. When we attempted to use 5000 second timeouts
Saturn produced the same results on Bftpd and Ntp and rarf out o

ate message. In this case, the NULL pointer is never derefer- 16 GB of memory on all other benchmarks. Experimental result
enced, so failed pointer checks were not counted as bugs. Inare presented in Table 2.

other words, only dereferences that would cause a segmenta-

tion fault were considered bugs.

e If a pointer ptr was guaranteed not to be NULL, then we
also assumed that pointers with offggt +i can never be
NULL either. The likelihood of an integral overflowp(r >
OA ptr+i = 0) is extremely remote, and the developers do
not take such reports seriously. Checking that the offset is
within allowed bounds is a different property, not to be con-
fused with NULL-pointer checking.

For all reports that we could not prove to be false, we asked fo
a feasibility confirmation from the developers. Reports the-
ther we nor developers could prove to be feasible or inféasite
classified as unknown.

5.1 Comparison to CBMC

As mentioned in the introduction, the software model checke
CBMC [9] was an inspiration for €LYsTo. CBMC promises
a similarly high-level of coverage and precision (bit-areta,
path- and context-sensitive) as\l¥sTo. We also evaluated SA-
TABS [10], the successor to CBMC, which adds an automatic ab-
straction engine.

We used CBMC v2.6 and SATABS v1.9 for our experiments.
For compiling larger projects (that require linking), tkdsvo tools
required the goto-cc compiler. We were able to compile ohby t
smaller benchmarks with these tools: bftpd v1.8 and v1.9¥2,
PERSAT v1.7, and Spin v4.3.0.

We ran CBMC in two modes: one with default settings and the
other with the- - unwi nd=1 option, which unrolls all loops only
once. SATABS ran with its default settings. CBMC in defautide
ran out of memory on all benchmarkst(d: : bad_al | oc ex-
ception), without producing any results. CBMC with one laop
rolling terminated with internal assertion failures on Hf&p runs
and HYPERSAT, and ran out of memory on Spin. SATABS ran out
of memory on bftpd and Spin, and timed out after 15 hours sn H
PERSAT. Experiments were performed on a dual Opteron 2.8 GHz
machine with 16 GB RAM.

These fully formal tools promise soundness, guarantediag t
no bugs will be missed, and bit-accurate precision, guaeamng
no false positives, either. Unfortunately, due to the latlsaal-
ability, they produced neither. The theory of formal vesfion
has produced deep and valuable insights into program asabys
directly applying the theory appears not to produce a praltyi
scalable tool.

5.2 Comparison to Saturn

Saturn [38], another inspiration forALysT0, was designed for
scalability from the start. DespiteALYSTO’S more precise, more
expensive analysis, can it match Saturn’s proven scalgbili

We are comparing against Saturn vi. e used only Saturn’s
NULL pointer analysis, which finds possible NULL pointer eer

4We are comparing against the most recent, most up-to-date ve
sion of Saturn available. An earlier version of Saturn regfow

Saturn’s traces were significantly harder to interpret bsedahe
tool does not produce the complete trace and because we do not
have the same level of familiarity with Saturn as we do with-C
LYSTO. Interestingly, there is very little overlap between thgdu
reported by the two tools. £ YSTO tends to report either viola-
tions of C library properties, which Saturn frequently ress¢pre-
sumably because of incomplete descriptions of C librargtions),
or very long traces, sometimes spanning through 10-15ifumst
which Saturn misses due to lack of interprocedural patisiteity.
On the other hand, most of bugs thati®@sTO missed were due
to unsound handling of loops and to assertion violationgéam
assertion is violated, all the code after it becomes unwidzeh

After we reported bftpd, Spin, and ntp bugs, the developers i
mediately fixed all of them in the next release. Thanks to tom
responses from the bftpd and ntp developers, we manageed¢& ch
the new versions that fixed all the bugs found in the previars v
sion. In the new versions, we found new bugs, which have also
been fixed in the meantime.

