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Abstract

This article develops fast numerical methods for the practical solution of
the famous EIT and DC-resistivity problems in the presence of discontinuities
and potentially many experiments or data. Based on a Gauss-Newton (GN)
approach coupled with preconditioned conjugate gradient (PCG) iterations,
we propose two algorithms. One determines adaptively the number of inner
PCG iterations required to stably and effectively carry out each GN iteration.
The other algorithm, useful especially in the presence of many experiments,
employs a randomly chosen subset of experiments at each GN iteration that is
controlled using a cross validation approach. Numerical examples demonstrate
the efficacy of our algorithms.

1 Introduction

The elliptic PDE

∇ · (σ(x)∇u) = q(x), x ∈ Ω, (1)

where Ω ⊂ IRd for d = 2 or d = 3 and σ(x) ≥ σ̂ > 0 for all relevant x, arises in many
applications. Here we consider it under homogeneous Neumann boundary conditions
and wish to recover σ(x) from measurements of u(x) on the boundary ∂Ω.

Such a problem arises in electrical impedance tomography (EIT) [8, 7, 5, 27, 4] and
in DC resistivity calculations [34, 28]. It is well-known that if the entire Dirichlet-to-
Neumann map (equivalently, the boundary data u|∂Ω expressed in terms of the source
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q for any q(x) restricted to ∂Ω) is given then σ(x) can be uniquely recovered provided
that it is sufficiently smooth on the domain Ω (see, e.g., [5, 27, 4]).

In practice, data comes with noise, the forward model is idealized, and in het-
erogeneous media σ(x) may have jump discontinuities. Indeed, medical tomography
machines based on this model are still scarce, mining companies do collect data from
boreholes that are expensive to dig, and geophysicists often resort to a more general
electromagnetic data inversion [17]. Still, some practical observations can be related
to the idealized theory. In particular, better reconstructions can often be obtained
with more experiments, each corresponding to a specific right hand side in (1), and the
problem of reconstructing accurately does get harder when σ(x) has steep gradients.

Suppose then that we have s experiments. For each i, 1 ≤ i ≤ s, there are a given
source qi(x) and measured data bi of u. We seek a function m(x) that relates to σ(x)
in one of the following two ways.

1. We employ a smooth transformation such as σ = m−1 (i.e., m is resistivity), or
σ = em (which automatically yields a positive σ). To focus attention on other
aspects, we consider here only the latter. Note that σ and m are in the same
Sobolev space.

Thus, the problems

∇ · (em∇ui) = qi, i = 1, . . . , s, (2)

∂ui

∂ν

∣∣
∂Ω

= 0,

are discretized on a staggered grid with width, or resolution, h, as described
in [2], and the constant null-space is removed in a standard way.

2. Occasionally it is reasonable to assume that the sought conductivity function
σ(x) takes only one of two values, σI or σII , at each x. Viewing one of these
as a background value, the problem is that of shape optimization. Such an
assumption greatly stabilizes the inverse problem [1]. In [9, 10] we considered
a level set function representation for the present problem, where we write
σ = eP (m;0) = eP (m), with

P (ξ;h) =
lnσI − lnσII

2
tanh(ξ/h) +

lnσI + lnσII
2

. (3)

The function P (m;h) depends on the resolution, or grid width h. It is a scaled
and mollified version of the Heaviside step function, and its derivative magnitude
is at most O( | lnσI−lnσII |

h
). Thus, as h→ 0 the sought function m(x) satisfying

∇ · (eP (m)∇ui) = qi, i = 1, . . . , s, (4)

∂ui

∂ν

∣∣
∂Ω

= 0,

has bounded first derivatives, whereas σ(x) is generally discontinuous.
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The inverse problem is to approximately recover m(x) from values of the ui on
the boundary. Thus, assume that m and u satisfying (2) or (4) have been dis-
cretized appropriately and reshaped into vectors m and u, respectively. Regardless
of whether (2) or (4) is employed, we write the resulting discretized system for each
experiment i as

A(m)ui = qi. (5)

Furthermore, there are given projection matrices Qi such that Fi(m) = Qiui =
QiA(m)−1qi predicts the ith data set. Defining

F = (FT
1 ,F

T
2 , . . . ,F

T
s )T , b = (bT1 ,b

T
2 , . . . ,b

T
s )T ,

we seek an m such that

‖F(m)− b‖ ≈ ‖ε‖, (6)

where ε is a zero-mean normally distributed noise whose level (say, ε = ‖ε‖) may be
known or estimated.1 Amongst all candidates m we select one with desired properties
such as being smooth or piecewise constant. The selection of the desired solution to (6)
and the stabilization of the solution process are achieved by regularization.

The classical Tikhonov formulation [35, 13] leads to the optimization problem

m∗ = arg min
m

φ(m; β) =
1

2
‖F(m)− b‖2 + βR(m), (7)

with R a suitable regularization functional and β > 0 the regularization parameter.
A modified Gauss-Newton (GN) method for the optimization problem (7) can be
written as follows. Iterating for n = 0, 1, . . ., set m = mn at the nth iteration. Then(

JTJ + β0R
′′(m)

)
δm = −g (8a)

γ = arg min
γ

φ(m + γδm; β) (8b)

mn+1 ←m + γδm. (8c)

Here the gradient g of φ is given by

g ≡ ∇mφ = JT (F− b) + βR′, (9)

with J the Jacobian matrix of F, R′ = ∇mR the gradient of R and R′′ = ∇2
mR

the Hessian matrix. The step size is restricted to 0 < γ ≤ 1 and β0 ≥ 0 is another
parameter; e.g., β0 = β to obtain damped GN with line search.

