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In this file I have collected solutions to selected exercises appearing in my book.
Some of these solutions extend beyond what is strictly required in the question.
Others leave details out. These solved exercises serve as additional examples for the
text as well. It is seriously recommended that you try to solve the posed problems
before taking a peak at the answers.

This file represents work in progress, and additions of solved examples (include
the source in latex and figures in eps or jpg, please) will be gratefully received and
incorporated. However, the rest of the exercises appearing in the book, even those
for which I do have solutions that may be shared with friends and teachers using
the text, are intended to remain largely without publicly posted solutions, just like
research problems in real life.

Note: References to exercises, sections, equations, figures and tables of the book
appear here like there, generally in the form m.n, where m indicates the chapter
number, e.g., Figure 1.8. On the other hand, references and labels to equations,
tables and figures of this document have only a single counter, e.g., Figure 2.

Chapter 1

1.4 This relates to Section 1.1.

Here P (ıξ) = −νξ2 − ıaξ. Hence

|eP (ıξ)t| = |e−νξ2||e−ıaξ| = |e−νξ2| ≤ 1 ∀ξ.

When ν → 0 we obtain the advection equation and |eP (ıξ)t| → 1.

1.5 This relates to Section 1.2.
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(a) As in the text we must consider

|γ1(ζ)| = |1 + µa − µa[cos(ζ) + ı sin(ζ)].

Now, for ζ = π/2,

|γ1(ζ)| ≥ |Reγ(ζ)| = |1 + µa| > 1.

Hence instability is present for any µ > 0. [Additionally, imagine Figure
1.8 with a > 0.]

(b) Exactly the same analysis resulting in γ1 is applied here, yielding

γ(ζ) = 1 − µa + µae−ıζ .

This is the same as γ1 with (−a) replacing a (the negative sign in the
exponent merely implies that we trace the same dotted line in Figure 1.8
in the opposite direction). Hence the same stability results hold with a
replaced by −a.

(c) The upwind scheme simply picks the stable guy, according to the preceding
analysis, between the forward and the backward differences. Hence it is
stable for any value of a provided µ|a| ≤ 1.

(d) For ut − ux = 0 we have a = −1 < 0. Hence the upwind scheme chooses
the forward differencing. The extra column is therefore the same as the
’Error in (1.15a)’ in Table 1.1.

1.7 We have

ut =
(

0 −∂xx + c
∂xx − c 0

)

u.

Hence,

P (ıξ) =

(

0 ξ2 + c
−(ξ2 + c) 0

)

.

The eigenvalus of a general 2 × 2 matrix
(

a b
c d

)

are given by

1

2

[

a + d ±
√

(a + d)2 − 4(ad − bc)
]

.

Here we get the purely imaginary eigenvalues ±ı(ξ2+c). Since they are different
the matrix is diagonalizable. So, the situation is precisely as for a hyperbolic
PDE system considered in §1.1.2. This IVPDE is well-posed, and it is conser-
vative (i.e., no smoothing, as in Figure 1.3).

Incidentally, there is no need to write the PDE as a real-variable system in order
to reach the above conclusions.
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Chapter 2

This chapter can really be learned before (or independently of) Chapter 1.

2.2 (a) Obviously,

• θ = 0 gives forward Euler,

• θ = 1 gives backward Euler,

• θ = 1/2 gives the trapezoidal method.

(b) For the test equation y′ = λy, the θ-method reads

yn+1 = yn + z(θyn+1 + (1 − θ)yn)

where z = λk, so

yn+1 = R(z)yn =
1 + (1 − θ)z

1 − θz
yn .

The method is therefore A-stable when

1/2 ≤ θ ≤ 1 .

(c) For stiff decay we must have R(−∞) = 0. Clearly

R(−∞) =
θ − 1

θ
,

so this happens only when θ = 1. For the backward Euler method indeed
the method has stiff decay.