The most frequent causes of Saturn’s false positives waodc |
of interprocedural path-sensitivity, incomplete speaiiicns of C
library functions (for instance, passing a NULL pointer ftee
function is allowed), and specific code patterns that seeliked
inconsistencies to Saturn. Saturn’s results on bind arecésfy
interesting. Bind’s code is among the highest quality coflallo
open-source applications we have seen so far — almost ewvery s
gle pointer is checked before dereferencing and complexdaic-
tures are checked for consistency before usage. This tbigui
checking apparently confused Saturn’s inconsistencyyaisabe-
cause every single report was provably false. The majorcesusf
CALYSTO's false positives were: missing specifications of external
functions, broken cycles in the call graph, and C type utigafe

The runtimes of both static checkers are comparable. Saturn
faster on some; BLYSTO, on others. Bind was particularly prob-
lematic for CALYSTO — it ran out of memory while analyzing 8
and timed out (1 day) on 1 compilation unit. The timeout was
caused by a performance bug (failing to re-use certain cache

false error rates while checking for NULL pointer dereferes,
although for a much less stringent notion of what constitwde
true bug [17]: in that paper, inconsistencies in whether iatpo

is checked for NULL on different paths were included as regsh
we are using the stricter definition described earlier. tnfuately,
the developers of Saturn have told us that they believe lieatur-
rent version of Saturn is no longer as effective at idemifyNULL
pointer dereferences as the earlier version, that theqursviersion
no longer exists, that they could not re-create it, and they tire
not planning to update their NULL analysis to where they e
fidence in it once again [1]. Thus, the only apples-to-apptes-
parison we can make, with the same definition of bugs, the same
benchmarks, and the same machines, is with the currenbwesi
Saturn, which might not represent Saturn in the best pasEdiit.
Fortunately, the central point of the comparison is whe@edysto
achieves comparable scalability to Saturn, despite paifay anal-
yses that are, by design, more precise and therefore présuma
more expensive. Perhaps an earlier version of Saturn waud h
had precision closer to that of Calysto, but that questionadst.



Benchmark LOC (code) Saturnvl.1 CALYSTOV1.5
Reports| Bugs | Unkn. | FP Rate| Time [s] || Reports| Bugs | Unkn. | FP Rate| Time [s]
bftpd 1.8 3306 3 3 0 0% 129.51 12 11 0 9% 3.14
bftpd 1.9.2 3368 3 3 0 0% 105.17 5 4 0 20% 2.86
HYPERSAT 1.7 6022 4 0 0 100% 647.21 0 0 0 0% 14.57
spin 4.3.0 20481 15 6 2 54% | 2129.04 0 0 0 0% | 6858.10
openssh 4.6p1 45304 14 0 1 100% | 3707.81 4 1 0 75% | 8995.64
inn 2.4.3 71102 288 *12 34 96% | 9879.69 10 *6 1 34% | 1312.33
ntp 4.2.4p2-RC5 74230 8 0 0 100% 326.44 30 26 0 14% 558.16
ntp 4.2.5p66 74277 10 0 0 100% 319.33 13 4 3 56% 493.39
bind 9.4.1p1 184204 951 0 0 100% | 14984.72 5 *2 3 0% | #2436.88
openldap 2.4.4a 223595 163 *14 50 88% | 8098.48 20 15 2 27% 200.02
[ TOTAL [ 685408]] 1459] 38| 87| 9O7%] 4022640 99| 69| 9] 23%] 20875.09]

Table 2: NULL Pointer Dereference Checking Results. “LOC (@de)” indicates the number of lines of true (after preprocesing) code.
“Reports” is the total number of warnings produced on the berchmark. “Bugs” is the number of true bugs found. Starred (*) bug
numbers represent our best-effort confirmation when we coud not get confirmations from developers. Bug numbers withouthe star
have been confirmed by the developers of the corresponding hehmark. “Unknown” shows the number of reports that could not be
proved either feasible or infeasible. “FP Rate” gives the flse positive rate, calculated ad — #Bugs/ (#Reports- #Unknowng. “Time”
is the total runtime in seconds. Thée® indicates that on bind, CALYSTO's runtime does not include instances on which GLYSTO
failed to complete — it ran out of memory on 8 compilation units (taking an additional 6263.57 sec), and timed out in one dayn one
compilation unit. Experiments were on a dual Opteron 2.8 GHawith 16 GB RAM.