Notice next that the solution of (8a) can be rather expensive to carry out. In
fact, even the evaluation of the misfit ‖F(m) − b‖ requires s PDE solves, i.e., s

1 Throughout this article we use the `2 vector norm unless otherwise specified.
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inversions of (5). The sensitivity matrix J consists of s blocks Ji, each of which
costing many PDE solves to construct [10, 16]. Direct methods for solving the linear
system (8a) require the very expensive formation of JTJ , and this does not scale well
at all. In the sequel we consider exclusively solution methods involving preconditioned
conjugate gradient (PCG) iterations, so only matrix-vector products involving J are
encountered. Let us assume that only sn experiments, which may be combinations of
the given s experiments, are used in the nth iteration: this is elaborated upon further
in Section 5. If the number of inner PCG iterations required to obtain δm in the nth
iteration is Mn then the GN step requires the solution of 2snMn PDEs.2 Assuming
that ln additional PDE solves per experiment are required (e.g., for the weak line
search), the total cost is (2Mn + ln)sn PDE solves per outer iteration n. For N outer
iterations we obtain the work estimate (i.e., the number of PDE solves)

W =
N∑
n=1

(2Mn + ln)sn. (10)

The purpose of this article is to propose novel methods for keeping this work estimate
as low as possible while still obtaining credible high quality solutions in the presence
of potential discontinuities in σ. We propose two algorithms, the second of which
incorporating the first, and demonstrate their potential power.

In Sections 3 and 4 we set sn = s, i.e., all experiments are used at each outer
iteration n. The method then requires O(s

∑N
n=1(2Mn + ln)) PDE solves, and our

goal is to keep this number small, achieving moderate N and Mn with ln ≈ 1. In
Section 3 we motivate and describe an algorithm for the “best” choice of Mn at each
outer iteration. Numerical examples demonstrating the efficacy of this algorithm are
offered in Section 4.

In Section 5 we continue and expand in several ways on work reported in [18].
We propose an adaptive method for reducing the number of experiments sn at each
outer iteration, using random sampling and cross validation. When there are many
experiments, say s is in the hundreds or thousands, the computational savings can
be rather substantial. Our method is demonstrated numerically in Section 6.

2 Regularization approaches

For the more general problem (2) with σ differentiable, the most popular regulariza-
tion R(m) in practice is a possibly weighted, discretized version of the functional∫

Ω

|∇m|2. (11)

2This count does not take into account the cost of the preconditioner. The latter, discussed in
detail in [10], involves inversion of R′′ which is a simple Poisson problem (see (11)). Thus, the
preconditioner inversion cost is a small fraction of that of solving (5).
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See for instance [17]. In the sequel we refer to the discretization of (11) as the
L2 regularization. This has worked well also in the numerical examples reported
in [28, 12].

However, it is well-known that this regularization also smears out discontinuities
and is not useful when such solution features are present in m(x) and are important to
reconstruct. A popular alternative is some variant of total variation [32, 3, 19] (TV),
preferably using a Huber switching function with an adaptive switching parameter,
which penalizes discontinuities more agreeably (essentially, it avoids attempts to in-
tegrate the square of a δ-function across the discontinuity). However, it is harder to
work with the latter alternative, and the results are occasionally far from certain for
this highly ill-posed problem [3, 11]. Moreover, in many practical situations there is
not enough data to determine if there actually are discontinuities present, and a TV
regularization will not help.

If the piecewise constant assumption on σ(x) is justified then it is much better to
use the level set method, i.e., (4) rather than (2). This usually allows utilization of (11)
for the regularization functional, as the burden of handling the discontinuities shifts
to the sharpening projection P . In this case the discontinuities of the model are built
into the reconstruction as a priori information. It should be understood, however,
that now the sensitivity matrix J (the Jacobian of F) involves multiplication by a

derivative matrix P ′ containing many zeros but also elements of size O( | lnσI−lnσII |
h

).
The optimization problem thus becomes significantly harder than when using the
L2 method. In the sequel we concentrate on recovering piecewise constant surface
functions using the level set method, but occasionally employ also the L2 method as
a sanity check.

In [9] the damped GN method (8) with β0 = β > 0 was found to perform poorly
when using a level set method, even when solving (8a) by direct methods, due to
the added nonlinearity by the sharpening function P of (3). Instead, a dynamical
regularization method was advocated, with β = 0 and a generalized Marquardt-type
regularization of the inner linear system (8a), i.e., with a suitably chosen β0 > 0.
In [10] this was taken a step further, and the exact solution of the linear system (8a)
was replaced by a small fixed number (in the range of 3 – 5) of PCG iterations. This
has a regularizing effect, and it works with β0 = 0 (i.e., when applied directly to the
singular system), rarely necessitating a line search. This method was found to work
very well for noise levels around 3%. However, the magic number of inner iterations
had to be determined by trial and error and in general it is problem dependent.

