CPSC 403 /542

Assignment 1 - Solutions and beyond
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We observe that the forward Euler solution spirals out, the backward Euler
solution spirals in and the trapezoidal solution is just right.

Explanation: the equation determining the circle is

l’2+y2:?“2

and this should remain (at least close to) invariant under discretization for the
curve to close, i.e. we want at each step 22 +y2 = 22 _, +y2_,.

Forward Euler:

Tpn = Tp-1 — hyn—l

Yn = Yn-1+ hxn—l
Squaring each equation and adding, we get
Tptyn = (02 +yn ) >y

making it clear why the solution curve spirals out.

Backward Euler:

Tp = Tp—1 — hyn = T, + hyn = Tnp-1
Yn = Yn-1 + hxn = Yn — hxn = Yn-1

Squaring each equation and adding, we get
Tp = (L4020 yp ) <oy +yn,

making it clear why the solution curve spirals in.

Trapezoidal (or midpoint):

Tpn = Tp-1 — h/Q(yn—l + yn) = T, + h/2 Yn = Tp-1 — h/2 Yn—1
Yn = Yn—1 + h/Q(l’n—l + wn) = Yn — h/2 Tpn = Yn-1 + h/2 Tp—1

Squaring each equation and adding, we get
(1 + R/ (@ + ) = (L+ A2 /4) ()1 + v a)
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Hence the quadratic invariant is preserved: z2+y? = 22 _, +y?_,, and the circle
closes well.

Beyond Q. 1

In view of Q. 3 below, the sucess of the trapezoidal scheme for drawing circles
seems to be explainable by the forward- and backward- Euler errors cancelling
each other out. Another possibility that suggests itself then is a composite Fuler
scheme which applies backward Euler to the first equation and forward Euler
to the second:

Tp = Tp-1— hyn

Yo = Yn— + hxn—l

Note that the second equation is used to calculate y, first, and then the first
equation is used to calculate x, in an explicit manner.

It is easy to check that this scheme does not preserve the invariant (which is the
circle’s equation). Still, it will produce a curve that looks, when plotted, like
a circle for fairly coarse h (and certainly for A = .02). The reason is that this
scheme is symplectic. A long discussion of symplectic maps and methods can be
found in Hairer-Norsett-Wanner. In this simple case it boils down to the fact
that the scheme is area preserving, i.e. if we consider a bunch of trajectories
starting from a whole set of initial conditions then the exact flow preserves the
area of this set in time, and so does the composite Euler method. In contrast,
the forward and backward Euler methods expand and shrink the area of the
initial-value set, respectively.

2. (a) Symmetry is simple:

Yn—-1 —I' Yn
2

Yn —I' Yn—1

¢(yn—17yn7h) = f(tn—l—l_h/Qv 2

) = f(tn_h/Qv ) = ¢(yn7yn—17 _h)
For a constant coefficient ODE y’ = Ay, the midpoint scheme is the same
as the trapezoidal scheme:
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1
h_l(yn - Yn—l) - A§(yn + yn—l) - §(Ayn + Ayn—l)

The A-stability of the midpoint scheme therefore follows from what we
showed for the trapezoidal scheme in class.

To show second order it is a good idea to expand Taylor series about the
midpoint: denote y = y(¢,_1/2) and similarly for derivatives. Then

Y(tn) +y(tn-1) h?
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Y(tn) + Y(tn—1> 1 h? " h?
—y by f
5 )=y + oy —Ely +

For the variable coefficient test equation y’" = A(t)y, the midpoint scheme
yields

. 2 —|— h/\(tn—l/Q)

N 2 - h)\(tn_l/g)yn_l

Yn

The argument that
|2 —|— h/\(tn—l/Z)
2 — h)\(tn—l/Z)

whenever Re(A) < 0 is not different from the constant coefficient case.

| <1

For the trapezoidal scheme, on the other hand,

24 hA(tn-1)
Yn = Yn—1
2~ ML)

The factor |%| is no longer guaranteed to be below 1. In fact, if

A(t) is real and negative and hA(t,—1) < hA(t,) < —2 then clearly

24+ hA(l1),  Allas)

S ) S gy !

Half a step of forward Fuler gives
Yn-1/2 = Yn—1 + h/2 f(Yn-1)
Following this by half a step of backward Euler gives

Adding these two equations up clearly yields the trapezoidal step.
Half a step of backward Euler first gives

Yn—1/2 = Yn—1 + h/2 f(yn—1/2)

Then forward Euler gives

Yn = Yn—1/2 + h/2 f(yn—l/Q)

Adding these equations up gives

Yn = Yn—1 + R f(yn—l/Z)

Subtracting these equations from one another confirms that indeed

Yn—1/2 = (Yn + Yn-1)/2

so the midpoint step is obtained.
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(c) Since each trapezoidal step is half a forward-Euler step (denote f) fol-
lowed by half a backward-Euler step (denote b), N trapezoidal steps give

the sequence (fb)(fb)(fb)(fb)(fb)(fb)...(fb). Writing this sequence as f
followed by the rest (bf)(bf)(bf)(bf)(b...(bf) and one more b, we obtain

the required result.

