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CPSC 403/542
Assignment 3 - Solutions

Letting y; = v and yy = cu’ — au we get

ey = ayi+ Y2
y, = b(L)yr +q(l).

Letting ¢ — 0 we get

0 = ayi +y2
y; = b(t)yr +q(1).

Since y; is given in terms of yy as y1(¢) = —a~'yz(¢), this is a semi-explicit

index-1 DAE.

Plugging the expression for y; into the ODE for y, we get a scalar ODE,
necessitating only one boundary condition.

To understand which boundary condition is kept, consider the equation
ey; = ayy + y2. Here y, is like an inhomogeneity, so the stability of the
ODE for y; depends on the sign of a. If @ < 0 then the IVP is stable, so
we prescribe y1(0) = by. If @ > 0 then the terminal value ODE is stable,
so we prescribe y;(1) = bs.

Note: It is the sign of a, not b/a, which matters: just look at the eigenvalues

of the matrix (agﬁ 166), which are a/e + O(1) and O(1).

First note that upon multiplying (3) by H(x,) we get (2). Now, let R
span the orthogonal subspace, i.e. R is (I —m) x [ such that HRT = 0.
Multiplying (3) by R we see that Rx,41 = Rx,. Thus, the deviation that
is not strictly implied by (2) is 0, which is minimal.

Use F'= HT(HHT)™' (which indeed makes the invariant set attracting)
and apply forward Euler with stepsize h = 1/7. Note that I is independent
of the discretization stepsize!

3. The following reference numbers relate to the text. In Example 9.7 our index-3
DAE is reduced into an ODE by two differentiations (utilizing (9.23) to eliminate

).

Note that our initial conditions, obtained by setting ¢ = 0 in the values

of Figure 9.2, are consistent, satisfying both (9.21e) and the hidden constraint
(9.22).

Setting (y1,v2,y3,v4)T =y = (q1, G2, v1,v2)T we therefore obtain the unstabi-
lized ODE



where

Y3
f= 2 y24
—gyg + i - Y29) Y1
—(y5+ys—v29)y2— g

with the initial conditions
y(0) = (1,0,0,0)”.

If we integrate this initial value ODE using the MATLAB code ode4h with stan-
dard options then the drift r* — 1 is seen to grow in time as expected. This can
be fixed by stabilization. But for the purpose of this exercise the accuracy even
in the unstabilized formulation is sufficient to conclude that the profiles for ¢;
and g correspond to those of Figure 9.2 with the high oscillation filtered out.
Thus, a much larger step size can be taken for a pointwise accurate solution
in the limit ¢ — 0, i.e. for the high index DAE, than what is possible for the
highly oscillatory ODE when 0 < ¢ < 1.

Continuing beyond the question, it may be tempting in general to switch to
the reduced equations in order to efficiently obtain a qualitative picture of the
solution with rapidly oscillating components filtered out. Unfortunately, how-
ever, life can be more complicated than the example of this exercise suggests,
and the solution of the reduced problem does not always provide a qualitatively
correct picture of the limit oscillatory solution as ¢ — 0. A counter-example is
discussed in Exercise 10.14 of the text.



