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OUTLINE

Freezing coefficients and dissipativity
@ Schemes for hyperbolic systems in 1D

Discontinuous solutions (Ch. 10)

Semi-Lagrangian methods

o Nonlinear stability and energy method
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Dissipativity
FREEZING COEFFICIENTS

o Consider linear problems with variable coefficients, and nonlinear
problems.

e Example: advection equations

ur +a(x)uxy =0, and u; + a(u)ux = 0.
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Dissipativity
FREEZING COEFFICIENTS

o Consider linear problems with variable coefficients, and nonlinear
problems.

e Example: advection equations

ur +a(x)uxy =0, and u; + a(u)ux = 0.

@ To check stability, a common approach is to freeze coefficients:

Check stability by Fourier analysis for a linearized version with
constant coefficients. Based on this, choose a time step k
(conservatively).
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Dissipativity
FREEZING COEFFICIENTS CONT.

o For the variable coefficients advection example, for a typical CFL
condition, set
a = max|a(x)|
X

and require pa < 1, i.e., k < ha.
@ For the nonlinear advection example, it's a bit trickier:

o either use a known bound 3 > max; . |a(u(t, x))],
o or, at each time step n use 3 = 3, = max; |a(v/"))|. Then
k = k, < ha,.
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Dissipativity
FREEZING COEFFICIENTS CONT.

o For the variable coefficients advection example, for a typical CFL
condition, set
a = max|a(x)|
X

and require pa < 1, i.e., k < ha.
@ For the nonlinear advection example, it's a bit trickier:

o either use a known bound 3 > max; . |a(u(t, x))],
o or, at each time step n use 3 = 3, = max; |a(v/"))|. Then
k = k, < ha,.

@ Works well often but not always
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Dissipativity
EXAMPLE: KORTEWEG - DE VRIES (KDV)

@ A famous PDE: nonlinear, third derivative in x, admits soliton
solutions:

u = (X(UZ)X + puUx + Vlxxx

= [V/(u)]X + VlUxxx, V(U) = %u _|_ gu2

e Initial conditions u(0, x) = wp(x)
e Boundary conditions: periodic

e Set p = 0. Consider Eulerian finite volume/difference discretizations:
on a fixed grid with step sizes k, h.
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Difference methods for PDEs
KDV SoOLITON —

Solution progress in time for a certain set of parameters displaying two
solitons, using a conservative, implicit method:
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Difference methods for PDEs
EXPLICIT NUMERICAL METHOD g
scheme.

@ [Zabusky & Kruskal ('65)]: use an extension of leap-frog — an explicit

o = = E DA
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Difference methods for PDEs
EXPLICIT NUMERICAL METHOD g
scheme.

@ [Zabusky & Kruskal ('65)]: use an extension of leap-frog — an explicit

e Their (good) variant reads

_ 2ack
v = v S v (v — )
vk
+ (e = 2v + 2V

o = = E DA
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Difference methods for PDEs Dissipativity

EXPLICIT NUMERICAL METHOD

@ [Zabusky & Kruskal ('65)]: use an extension of leap-frog — an explicit

scheme.

e Their (good) variant reads

2ak
41 _  n-1
/A T
vk
+ ﬁ(ﬂrz 2vf +2

o Constant coefficient stability analysis: restrict time step to

||

k< h/ [ + 2|aumaxy]

h2

Which can be very restrictive indeed, unless v < 1.
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Difference methods for PDEs
NUMERICAL EXAMPLE —

@ [Zhao & Qin ('00), Ascher & McLachlan ('04,'05)]: take

v =—-0.022°, o = —0.5,

up(x) = cos(mx), periodic on [0, 2].

o = = E DA
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Difference methods for PDEs
NUMERICAL EXAMPLE g

@ [Zhao & Qin ('00), Ascher & McLachlan ('04,'05)]: take

v =—-0.022°, o = —0.5,
up(x) = cos(mx), periodic on [0, 2].

e Try various k, h satisfying linear stability bound.

o = = E DA
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Difference methods for PDEs Dissipativity

NUMERICAL EXAMPLE

@ [Zhao & Qin ('00), Ascher & McLachlan ('04,'05)]: take

v =-0.022°, « = —0.5,

up(x) = cos(mx), periodic on [0, 2].

e Try various k, h satisfying linear stability bound.
e Obtain blowup for t > 21 /7 (!)