A related strategy to the dynamical regularization of [10] was proposed and ana-
lyzed as a general method in [29, 30], following [21]. In that method the number of
inner iterations is considered variable, and it is determined by a sequence of tolerances
on misfit linearizations (one for each outer iteration) which are considered user input
to the algorithm, designed by trial and error. A convergence proof was given under
some conditions on the sequence of tolerances and on the forward operator F, which
the level set approach does not satisfy.
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3 Adaptive selection of the number of inner PCG

iterations

In this section we develop a heuristic algorithm to select the number of inner PCG
iterations at each outer iteration approximating (8). In general, as one may expect, for
a very small number of inner iterations more, if cheaper, outer iterations are required.
But we take here the approach of attempting to minimize the work while maximizing
the yield of each outer iteration in the hope of keeping the required number of such
iterations small. We assume the noise level ε = ‖ε‖ to be known, so a stopping
criterion for the outer iteration is provided by (6) and the discrepancy principle is
available to determine regularization parameters.

Given a current iterate m = mn, for the present iteration to be the last one we
want

F(m + δm) = b + ε. (12a)

We can rewrite this as

Jδm = b− F(m) + ε̂, (12b)

where

ε̂ = ε + E, (12c)

E = Jδm− F(m + δm) + F(m). (12d)

Note that the GN method without regularization consists of solving the rank deficient
problem (12b) without ε̂ using linear least squares minimization. Thus, when we
next linearize the problem by dropping E, we are in effect solving an ill-posed inverse
problem with “noise” ε̂ instead of ε. The expectation value of the norm of this new
uncertainty obeys

〈‖ε̂‖2〉 = 〈‖ε‖2〉+ ‖E‖2 ≥ 〈‖ε‖2〉.

(The equality in the expression above follows from the independence of the two terms
forming ε̂ and the assumption that 〈ε〉 = 0.) This suggests that when taking a step in
an iterative method, additional regularization of the update δm is required, beyond
what we have put in to deal with the measurement noise ε; cf. [20].

However, an estimate of ‖ε̂‖ is not known until we have solved this linearized
problem, so we have to come up with a way to determine the correct amount of extra
regularization a posteriori. Increasing β0 as ‖E‖ increases amounts to a generalized
trust region approach (see, e.g., [26]), but we need a way to determine this parameter.

Instead of increasing β0 it is more efficient to deploy iterative regularization [22, 23]
to the inner linear system (8a), as we can rely on the regularizing properties of a finite
number of PCG iterations. When applying PCG iterations starting at δm = 0 with
the Laplacian preconditioner R′′(m), at each iteration ‖δm‖R′′ increases, while the
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linearized misfit ‖Jδm+F−b‖ decreases [23]. The number of inner iterations Mn now
takes on the role of a regularization parameter. To select Mn it is possible to use an
estimate of ‖ε̂‖, but an approach that we found superior in practice is to attempt to
maximize progress on the full nonlinear problem. In other words, the merit function
remains φ of (7). The challenge is to obtain sufficient decrease in φ(m + δm(Mn))
without evaluating all φ(m + δm(j)), j = 1, . . . ,Mn.

The default step size is γ = 1. If φ does not decrease even for Mn = 1 then
we perform a weak line search. We thus obtain the outer iteration (with φ and g
depending on β)

δm(Mn) = PCG
(
JTJ + β0R

′′,−g, R′′,Mn

)
; (13a)

Mn = arg min
M

φ(m + δm(M)) (13b)

s.t. ‖Jδm(M) + g‖ > ‖ε‖; (13c)

if Mn > 0 : γ = 1, else (13d)

Mn = 1, γ = arg min
γ

φ(m + γδm(Mn)); (13e)

mn+1 = m + γδm(Mn). (13f)

Here PCG
(
Â, b̂, Ĉ, k

)
is the result of applying k PCG iterations to the linear sym-

metric positive definite system Âx̂ = b̂ starting at x̂ = 0, with preconditioner Ĉ.

As with line search methods the criterion for determining Mn can be quite rough.
The most straightforward implementation would be to check reduction in φ and con-
dition (13c) after every PCG iteration, but this takes up to s(Mn−1) additional PDE
solves. Instead we just perform Mn iterations for our current guess of this value, pos-
sibly adjusted by early termination through (13c). We then check at the cost of s
PDE solves if more reduction in φ can be achieved with Mn − 1 steps. This replaces
a search for an appropriate β0. If so then Mn is reduced until the best (smaller)
value is found, if not then Mn is increased for the next outer iteration. The resulting
method is described in detail in Algorithm 1. The numerical examples reported in
Section 4 as well as in later sections suggest that this algorithm performs remarkably
well. Moreover, since the inner iterations provide regularization, the method performs
also very well when setting β0 = 0, as the role of this parameter is now taken over by
the PCG iterations, and we therefore use this latter value for all calculations reported
in this paper.