CALYsTO V1.5 Saturnv1.1
Benchmark Total time [s] | SPEAR(s] | Percentagg Benchmark Total time [s] | Minisat [s] | Percentage
bftpd 1.8 3.14 1.25 39.8% bftpd 1.8 129.51 17 13.1%
bftpd 1.9.2 2.86 0.88 30.7% bftpd 1.9.2 105.17 8 7.6%
HYPERSAT 1.7 14.57 0.10 0.6% HYPERSAT 1.7 647.21 232 35.8%
spin 4.3.0 6858.10 473.50 6.9% spin 4.3.0 2129.04 457 21.4%
openssh 4.6p1 8995.64| 8167.36 90.7% openssh 4.6p1 3707.81 988 26.6%
inn 2.4.3 1312.33 14.77 1.1% inn 2.4.3 9879.69 2104 21.2%
ntp 4.2.4p2-RC5 558.16 56.38 10.1% ntp 4.2.4p2-RC5 326.44 82 25.1%
ntp 4.2.5p66 493.39 58.03 11.7% ntp 4.2.5p66 319.33 80 25.0%
bind 9.4.1p1 12436.88 980.48 40.2% bind 9.4.1p1 14984.72 1141 7.6%
openldap 2.4.4a 200.02 181.90 90.9% openldap 2.4.4a 8098.48 949 11.7%
[TOTAL [ 20875.00] 0934.65] 47.5%| [ TOTAL [ 40226.40] 6058  15.0%]

Table 3: CaLYSTO Total Runtime Split. The SPEAR column
shows the time spent in the theorem prover, with the next col-
umn showing the percentage of the total runtime.

sults) in GALYSTO’s interprocedural analysis.

We also analyzed how much time the two checkers spend in

theorem-prover calls. Results are in Tables 3 and ALYSTO
spends almost 50% of its time in theorem prover calls, eveéh wi
a small timeout (10 s) and a fast bit-vector arithmetic provde
amount of time spent in the theorem prover calls is unsung;s
given how difficult the computed VCs are. Despite using a stow
theorem prover [24], Saturn spends a much smaller fractidis o
time in theorem prover calls. As mentioned earlier, Saten p
forms expensive simplification using BDDs during staticlgsia,
whereas we use a fast and incomplete expression simpliféer an
maximally-shared graphs. Also, because of Saturn’s ajipaie
interprocedural analysis, Saturn’s VCs are likely muchpdén
The different tool design shows up in the different time mnions,
but both tools end up being usably fast.

6. CONCLUSION AND FUTURE WORK

We have presented ALYSTO, an extended static checker that
provides an unprecedented combination of precision andlsta
ity. Among fully automatic tools, ELYSTO is more scalable than

Table 4: Saturn Total Runtime Split. Saturn’s theorem prover
is the SAT solver Minisat.

anything with comparable coverage and precision, andffetter
coverage and precision than anything with comparable Isititya
This paper summarizes the key ideas to achieves thesesresult
Obvious lines of future work are more precise handling of

pointer arithmetic, loops, and recursion. There are primmgithe-
oretical results in these areas, which we would like to exepldVe
also believe there is considerable room to further improeeper-
formance of $EAR, based on additional exploitation of problem
structure. The days of fully automatic, thorough, and higie-
cise static checking of multi-million-line code bases asam
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