(d) The question here is for what values of θ

|R(z)| = |1 + (1 − θ)z

1 − θz
| ≤ δ

as z → −∞? Substituting for R(−∞) we get

θ ≥ 1

1 + δ
.

(e) As a general Runge-Kutta method, note that there are two evaluations
of f , one of which is shared with the next step. So let K1 = f(yn),
K2 = f(yn+1) = f(yn + k[θK2 + (1 − θ)K1]). This gives the tableau

0 0 0
1 1 − θ θ

1 − θ θ
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(f) Let us check the first few order conditions:

bT C01 = b1 + b2 = 1,

bT C1 = b2 = θ,

bT C21 = b2 = θ,

bT A1 = bT C1 = θ.

Hence the order is 1 for all θ except θ = 1/2 for which the order is 2.

(g) The advantage is that the method is almost second order and introduces
only little damping, which is good for approximating differential problems
that have (almost) no damping. On the other hand, R(−∞) = −1+2ε

1+2ε
,

which is barely below 1 in magnitude, so the typical oscillatory behavior
of the trapezoidal method is essentially reproduced in the stiff limit.

2.4
yn+1 = yn−1 + 2zyn, z = kλ.

As in the leapfrog treatment in Chapter 1 we guess yn = κn and obtain the
quadratic equation

κ2 − 2zκ − 1 = 0,

with the solutions κ1,2 = z ±
√

z2 + 1. Both these roots must satisfy |κ1,2| ≤ 1
for stability.

If z < 0 is real then obviously z −
√

z2 + 1 < −1 and stability cannot hold.

For the more general case where λ, hence z, is a complex scalar, note that the
two roots of the quadratic equation satisfy

κ1κ2 = −1,

so if stability is to hold then |κl| = 1, l = 1, 2. For each we can therefore write

κl = eıθl ,

so from the quadratic equation

z = eıθl − e−ıθl = 2ı sin θl.

Stability therefore implies that z, hence λ, must be purely imaginary.

2.9 (a) Here fy = 2y, so

L = sup |2y| = sup
0≤t≤1−ε

|2/(1 − t)| =
2

ε
.

Theorem 2.3 holds, albeit with a large Lipschitz constant L, for any fixed,

positive ε. There is a unique solution, and the perturbation bounds hold
as well although they become less meaningful as ε → 0.
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k = ε FEuler RK2 Rk4
.1 5.7 1.9 7.1e-2
.01 7.6e+1 2.1e+1 7.1e-1
.001 8.3e+2 2.1e+2 7.1
.0001 8.8e+3 2.1e+3 7.1e+1
.00001 9.0e+4 2.1e+4 7.1e+2

Table 1: Maximum errors for Exercise 2.9.

(b) The required results are listed in Table 1. There is an added row for
k = ε = 10−5 and an added column for the explicit trapezoidal method.
When quickly comparing forward Euler against RK4 one might conclude
that there is a fundamental difference in the performance of the two meth-
ods. But in fact, although the error in RK4 is much smaller it is not
fundamentally different, and the error in forward Euler arises not because
of an impending blowup but because the results it produces are below the
exact values. The relative error measured over all mesh points, which
is more meaningful here, is below 1 for forward Euler, about .21 for the
explicit trapezoidal, and about .007 for RK4 for all values of k = ε listed.

(c) Here what corresponds to λ in the test equation is fy = 2y > 1, so the
problem (not the numerical method) is unstable. In general one cannot
expect a good pointwise numerical error for an unstable problem. Indeed
in chaotic systems, which do contain segments (i.e., subintervals in time)
of instability, we may not expect a quality pointwise numerical error after
a while unless exponentially small time steps and floating point accuracy
are employed.

2.11 (a) We plug the exact x and v into (2.45). By Taylor expansion, assuming as
much smoothness on the solution as necessary, we have

x(t ± k) = x(t) ± kx′(t) +
k2

2
x′′(t) ± k3

6
x′′′(t) +

k4

24
x′′′′(t) + . . . .