The method as stated in Algorithm 1 can, depending on the parameters ε and
β, produce a variety of regularized solutions. If β is larger than a critical value βε,
such that the misfit of m∗ in (7) is larger than ε, then in Algorithm 1 we will always
have µ > ε, and the method terminates when the minimizer m∗ of φ is found with
accuracy determined by tol. If tol is small enough then this is just the classical
Tikhonov regularized solution, with Algorithm 1 selecting specific outer iterations.
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Algorithm 1 Adaptive selection of number of inner PCG iterations. The PCG
method may terminate early (at iteration k ≤M) by the discrepancy principle.

m = m0 (initial guess)
M = M0 (initial number of inner iterations)
ε = estimated absolute noise level
µ = ‖F(m)− b‖
φ = 1

2
µ2 + βR(m)

α = 4/3; ρ = 3/4; tol = 10−6 (for example)
repeat

g = JT (m)
(
F(m)− b

)
+ βR′(m)

δm0 = 0
{δm1, . . . , δmk} = PCG

(
JTJ + β0R

′′,−g, R′′,M
)

(save all k iterations)
M = k
µ1 = ||F(m + δmM)− b||
µ0 = ||F(m + δmM−1)− b||
φ1 = 1

2
µ2

1 + βR(m + δmM)
φ0 = 1

2
µ2

0 + βR(m + δmM−1)
φold = φ
if φ1 < φ0 and φ1 < φ then

m = m + δmM

M = bαM + 1c
µ = µ1

φ = φ1

else
while φ0 < φ1 or φ1 > φ do

if M > 1 then
M = M − 1
µ1 = µ0

φ1 = φ0

µ0 = ||F(m + δmM−1)− b||
φ0 = 1

2
µ2

0 + βR(m + δmM−1)
else

δm1 = ρδm1

µ1 = ||F(m + δm1)− b||
φ1 = 1

2
µ2

1 + βR(m + δm1)
end if

end while
m = m + δmM

µ = µ1

φ = φ1

end if
until µ ≤ ε or (φold − φ)/φold < tol
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If β = 0 and the estimated noise level ε is at least as large as the (unknown) true
noise level then the method will terminate as soon as µ ≤ ε, before the minimum
of φ is found. In this case we have a nonlinear version of what is called iterative
regularization in the context of linear problems [22, 23]. Following [10] we refer to
this as dynamical regularization. If 0 < β < βε, or tol is not very small, then we
will still terminate before the minimum of φ is found, but the regularization is now a
hybrid of dynamical and Tikhonov regularization.

Employing dynamical regularization removes the need to search for the coefficient
β. Furthermore, especially in the presence of appreciable noise, no optimization prob-
lem ever needs to be solved to high accuracy here. Thus we believe that dynamical
regularization can be significantly more efficient in practice. On the other hand, recall
that in sensitive applications the nonlinear problem gets more difficult to solve as β
decreases. In fact, a continuation or homotopy method in the Tikhonov coefficient
(called “cooling” by geophysicists) is often employed in practice, where β is gradually
decreased. In the limit case of dynamic regularization where β = 0, the solution of the
nonlinear problem may depend more on the initial iterate. Of course, a continuation
method in β may be employed here as well.

4 Numerical examples involving Algorithm 1

In this section we study the DC resistivity problem on a unit square, in the hope of
demonstrating the efficacy of the method outlined in Section 3. The inverse problem
is to recover σ, which at each grid point takes on one of two specified values, from
measurements of ui on the boundary. Instead of the conductivity σ we shall display
results for the resistivity ρ = 1/σ.

For Experiment i, qi consists of a positive point source on the left boundary and
an opposite source on the right boundary, so

qi(x) = δx,pi
L
− δx,pi

R
,

where pi
L and pi

R are located on the left and right boundaries. Different data sets
are obtained by varying the positions pi

L and pi
R of the two opposing sources. We

place the left source at K equidistant points including the corners, and similarly for
the right source, in all possible combinations. This gives a total of s = K2 data sets.
Voltage is measured on the entire boundary. A synthetic conductivity model is used
to compute the data b, which, unless indicated otherwise, is calculated on a grid that
is twice as fine as the grid used for the reconstruction, and Gaussian noise is added
to it. All solutions of (5) in this section, implementing PDE solves, were carried out
using a direct method.

The conductivity distributions used to synthesize data consist of objects with
conductivity σI = 1 placed in a background of conductivity σII = 0.1. Two scenarios
are envisioned. In the first scenario no prior knowledge about the conductivity is
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assumed, and reconstructions are accordingly carried out for m with σ = em using an
L2 regularization. In the second scenario the bi-constant nature of the true solution,
including the values of σI and σII , is assumed known, and reconstruction is obtained
employing the level set method using the sharpening function (3). As can be expected,
appropriately using the prior information results in more accurate reconstructions.
Results are presented for both Tikhonov and dynamical regularizations in order to
demonstrate that our technique applies to both methods.

4.1 Example 1

Three square regions are placed as depicted in Figure 1(a). We employ s = 9 experi-
ments with K = 3 sources and sinks, and compute on a 652 grid. The relative noise
level is 2.5%, and we aim to reconstruct up to a misfit3 of 3%.

For the Tikhonov L2 regularization we found by (laborious) trial and error that
the solution converges to the desired misfit for approximately β = 6.5 × 10−5. The

(a) True model

 

 

4

6

8

10

12

14

(b) Reconstruction

Figure 1: L2 reconstruction of the resistivity using Tikhonov regularization with
β = 6.5× 10−5 (Example 1).

necessary conditions for (7) were solved first using the damped GN method (8) (i.e.,
setting β0 = β) with a fixed number Mn of inner PCG iterations, and then using
Algorithm 1. The outer iteration was deemed to have converged if the relative decrease
in objective function was less than 10−3.