Another way: Writing the trapezoidal scheme down,

Yn = Yno1 + h/2(f0 + fao1), n=1,2,...N

and summing these expressions up from n =1 to n = N yields

N-1

yn —yo=h/2 fo+ h Y fu /2 [y

n=1

On the other hand, doing half a forward-Euler step, yi/2 = yo + h/2fo,
followed by N — 1 midpoint steps from one midstep to the next,

yn+1/2 = yn—1/2 —|— hfn7 n = 1,. . .,N — 1
and then a half backward-Euler step Yy = Yn_1/2 + h/2fy and summing
all these up gives the same expression for yny — yo.
(d) An example can be derived from the previous exercise, part (b). Consider
the scalar problem

y =10t - 1)y, 0<t<1—107"

and y(0) = 107%. Use a uniform step & = 10~*. The exact solution and
the midpoint solution both remain below 10~ in magnitude, so they are
close to each other by less than 107°. For the trapezoidal scheme, on the
other hand, we have (¢ — 1)10"™h < —10h = —10* < —2, so

_ 2+ hAn-) . Aln-1)
N Tty N Miy)

YN-1 ~ ...~ (—1)N

So
lyn| ~ 10"*7% = 10°

4. The obtained table is given below.

Observations: If we keep h = b/n fixed and vary b then the discretization
remains the same — this is only a stretching transformation — but the integration
is for a longer time, so we are measuring the accumulation of local errors. If we
keep b fixed and vary h, we can observe the order of the method.

Midpoint and trapezoidal schemes: As b is kept fixed and h is varied, their 2nd
order accuracy is clearly reflected in the table. As & is kept fixed and b is varied,
no (siginificant) error accumulation occurs.
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b N forward Euler backward Euler trapezoidal midpoint
1 10 .35e-1 .36e-1 .29e-2 .22e-2
20 18e-1 18e-1 .61e-3 bHle-3
10 100 .39 45 Ale-2 26e-2
200 .20 22 10e-2 .66e-3
100 1000 2.46 25.90 42e-2 26e-2
2000 1.88 6.07 10e-2 .66e-3

1000 1000 2.72 5.9e4301 A1 .30

10000 2.72 1.79e+11 A42e-2 26e-2
20000 2.72 6.70e+5 10e-2 .66e-3
100000 2.49 29.77 A42e-4 26e-4

Table 0.1: Maximum errors for long interval integration of y’ = (cost)y

Forward Fuler: For b not large, 1st order accuracy is observed when varying h
(e.g. b =10). For b large the error is almost constant arount e ~ 2.72. Not
much improvement is observed when £ is reduced.

Backward Fuler: For b not large, 1st order accuracy is observed when varying
h (e.g. b =10). For b large the error behaves badly near h = 1 (in fact the
denominator 1 — h cos(t,) may hit 0 when h = 1, which causes the scheme to
blow up). The error then reduces quickly when h is reduced, but it remains
large.

Explanations beyond Q. 4

The behaviour for b < 10 is as expected. The interesting part is when b is large
and h is small such that bh is large. In this case the error may be large, in
general.

For our problem the exact solution is y(¢) = e*"’. It is periodic with period 2.
For simplicity let
b=2rK

where K is a positive integer, and consider forward Euler, backward FEuler and
midpoint with stepsize h = 27” for some even integer v.

Forward Euler:

n—1
Yo = (1 +hcostp1)yp—1 =...= ’,’T;L:_()l(l + hcost;) = e2_s—0 In(1+hcost;)
Over one period we have

—1
Yy = 625:0 In(1+hcost;)



Taylor’s expansion gives

1 1
In(1 + hcost) =0+ hcost — §h2cos2t—|—§h3cos3t—...

Now,
v—1
Zcoslt]-:(), VI odd
7=0
SO
v—1 21/ 1 41/ 1
Zlnl—l—hcost [—Zcost—l——Zcost—l— | > —Jh

7=0
where .J is some positive constant. For any n after i periods (i < K') we therefore

have S
U = e2_y=o In(1+hcost;) < e#ht0(1)

Thus y,, — 0 as ¢+ — oo and, since the exact solution equals e at its maximum

in each period, the maximum error tends to e — 0 = e.

Backward Fuler:
Yp = (1 —hcost, 1) Yoy =...= W?Zl(l —hcost;)"t =e” 2 =1 In(1=heost;)

Of course, if A = 1 then backward Euler hits a singuarity at ¢ = 7 and blows
up.

For h smaller, an analogous argument to the above yields

—Zln(l — hcost;) > .Jh

j=1
so, after 7 periods
Yy > IO
and we get y, — o0 as 1 — <.
Midpoint:
g = L+ hcost,_i/z Yoot = . = L+hcostj /o _ oy n(14heost;_yjp)=In(1—hcost;_y /)

1 —hcost,_q/, = ll—hcost] 1/2

where we let h = h/2 to avoid dragging the factor 2 about. Now, as before
expand to get

In(1 + hcost) —In(1 — hcost) = 2hcost +4h3cos®t + ...

which is an infinite sum in only the odd powers of cos. However, we saw before
that as we sum these terms over a period they each sum to 0. Therefore, there
is no error accumulation for this special problem. In general we get an O(h?)
global truncation error corresponding to the action within one period, regardless
of how many periods are integrated.