Thus,

[x(t + k) − 2x(t) + x(t − k)]/k2 = x′′ +
k2

12
x′′′′(t) + O(k4),

= f(x, v) +
k2

12
x′′′′(t) + O(k4).

Likewise the approximation for v is 2nd order.

(b) The choice γ = .5 centers the formula (2.46b) and makes it 2nd order.
Then, in (2.46a), for any 0 ≤ β ≤ 1 we have (1−β)f(x(t))+βf(x(t+k)) =
f(x(t)) +O(k), so the formula agrees with Taylor’s expansion up to O(k3)
terms, which corresponds to 2nd order accuracy.
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(c) With γ = .5 we have a trapezoidal rule in (2.46b). Now with β = .5 we
have in (2.46a)

xn+1 = xn +
k

2
vn +

k

2
(vn + k(.5fn + .5fn+1))

= xn +
k

2
(vn + vn+1).

So the whole scheme is just the trapezoidal rule for the first order form
(2.44).

(d) In (2.46b) it’s the same trapezoidal rule. In (2.46a) we have

xn+1 = xn + kvn +
k2

2
fn.

This formula is explicit. The advantage is in case that f = f(x), i.e.,
when f does not depend on v. Then (2.46b) becomes explicit too, and no
nonlinear equations need be solved.

Chapter 3

3.2 (a) The results are tabulated in the first two rows of Table 2. Clearly the

method l = 1 l = 2 l = 3 l = 4 l = 5
(3.38a) 2.6e-2 2.5e-3 2.5e-4 2.5e-5 2.5e-6
(3.38b) 8.4e-4 8.3e-6 8.3e-8 8.3e-10 1.5e-11

2nd deriv 1.7e-2 1.7e-3 1.7e-4 1.7e-5 8.3e-8

Table 2: Errors in approximating first and second derivatives of ex at x = 0 on
nonuniform meshes hj = 10−l, hj−1 = .5hj.

first method is first order and the second is second order accurate. The
rightmost result for (3.38b) is polluted by floating point cancellation error.

(b) The formula (3.38b) is the result of interpolating at the points xj−1, xj, xj+1

by a quadratic polynomial and differentiating the result at x = xj. Recall
the Review section on polynomial interpolation. The derivative of the error
according to (2.38) at xj is therefore what we are after. Differentiating the
product and substituting x = xj, the only term that does not vanish is

u[xj−1, xj, xj+1, x](xj − xj−1)(xj − xj+1) = −uxxx(ξ)

6
hjhj−1.

(c) This formula is centered at .5(xj−1 + xj+1) = xj + h/4. Therefore the
calculated value v satisfies v = ux(xj + h/4) + O(h2). But ux(xj + h/4) =
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ux(xj) + h/4uxx where the latter is evaluated at a nearby point. Since
uxx 6= 0 in the neighborhood, there is a positive constant such that |ux(xj +
h/4) − ux(xj)| > ch. Hence

|v − ux(xj)| ≥ |ux(xj + h/4) − ux(xj)| − |ux(xj + h/4) − v| ≥ ch + O(h2).

Chapter 4

4.2 The amplification factor is

g(ζ) = cos(ζ) − ıµa sin(ζ).

Thus, assuming µ|a| ≤ 1 we have

|g(ζ)|2 = cos2(ζ) + µ2a2 sin2(ζ) ≤ cos2(ζ) + sin2(ζ) = 1

for any ζ.

4.4 This follows straight from the definitions. For a general scheme

r
∑

i=−l

γiv
n+1
j+i =

r
∑

i=−l

βiv
n
j+i,

where βi and γi are s × s constant matrices, we have the amplification matrix

G(ζ) = (
r

∑

i=−l

γie
ıiζ)−1

r
∑

i=−l

βie
ıiζ .