For Mn fixed at 20 inner iterations, the reconstruction depicted in Figure 1 was
obtained in 4 outer iterations, with a total of 4× 2× 20× 9 = 1440 PDE solves. For
Mn = 3 convergence was achieved in 26 outer iterations with 1404 PDE solves. Using
Algorithm 1 the problem was solved in 4 iterations with (M1, . . . ,M4) = (5, 8, 7, 10),

3The misfit is defined as ||F(m) − b||/||b||. Throughout, when a noise level is mentioned in
percentage, it is the relative rather than the absolute misfit that gets used.
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a total of 540 PDE solves, which represents a substantial saving. The results are
summarized in Table 1.

It may be objected that the reconstruction in Figure 1 looks quite bad, and indeed
it does. Nevertheless, in a practical situation one may be interested at first in a very
rough idea whether any desired structure is present, and only then possibly proceed
with a larger experimental setting to refine the reconstruction. So, these types of
reconstruction are performed quite often in practice.

Mn W
20 1440
3 1404

adaptive 540

Table 1: Example 1. Work W (namely, the number of PDEs solved) for fixed and
adaptive choices of Mn.

4.2 Example 2

Next, we apply the level set method (4) to the same problem with the additional
information on the exact solution assumed known. By trial and error a value of
β = 10−3 was found to result in the desired misfit for the Tikhonov method.

We also reconstruct using dynamical regularization, setting β = 0 and terminating
when the misfit drops below 3%. For the latter method, where the algorithm “at-
tempts” to solve an underdetermined problem, the obtained solution depends more
on the starting point, which plays the role of prior information, in a manner that the
Tikhonov reconstruction does not.

We used three different starting configurations, two of which are depicted in Fig-
ure 2. The third initial guess is m = 0, which may seem odd at first. However, in this
case we interpret the function P defined in (3) as just a nonlinear transfer function.
If the slope of the level set function stays small, values between σI and σII can be
obtained for σ. In this case the reconstruction sharpens at each outer iteration, but
always remains somewhat blurry. Since this starting guess has no bias as to where
the objects to be “discovered” would be, it may be useful in practice. However, this
is no longer a pure level set method. Figure 2 displays the obtained results.

It may be argued that the dynamical regularization result in Figure 2(d) is clearer
than the Tikhonov result 2(c). But it may also be argued, ironically, that the exper-
imental setting does not allow for a reliable, clear model approximation. It is also
possible to threshold the image in Figure 2(f) for higher contrast results.

The corresponding work requirements are summarized in Table 2. It is apparent
that if an optimal fixed Mn is selected then the adaptive Algorithm 1 performs just
slightly better; its main advantage is that Mn is selected automatically. Note also



12

 

 

(a) Initial guess I

 

 

2

3

4

5

6

7

8

9

10

(b) Initial guess II
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(c) Tikhonov
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(d) Dynamical from (a)
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(e) Dynamical from (b)
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(f) Dynamical from m=0
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(g) Inner iterations Mn

Figure 2: Example 2. (a,b) initial guesses; (c) reconstruction using Tikhonov; (d,e,f)
reconstruction using dynamical regularization from the three different starting points;
(g) Mn versus outer iteration n for the Tikhonov reconstruction.

that the performance difference between Tikhonov (with the given β) and dynamic
regularization is not significant.

4.3 Example 3

For lower noise levels the required number of inner iterations tends to increase, so we
examine the performance of Algorithm 1 for the same setting as in Example 2 but
with noise level 0.8%.

Figure 3 displays the reconstruction results. As this requires a more accurate
forward model we employed a 2572 grid for the reconstruction, with artificial data
computed on a 5132 grid. The starting configuration of the level set function was
m = 0 and dynamical regularization was employed. The work tallies are summarized
in Table 3.
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Mn(T ) W (T ) Mn(D) W (D)
2 1548
5 900 5 1000
20 ∞ 20 ∞

adaptive 792 adaptive 756

Table 2: Example 2. Work W for fixed and adaptive choices of Mn with Tikhonov
(T) and dynamical (D) regularizations; ∞ indicates no convergence.
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(a) Reconstruction
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(b) Inner iterations

Figure 3: Example 3. Reconstruction result and adaptive iteration counts for the
smaller noise level of 0.8%.

Note that the number of inner iterations goes up but reconstruction is not more
accurate visually, as s = 9 experiments are apparently insufficient to increase resolu-
tion. Here the value of Mn = 5 yields significant inefficiency. The better Mn = 10 is
majorized by the adaptive algorithm, but again only by a factor of less than 2.

Mn W
5 19089
10 1260

adaptive 720

Table 3: Example 3. Work W for fixed and adaptive choices of Mn.

Viewing the results in Tables 2 and 3 together clearly demonstrates the advantage
of our adaptive algorithm.
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5 A stochastic method for reducing the number of

experiments per iteration

Must we solve PDEs of the form (5) s times at each outer iteration n? Let us first
make two general observations in this regard. The first is that it is certainly easy to
imagine, especially if we have a very large number of experiments s, that they may be
severely redundant. Let us refer to a situation where using only every lth experiment
for some l� 1 still yields acceptable results, as “embarrassing redundancy”. Gaining
major savings in a situation like that is of course rather welcome, but is far simpler
than what we have in mind, so we assume no such redundancy and attempt to verify
this in the experiments below.