Consistency requires that the local truncation error

τ(t, x) = k−1[
r

∑

i=−l

γiu(t + k, x + ih) −
r

∑

i=−l

βiu(t, x + ih)]

tend to 0 as k, h → 0. Take u ≡ 1. Then for consistency we must have

r
∑

i=−l

γi =
r

∑

i=−l

βi.

Therefore,
G(0) = I,

which yields in particular that ρ(G(0)) = 1.
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4.8 Stability requires that both roots of the quadratic equation

κ2 + 2ıµ

(

ρ − 4ν

h2
sin2(ζ/2)

)

sin(ζ) + 1 = 0

be bounded by 1 in magnitude, where µ = k/h. This happens (indeed their
magnitude equals 1) if

µ2

(

ρ − 4ν

h2
sin2(ζ/2)

)2

sin2(ζ) ≤ 1.

The process for getting here is the same as seen before in Chapter 4 and in
Exercise 2.3.

Deriving a precise yet simplified condition is hard, but the requirement

µ

(

|ρ| + 4|ν|
h2

)

≤ 1,

is clearly a simple sufficient condition for constant-coefficient stability.

Chapter 5

5.4 The obtained errors for the 2nd order schemes are comparable for µ < 1. The
resulting solution curves are generally good, and the oscillations observed for the
square wave initial data are much diminished (although they are more present in
the non-dissipative box scheme). The Lax-Friedrichs scheme produces much less
accurate results. For µ > 1 only the box scheme produces reasonable results, of
course.

However, the observed convergence rate is well below what may be expected
from 2nd order methods. This is because of the low smoothness of u0(x) at
x = 0, 1,−1. These cusps propagate also for t > 0 at the phase speed c = −1.

5.13 Below is a table of computed errors. The solution is depicted in Figure 1.

h k ‖error‖2 ‖error‖∞
2−7π h .24 .075

2h .55 .18
3h * *

2−8π h .0090 .0027
2h .092 .025
3h * *

The errors for the finer spatial step are significantly better when k = h, more
than just by the expected factor 24 = 16. For k = 3h the method is unstable, as
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Figure 1: Exercise 5.13: solution using h = k = 2−8π.

expected for RK4. The solution for the coarser h = k is depicted in Figure 2(a).
Compare this to the solution for the finer h = k in Figure 2(b).

This suggests that the coarser h is simply not sufficient to resolve this sharp
solution profile, whereas the finer one is.

5.14 (a) Applying a Fourier transform as usual we get

ût = ıξŵ,

(1 + νξ2)ŵt = ıξû.

The symbol matrix is therefore

P (ıξ) =

(

0 ıξ
ıξ

1+νξ2 0

)

.

The eigenvalues are

± ıξ
√

1 + νξ2
.

Since they are both imaginary the claims to be proved are obtained.

(b) Here we don’t know an exact error. The method is l2-stable even for
k = 10h, because the high wave numbers are attenuated, as we see in
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π

Figure 2: Exercise 5.13: solutions at t = 0 and t = 8π.
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(b) using h = 2−8
π and k = 10h

Figure 3: Exercise 5.14: solutions at t = 0 and t = 8π.

Part (a). But the solution is not physical. The solution for the finer
h = k is depicted in Figure 3(a). The solutions for h = 2−8π, k = 2h,
and for h = k = 2−7π do not look very different. But the solution for
h = 2−8π, k = 10h, depicted in Figure 3(b), does look different. The error
dangerously masquerades as an honest wave.

% Exercise 5.14

% Shallow water regime. If b = 0 then becomes the

% classical wave equation written as a 1st order system

% v_t = u_x, w_t = cv_x, (c = r2/r1 - 1)

% w = u - b u_{xx} (b = r2/r1 sqrt(beta) )

% periodic conditions on [0,2pi]

% v(0,x) = exp(-a(x-pi)^2), a=50, u(0,x) = 0.

% problem coefficients

clear all
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r1 = 1; r2 = 2; c = r2/r1 - 1;

b = 0.01;

a = 50;

tf = 8*pi; % final time

J = 2^9;

h = 2*pi/J; % spatial step size

k = 2*h/sqrt(c); % time step size

mu = k/h;

N = floor(tf / k);

xx = [0:h:2*pi]; % spatial mesh: identify xx(1) with xx(end)

tt = 0:k:N*k;

% construct the almost tridiagonal matrix: note it’s only J x J

r = b/h^2;

s = 1+2*r;

e = ones(J,1);

M = spdiags([-r*e s*e -r*e], -1:1, J, J);

M(1,J) = -r;

M(J,1) = -r;

% initial conditions

v(1,:) = exp(-a*(xx-pi).^2);

u(1,:) = zeros(1,length(xx));

w(1,:) = zeros(1,length(xx)); % w is the auxuliary variable

% RK4

for n=1:N

Yv1 = v(n,:);

Yu1 = u(n,:);

Yw1 = w(n,:);

Kv1(3:J-1) = (8*(Yu1(4:J)-Yu1(2:J-2)) -Yu1(5:J+1)+Yu1(1:J-3) ) / (12*h);

Kv1(2) = (8*(Yu1(3)-Yu1(1)) -Yu1(4)+Yu1(J) ) / (12*h);

Kv1(1) = (8*(Yu1(2)-Yu1(J)) -Yu1(3)+Yu1(J-1) ) / (12*h);

Kv1(J) = (8*(Yu1(J+1)-Yu1(J-1)) -Yu1(2)+Yu1(J-2) ) / (12*h);

Kv1(J+1) = Kv1(1);

Yv2 = Yv1 + k/2 * Kv1;

Kw1(3:J-1) = c * (8*(Yv1(4:J)-Yv1(2:J-2)) -Yv1(5:J+1)+Yv1(1:J-3) ) / (12*h);

Kw1(2) = c * (8*(Yv1(3)-Yv1(1)) -Yv1(4)+Yv1(J) ) / (12*h);

Kw1(1) = c * (8*(Yv1(2)-Yv1(J)) -Yv1(3)+Yv1(J-1) ) / (12*h);

Kw1(J) = c * (8*(Yv1(J+1)-Yv1(J-1)) -Yv1(2)+Yv1(J-2) ) / (12*h);
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Kw1(J+1) = Kw1(1);

Yw2 = Yw1 + k/2 * Kw1;

Yu2(1:J) = (M \ Yw2(1:J)’)’; Yu2(J+1) = Yu2(1);

Kv2(3:J-1) = (8*(Yu2(4:J)-Yu2(2:J-2)) -Yu2(5:J+1)+Yu2(1:J-3) ) / (12*h);

Kv2(2) = (8*(Yu2(3)-Yu2(1)) -Yu2(4)+Yu2(J) ) / (12*h);

Kv2(1) = (8*(Yu2(2)-Yu2(J)) -Yu2(3)+Yu2(J-1) ) / (12*h);

Kv2(J) = (8*(Yu2(J+1)-Yu2(J-1)) -Yu2(2)+Yu2(J-2) ) / (12*h);

Kv2(J+1) = Kv2(1);

Yv3 = Yv1 + k/2 * Kv2;

Kw2(3:J-1) = c * (8*(Yv2(4:J)-Yv2(2:J-2)) -Yv2(5:J+1)+Yv2(1:J-3) ) / (12*h);

Kw2(2) = c * (8*(Yv2(3)-Yv2(1)) -Yv2(4)+Yv2(J) ) / (12*h);

Kw2(1) = c * (8*(Yv2(2)-Yv2(J)) -Yv2(3)+Yv2(J-1) ) / (12*h);

Kw2(J) = c * (8*(Yv2(J+1)-Yv2(J-1)) -Yv2(2)+Yv2(J-2) ) / (12*h);

Kw2(J+1) = Kw2(1);

Yw3 = Yw1 + k/2 * Kw2;