The second observation is that at the earlier outer iterations n, using a relatively
small number of data sets sn would possibly suffice to improve the approximate so-
lution m = mn towards convergence. Indeed, recall that faster convergence orders in
Newton-like methods kick in only when m is already close to a local solution. Once we
get closer to the target the time comes to use more experiments, but even then there
is the uncertainty in data measurements and the entire mathematical model that
limits practically achievable accuracy. Practical heuristic ideas involving variable sn
have been around for a while [6].

Below we consider a stochastic method for selecting sn experiments that are com-
binations of the s given ones and a practical cross-validation algorithm to control the
size of sn. Note that since s1 is typically chosen very small, and sN is expected to be
of the order of s for a moderate number of outer iterations N , the sequence {sn} is
expected to grow rapidly as a function of n.

Let us rewrite the objective function (7) as

φ(m; β) =
1

2

s∑
i=1

‖Fi(m)− bi‖2 + βR(m), (14)

and introduce a stochastic variable w = (w1, . . . , ws). The probability distribution of
w is chosen to satisfy

〈wiwj〉 = δij, (15)

where 〈〉 denotes the expectation value as before. We can now write (14) as

φ(m; β) =
1

2
〈‖

s∑
i=1

wi(Fi(m)− bi)‖2〉+ βR(m), (16)

and consider approximating the expectation value at outer iteration n by random
sampling from a set of sn vectors w, with sn ≤ s.

The method of simultaneous random sources [33, 25, 31, 24, 18] selects the wi’s to
be randomly ±1, so that (15) is satisfied. A different single realization (i.e., sn = 1
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for all n) is chosen at each outer iteration, combined with an averaging procedure.
This leads to a method called stochastic approximation (SA) in [18]. That paper
goes on to consider a stochastic averaging approximation (SAA) technique, where a
smallish number of random realizations of w (that is far less than s) is used in all
outer iterations.

Such methods can be very efficient if the data in different experiments are mea-
sured at the same locations, i.e., Qi = Q, for in that case we have

s∑
i=1

wiFi =
s∑
i=1

wiQiA(m)−1qi = QA(m)−1(
s∑
i=1

wiqi), (17)

which can be computed with a single PDE solve per realization of w. However, if the
receivers are different for different experiments, as is a common situation in practice
(recall for instance the experimental setup described in Section 4), then up to s PDE
solves are required to compute

∑s
i=1 w

iFi, and the method is no longer efficient.
We propose a different yet somewhat related approach, where (16) is estimated

by random sampling using a different set of samples for w at each outer iteration. In
a typical iteration we choose the vectors w to each consist of a vector with a single
nonzero component at a random location which has value s. Such a distribution also
satisfies (15) and allows the computation of

∑s
i=1 w

iFi with a single PDE solve per
realization. Clearly, this choice boils down to selecting a random subset of the given
experiments at each outer iteration.

Furthermore, cross validation is employed to control the number of samples re-
quired. The function φ(m; β) is estimated based on a set S of sn random samples of
w, and a GN step is performed. Then we cross-validate the step by checking that (16)
estimated on a different set of sn random samples also decreases. If it does then we
conclude that sn samples were sufficient; if not then we increase sn, potentially until
finally all the available experiments are employed.

We start the outer iteration with a small set K of randomly drawn experiments,
for instance with just 2 elements. At iteration n we use some of the experiments in
K to compute the next iterate, and the rest to validate the update. Thus, the cross
validation [15] is performed based on a partition of K into two sets S and C, normally
of size sn each, where S is used to compute the model update and C to validate the
update. If the validation fails then the size of K is doubled (i.e., we use additional
experiments drawn at random).

After each outer iteration we estimate the actual misfit based on the experiments
in S and C. If this misfit estimate satisfies the discrepancy principle then we validate
it based on all experiments and terminate the algorithm when appropriate. The most
obvious validation is a computation of the misfit based on the complete set of exper-
iments. Alternatively, various estimates of the misfit and their confidence intervals
based on random sampling of the total set of experiments could be performed. The
resulting method is outlined in Algorithm 2.
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Algorithm 2 Adaptive selection of number of used experiments for dynamical reg-
ularization. ||F(m)− b||X denotes the norm over the experiments in set X only.
m = m0

ε = (absolute) noise level
S = 2
K = a set of S random experiments
partition K in two equal size sets S and C
µ0
c = ||F(m)− b||C
done = false
dostoch = true
repeat

if dostoch then
compute update m←m + δm as in algorithm 1, using only the data in S
µc = ||F(m)− b||C
µS = ||F(m)− b||S
if µc < µ0

c then
µest =

√
s(µ2

c + µ2
s)/S

if µest < ε and m passes validation then
done = true

else
S = C
C = a randomly selected set of S/2 experiments not in S
µ0
c = ||F(m)− b||C

end if
else
S ← 2S
if S > s then
dostoch = false

else
K = a set of S random experiments
partition K in two equal size sets S and C
µ0
c = ||F(m)− b||C

end if
end if

else
use Algorithm 1 to update m←m + δm and possibly terminate

end if
until done
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6 Numerical examples involving Algorithms 2 + 1

In Section 4 we have employed only a small number of s = 9 right hand sides. In
this situation we have found that using the stochastic method from Section 5 requires
about the same amount of computational effort, as the majority of iterations utilize
the full set of experiments. By contrast, in the present section we consider simulations
with a larger number of experiments and show that substantial additional savings can
be obtained with the stochastic method.