Yu3(1:J) = (M \ Yw3(1:J)’)’; Yu3(J+1) = Yu3(1);

Kv3(3:J-1) = (8*(Yu3(4:J)-Yu3(2:J-2)) -Yu3(5:J+1)+Yu3(1:J-3) ) / (12*h);

Kv3(2) = (8*(Yu3(3)-Yu3(1)) -Yu3(4)+Yu3(J) ) / (12*h);

Kv3(1) = (8*(Yu3(2)-Yu3(J)) -Yu3(3)+Yu3(J-1) ) / (12*h);

Kv3(J) = (8*(Yu3(J+1)-Yu3(J-1)) -Yu3(2)+Yu3(J-2) ) / (12*h);

Kv3(J+1) = Kv3(1);

Yv4 = Yv1 + k * Kv3;

Kw3(3:J-1) = c * (8*(Yv3(4:J)-Yv3(2:J-2)) -Yv3(5:J+1)+Yv3(1:J-3) ) / (12*h);

Kw3(2) = c * (8*(Yv3(3)-Yv3(1)) -Yv3(4)+Yv3(J) ) / (12*h);

Kw3(1) = c * (8*(Yv3(2)-Yv3(J)) -Yv3(3)+Yv3(J-1) ) / (12*h);

Kw3(J) = c * (8*(Yv3(J+1)-Yv3(J-1)) -Yv3(2)+Yv3(J-2) ) / (12*h);

Kw3(J+1) = Kw3(1);

Yw4 = Yw1 + k * Kw3;

Yu4(1:J) = (M \ Yw4(1:J)’)’; Yu4(J+1) = Yu4(1);

Kv4(3:J-1) = (8*(Yu4(4:J)-Yu4(2:J-2)) -Yu4(5:J+1)+Yu4(1:J-3) ) / (12*h);

Kv4(2) = (8*(Yu4(3)-Yu4(1)) -Yu4(4)+Yu4(J) ) / (12*h);

Kv4(1) = (8*(Yu4(2)-Yu4(J)) -Yu4(3)+Yu4(J-1) ) / (12*h);

Kv4(J) = (8*(Yu4(J+1)-Yu4(J-1)) -Yu4(2)+Yu4(J-2) ) / (12*h);

Kv4(J+1) = Kv4(1);

v(n+1,:) = Yv1 + k/6 * (Kv1+2*Kv2+2*Kv3+Kv4);

Kw4(3:J-1) = c * (8*(Yv4(4:J)-Yv4(2:J-2)) -Yv4(5:J+1)+Yv4(1:J-3) ) / (12*h);

Kw4(2) = c * (8*(Yv4(3)-Yv4(1)) -Yv4(4)+Yv4(J) ) / (12*h);

Kw4(1) = c * (8*(Yv4(2)-Yv4(J)) -Yv4(3)+Yv4(J-1) ) / (12*h);

Kw4(J) = c * (8*(Yv4(J+1)-Yv4(J-1)) -Yv4(2)+Yv4(J-2) ) / (12*h);
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Kw4(J+1) = Kw4(1);

w(n+1,:) = Yw1 + k/6 * (Kw1+2*Kw2+2*Kw3+Kw4);

u(n+1,1:J) = (M \ w(n+1,1:J)’)’; u(n+1,J+1) = u(n+1,1);

end

figure(1)

mesh(xx,tt,v)

xlabel(’x’)

ylabel(’t’)

zlabel(’\eta’)

axis([0 7 0 tf -.5 1.5])

figure(2)

plot(xx,v(1,:),xx,v(N+1,:))

legend(’u_0’,’u_f’)

Chapter 6

6.4 The Hamiltonian system can generally be written as

y′ = J∇H(y),

where

y =
(

q
p

)

, J =
(

0 I
−I 0

)

.

The important properties of the matrix J are that it is skew-symmetric, i.e.,
JT = −J , and that it is nonsingular and constant in the independent variable
t. Denote the Jacobian matrix by

Y (t; c) =
∂y(t; c)

∂c
,

with y(0; c) = c for some (arbitrary) initial time. The flow is called symplectic

if

Y T J−1Y = J−1, ∀t.

Differentiating the ODE for y with respect to c we have

Y ′ = J(∇2H)Y, Y (0) = I.

13



Now, the midpoint method reads at time step n

yn+1 − yn

k
= J∇H(yn+1/2),

where yn+1/2 = (yn + yn+1)/2 and y0 is given by the initial data. Then also

Yn+1 − Yn

k
= J∇2H(yn+1/2)Yn+1/2, (1)

Yn+1/2 =
Yn+1 + Yn

2
, n = 0, 1, . . . ,

and Y0 = I the identity.

Consider

Z = (Yn+1 − Yn)T J−1(Yn+1 + Yn) + (Yn+1 + Yn)T J−1(Yn+1 − Yn).

Opening up parentheses, the cross terms cancel and we have

Z = 2(Y T
n+1J

−1Yn+1 − Y T
n J−1Yn).

On the other hand, by (1)

Yn+1 + Yn

2
J−1Yn+1 − Yn

k
= Y T

n+1/2∇2H(yn+1/2)Yn+1/2,

(Yn+1 − Yn)T

k
J−1Yn+1 + Yn

2
= Y T

n+1/2∇2H(yn+1/2)J
T J−1Yn+1/2

= −Y T
n+1/2∇2H(yn+1/2)Yn+1/2.

Therefore
Z = 0.

Hence
Y T

n+1J
−1Yn+1 = Y T

n J−1Yn = . . . = Y T
0 J−1Y0 = J−1.

6.5 (a) Half a step of forward Euler gives

yn+1/2 = yn + k/2 f(yn).

Following this by half a step of backward Euler gives

yn+1 = yn+1/2 + k/2 f(yn+1).

Adding these two equations up clearly yields the trapezoidal step.
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(b) Half a step of backward Euler first gives

yn+1/2 = yn + k/2 f(yn+1/2).

Then forward Euler gives

yn+1 = yn+1/2 + k/2 f(yn+1/2).

Adding these equations up gives

yn+1 = yn + k f(yn+1/2).

Subtracting these equations from one another confirms that indeed

yn+1/2 = (yn + yn+1)/2

so the midpoint step is obtained.

(c) Since each trapezoidal step is half a forward-Euler step (denote f) fol-
lowed by half a backward-Euler step (denote b), N trapezoidal steps give
the sequence (fb)(fb)(fb)(fb)(fb)(fb) . . . (fb). Writing this sequence as f
followed by the rest (bf)(bf)(bf)(bf)(b . . . (bf) and one more b, we obtain
the required result.

Another way: Writing the trapezoidal scheme

yn+1 = yn + k/2(fn + fn+1), n = 0, 1, 2, . . . N − 1

and summing these expressions up from n = 0 to n = N − 1 yields

yN − y0 = k/2 f0 + k
N−1
∑

n=1

fn + k/2 fN .

On the other hand, doing half a forward-Euler step, y1/2 = y0 + k/2f0,
followed by N − 1 midpoint steps from one midstep to the next

yn+1/2 = yn−1/2 + kfn, n = 1, . . . , N − 1,

and then a half backward-Euler step yN = yN−1/2 + k/2fN and summing
all these up gives the same expression for yN − y0.

(d) An example can be derived by considering as simple an ODE as y′ = λ(t)y.
Consider the scalar problem

y′ = 1018(t − 1)y, 0 < t < 1 − 10−12

and y(0) = 10−6. Use a uniform step k = 10−4. The exact solution and
the midpoint solution both remain below 10−6 in magnitude, so they are
close to each other by less than 10−5. For the trapezoidal scheme, on the
other hand, we have (t − 1)1018k < −106k = −102 ≪ −2, so

yN =
2 + kλ(tN−1)

2 − kλ(tN)
yN−1 ≈ −λ(tN−1)

λ(tN)
yN−1 ≈ . . . ≈ (−1)N λ(t0)

λ(tN)
y0.