6.1 Example 4

We consider a true model consisting of two irregular shapes as depicted in Figure 4,
with the same values as before for σI and σII . The number of experiments is s = 36,
the noise level is 2.5%, and a 652 grid is used. Dynamical regularization (i.e., β = 0)
is employed.

The L2 solution using Algorithm 1 is depicted in Figure 4(b), while Figure 4(c)
shows the reconstruction obtained using the stochastic algorithm proposed in Sec-
tion 5. The number of PDE solves required on 3 trials was 480, 352, and 370, an
average of about 400.

Next, Figure 4 shows reconstructions using the level set method, starting either
at the initial guess depicted in Figure 2(a) or at m = 0, and using Algorithm 1 either
normally or through the stochastic method of Algorithm 2. The results starting from
the circle differ in details of the shape, whereas the results starting at m = 0 are
visually almost indistinguishable amongst different random choices of the experiments
during the outer iterations. The work comparison counts are summarized in Table 4.
We observe that substantial savings can occasionally be made with the stochastic
method.

regularization experiments all stochastic
L2 36 2880 401

levelset(0) 36 2952 686
levelset 36 2880 1528

L2 625 162500 3196
levelset(0) 625 23125 706

Table 4: Examples 4 and 5. Listing work W required with the stochastic method com-
pared to using all experiments. Levelset(0) indicates the level set method formulation
starting at m = 0.
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(f) Level set starting at 0

Figure 4: Example 4. Reconstructions in 2D, comparing usage of all experiments vs.
Algorithm 2 for both L2 and level set methods.

6.2 Example 5

If even more experiments are available, the advantage of the stochastic method be-
comes more dramatic. Figure 5 depicts the L2 and level set (starting at 0) recon-
structions with the same setup but with 625 experiments. As the corresponding last
two rows of Table 4 show, about 30 – 50 times fewer PDE solves are required by the
stochastic method.

Note that the quality of the reconstruction is noticeably better with this many
sources (compare Figure 5 to Figure 4(b,c,f)), so it is not true that we could have
just tossed out a large number of these experiments up front.

Incidentally, upon setting the noise level to 0 and synthesizing the data on the
same grid (thus committing an “inverse crime”), the level set method using this many
experiments reconstructs the “true solution” precisely at the given resolution.

6.3 Example 6

Injection of tracers is often performed by hydrologists in an effort to obtain informa-
tion about subsurface hydrologic properties in the earth [28]. The present example in
three space dimensions employs surface electrodes to image the injection of a saline
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(b) L2 Deterministic

 

 

2

3

4

5

6

7

8

9

(c) Level set stochastic

 

 

2

3

4

5

6

7

8

9

(d) Level set deterministic

Figure 5: Example 5. Setting as in Example 4 but with 625 right hand sides. The
level set reconstruction was started at m = 0.

tracer into the subsurface. Here we simulate the tracer-saturated soil as a 10 Ω ·m
resistivity material and the soil as a 200 Ω · m material. On the surface we deploy
96 electrodes; 38 of these electrodes function as potential electrodes only, while the
remaining 58 serve as both potential and current electrodes. The example involves
s = 41 independent current pairs. For each of these pairs, data are recorded at the
remaining 94 electrodes. Data are recorded using dipoles, so for each current pair we
record 93 independent data. This results in a total of 3813 data for the entire survey.
Note that the measurement locations Qi vary with the experiment counter i in this
example. Artificial data is computed on a 643 grid, then polluted with 3% noise.
The reconstructions are done on a 163 grid. The discretized PDEs (5) were solved
as described in [10] with an error tolerance that is sufficiently small to consider these
solutions as “exact”.

Figure 6 displays the true model resistivity and various reconstructions. Also
displayed are horizontal slices at varying depth starting from the top (ground level)
at top-left. The grey levels range from black (0) to white (200). The reconstructions
all use dynamical regularization. Notice that in Figure 6(c) the blurring increases
with depth, whereas in Figure 6(d) there is a shape distortion in that the bottom
shape extends too far down. The L2 result resolves the two shapes a little bit in the
top row, but they hopelessly merge deeper down.
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Table 5 records work estimates. Compared are Algorithms 2+1 against a “good
plain vanilla” method, by which we mean that (i) data from all experiments are used
at every iteration (i.e., sn = s), and (ii) the number of inner iterations Mn is fixed at
Mn = 10 for the L2 regularization and Mn = 5 for the level set method. These values
of Mn were determined to be good ones by trial and error.

regularization vanilla stochastic
L2 4920 2160

Levelset(0) 3690 1577
Levelset 4100 1785

Table 5: Example 6. Work W required by Algorithm 2+1 (“stochastic”) compared
to using all experiments and a fixed number of PCG iterations (“vanilla”). The work
level in the rightmost column represents an average over three trials. Levelset(0)
indicates the level set method starting at m = 0.

While the sophisticated method is more efficient, the factor of improvement is
only a bit over 2 in this example, which must be considered a merely moderate gain
in the present setting.