Hence
|yN | ≈ 1012−6 = 106.

15



(a) Order (2,2) (b) Order (4,4)

Figure 4: Solutions for Exercise 7.4, J = 128.

(a) Order (2,2) (b) Order (4,4)

Figure 5: Solutions for Exercise 7.4, J = 192.

Chapter 7

7.4 The required plots are displayed in Figures 4–6. Clearly there is dispersion
visible; however, this effect diminishes as the approximation improves, either
by raising the order or by decreasing the step sizes k and h. For leapfrog there
is still visible dispersion even for J = 256. For the slightly dissipative and more
accurate RK4 the effect is less pronounced and indeed invisible to the naked
eye for J = 256.

7.5 (a) We have the ODE system

d2vj

dt2
=

c2

h2
(vj−1 − 2vj + vj+1) , j = 1, . . . , J,

16



(a) Order (2,2) (b) Order (4,4)

Figure 6: Solutions for Exercise 7.4, J = 256.

with v0 = vJ+1 = 0. This can apparently be written as dv
dt

= −Bv with

B =
c2

h2









2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2









.

(b) The required matrix C is the result of a Cholesky decomposition. For
example, in Matlab, C = chol(B).

(c) Obviously the sought matrix

L =

(

0 CT

−C 0

)

is skew-symmetric.

Let dz
dt

≡ z′ = Lz. Multiplying both sides by zT , it follows that in the
2-norm

1

2

d

dt
‖z(t)‖2 =

∑

i

ziz
′
i = zT Lz = 0.

Hence ‖z(t)‖ = ‖z(0)‖ for all t, as in Section 5.3.2. Translating notation
we get the required result.

(d) I have calculated wn from

CTwn =
vn+1 − vn−1

2k
,

but it can equally well be calculated from

wn+1/2 = wn−1/2 − kCvn

17



followed by averaging. This introduces an O(k2) error which is relatively
independent of dispersion effects. The error in the invariant arises mainly
around when t is a multiple of 10, which is when the pulse reaches the
boundary and is reflected off it. Thus, the error in the invariant is less
affected than the error in the solution by dispersion, but as we take both k
and h smaller with µ fixed this error does not decrease as fast as the error in
the solution because points closer and closer to the boundary are sampled.
If we keep h fixed and let k go smaller then the invariant error decreases
like O(k2), as expected, and becomes much smaller than the error in the
solution.

Chapter 10

10.2 (a) The information is carried along characteristics, and the PDE is linear,
but the characteristics are not straight lines. They are defined by

dx

dt
= − sin x.

For −π < x(0) < π these curves all tend towards 0, see Figure 7(a).
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(a) characteristic curves
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(b) solution at an early time

Figure 7: Exercise 10.2.

They do not cross! Hence there is no discontinuity in the analytical sense.
However, the solution develops a very steep profile, depicted in Figure 7(b)
before it becomes much steeper. Note that for x > 0, u0(x) = sin x > 0
and for x < 0, u0(x) < 0. Thus, all positive value range of sinx gets
crammed around x = 0+ and all negative range of sinx gets crammed
around x = 0−.
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(b) A method on a uniform mesh based on centered spatial discretization and
RK4, say, would be fine with h = .1 for t = 1 but not for t = 10. At
the latter time oscillations develop. An upwind discretization does better,
producing no oscillation, although the solution maximum and minimum
shrink in absolute value as time progresses.

A characteristics method whereby we (approximately) find the character-
istics xj(t) for values of an initially uniform mesh, xj(0) = −π + jh, j =
1, . . . , J, Jh = 2π, and assign u(xj(t)) = sin(−π + jh), is very accurate at
these highly nonuniform mesh points.
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