6.4 Example 7

For this example we use the same geometry and resistivity values as in the previous
one. Data is collected at a grid of 81 receivers located at the surface. Four vertical
boreholes near the corners are used to place virtual sources and sinks at various depths
at a total of 17 locations. We assume the boreholes to be narrow enough to not disturb
the conductivity [28, 17]. For each diagonally opposed pair of boreholes, 17×17 = 289
pairs of sources and sinks are placed, forming a total of s = 578 experiments. A
slanted cylindrical object depicted in Figure 7(a,b) was used to generate u-values
which were subsequently polluted with 1% Gaussian noise to yield the “observed
data”. The termination criterion, using the discrepancy principle, was set at 1.4%. A
comparison was made between using Algorithms 1 and 2 (i.e., using all experiments
at each outer iteration vs. the stochastic way).

Note that the L2 reconstruction in Figure 7(c) becomes blurry about one quarter
of the way down and does not seem to suggest a cylinder. The level set based re-
construction starting at m = 0 (Figure 7(g,h)) does seem to indicate a cylinder, but
the object is placed too high and there are “ghost” objects at the bottom. Since the
ghost objects are far from the sensors, it is (hopefully) unlikely that they would be
trusted in practice. However, this poor result does indicate the usefulness of having
several reconstruction methods at hand. Finally, the level set method starting at the
shape depicted in Figure 7(e,f) works very well! It is the only decent reconstruction
in this example.
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Results regarding the computational effort are summarized in Table 6. Here,
unlike in the previous example, the stochastic method provides impressive savings
factors of up to 50, with the highest factor occurring for the good reconstruction!
Indeed, the stochastic approach is useful when there are many right hand sides.

regularization Algorithm 1 Algorithm 2
L2 102350 24369

Levelset(0) 55488 14116
Levelset 21964 400

Table 6: Example 7. Work W required with Algorithm 2 compared to using all
experiments and Algorithm 1.

7 Conclusions

The adaptive Algorithm 1 for selecting the number of inner PCG iterations Mn per-
forms remarkably well, both for the L2 regularization and for the level set method.
The value of Mn is adjusted automatically, and more iterations than needed to make
significant progress at each outer iteration are avoided.

For the problems considered in [10], Mn stays for all n close to being between
3 and 5, which agrees with what was experimentally determined there as optimal.
However, for problems with lower noise level the best Mn gradually increases, and we
obtain using our adaptive algorithm solutions with the desired accuracy that cannot
be efficiently obtained while keeping Mn small throughout.

The stochastic method implemented in Algorithm 2 further improves efficiency
of the L2 and level set methods, for both Tikhonov and dynamical regularizations.
The extent of such improvement, however, appears to vary greatly from modest to
highly impressive. Note that all our computations are performed for examples where
there is no embarrassing redundancy. Private consultations indicate that such is also
the fate of other stochastic algorithms proposed in the literature for problems of the
sort considered here. The claims appearing in the literature in this regard should
therefore be scaled in such light. An advantage of our cross validation approach is
that it enables to claim great success when that is possible while avoiding failure in
other situations.

At the innermost loop of any relevant method is the solution of (5), which is
a large linear algebra system. If an iterative method is employed for this purpose
then one can play with its error tolerance. We have ensured that such solutions are
performed accurately enough so as not to form a factor while comparing PDE solves
required by the different methods considered in this paper.

The L2 regularization approach, along with its well-known deficiencies, is a re-
markable work-horse. However, if a priori information is available that enables using
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a level set method then this may greatly improve both stability and accuracy. Even
if the solution is not piecewise constant, if sufficiently many data sets are available
then using the L2 approach reveals locations of larger solution gradients and a switch
to total variation regularization can be gradually made [19].

While the 3D experiments are significantly larger and more time consuming than
those in 2D (the limitation in Example 6 to a 163 grid results in roughly overnight-long
runs on our laptop, thus corresponding well to our sleeping habits), our comparative
conclusions do not vary much. Indeed, in terms of reconstruction quality the smaller
problems are, if anything, harder. This is not really surprising when considering
the fact that the ratio of “boundary to domain size” decreases as the number of
dimensions increases.

While revising this article we became aware of the report [14] that had been
submitted for publication roughly at the same time as our work. In it the authors
prove in a general setting linear convergence rate for a gradient descent method with
a constant step size, provided sn increases exponentially with n. While the considered
method is far slower than ours and the regularity assumptions don’t necessarily hold
in our case, this theory generally agrees with our practical observations regarding the
fast growth of sn.

Our cross validation algorithm can also be applied to the method of simultaneous
random sources, and preliminary experiments indicate that this combines into a very
effective method in case that Qi = Q, ∀ i. We leave this to future work.

Acknowledgment: We are grateful to Drs. Eldad Haber and Felix Herrmann for
introducing us to stochastic methods in the present context and for several fruitful
discussions.
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(a) True model (b) True model

(c) L2 (d) Initial shape

(e) Level set from initial shape (f) Level set from initial shape

(g) Level set from zero (h) Level set from zero

Figure 6: Example 6. Reconstruction of two submerged objects. Here, s = 41
experiments injecting currents at the surface were used, with data collected at the
surface.
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(a) True model (b) True model

(c) L2 (d) Initial shape

(e) Level set from initial
shape

(f) Level set from initial shape

(g) Level set from zero (h) Level set from zero

Figure 7: Example 7. Reconstruction of a slanted cylinder. Here, s = 578 experiments
injecting currents from boreholes were used, with data collected at the surface.
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