The instability takes time to develop, so results at t = 1 (say) do not
indicate the trouble at a later time.
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Difference methods for PDEs

SOLUTION FOR DIFFERENT TIMES

o = = E DA
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Dissipativity
DISSIPATIVITY

Observe that instability is caused by high wave numbers that do not
necessarily contribute to accuracy.

@ Hence, require damping of high wave number modes. The method
has dissipativity of order 2r if

p(G(Q)) < (1 — 5I¢P), VI¢ <.

Kreiss (60's): This is sufficient for stability in many realistic situations
for linear PDEs.

Generally, dissipativity is natural for parabolic PDEs but not for
hyperbolic PDEs.
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Dissipativity
DISSIPATIVITY FOR HEAT EQUATION, i = k/ h = 4

Forward Euler
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Dissipativity
DISSIPATIVITY FOR HEAT EQUATION, W

Forward Euler
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Difference methods for PDEs Dissipativity

DISSIPATIVITY FOR HEAT EQUATION, i = k/h* = 40

Forward Euler
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Hyperbolic systems
OUTLINE

Freezing coefficients and dissipativity

@ Schemes for hyperbolic systems in 1D

Discontinuous solutions (Ch. 10)

Semi-Lagrangian methods

o Nonlinear stability and energy method
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Hyperbolic systems
OUTLINE: SCHEMES FOR HYPERBOLIC SYSTEMS

o Lax-Wendroff

o Conservation laws
o Leap-frog

o Lax-Friedrichs

e Upwind

e Modified PDE

e Box
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Hyperbolic systems
LAX-WENDROFF SCHEME

@ For hyperbolic problems, “natural” discretizations do not
automatically possess dissipativity. Nonetheless, the Lax-Wendroff
scheme is dissipative!

e Derivation idea: Apply Taylor for u(t + k, x), viz.

2

U(t+k7x):u+kut+?utt+...’

and replace t-derivatives by x-derivatives using the PDE.

e For advection u; + auy, = 0, we have u; = —au, and
Use = (—auy)r = a’Ux. So, set ;1 = k/h and obtain
vt (1 lapy 2, ) v
VJ- = 22 0 5 a + U Vj .

e This gives accuracy order (2, 2).
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Hyperbolic systems
LAX-WENDROFF SCHEME

2
an+1 = </ — %aDo + 'u282D+D_> an'

e Fourier analysis promises stability if CFL condition holds, i.e.,
plal < 1. But what about dissipativity?
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Hyperbolic systems
LAX-WENDROFF SCHEME

2
V.n+1 = </ — %QDO + ,u232D+D_> an.

e Fourier analysis promises stability if CFL condition holds, i.e.,
plal < 1. But what about dissipativity?

e Calculating amplification factor, obtain

g < 1-d¢*

if the CFL condition holds.

@ Hence this scheme has dissipativity of order 4 and has guaranteed
stability, under certain conditions, for variable coefficient problems.
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Hyperbolic systems
CONSERVATION LAWS

@ Many nonlinear hyperbolic systems can be written as

u; + f(u), = 0.

e With Jacobian
o

ou

can write conservation law in non-conservation form

A(u)

u; + A(u)u, =0,

but the conservation form is often preferable.
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Hyperbolic systems
CONSERVATION LAWS

@ Many nonlinear hyperbolic systems can be written as

u; + f(u), = 0.

e With Jacobian
o

ou

can write conservation law in non-conservation form

A(u)

u; + A(u)u, =0,

but the conservation form is often preferable.
@ As usual, solution is constant along characteristics

dx

— = alult, x)).

o = a(u(t,x))
So, the direction of the characteristic curves depends on the solution
through initial values wug(x), but the characteristic curves are straight
lines.
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Hyperbolic systems
EXAMPLE: THE INVISCID BURGERS EQUATION

1
us +=(u?)x = 0 conservative

2

us + uu, = 0 non — conservative.

Obtain shock when characteristic curves meet!
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Hyperbolic systems
EXAMPLE: INCOMPRESSIBLE NAVIER-STOKES

e Models incompressible fluid flow. In two space dimensions,
(u, v)—velocity, p—pressure, v—viscosity constant.

Us + uuy +vu, + px = vAu,
Ve + uvx +vvy +p, = VAvy,
ux+v, = 0.
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Hyperbolic systems
EXAMPLE: INCOMPRESSIBLE NAVIER-STOKES

e Models incompressible fluid flow. In two space dimensions,
(u, v)—velocity, p—pressure, v—viscosity constant.

Us + uuy +vu, + px = vAu,
Ve +uve + vy, +p, = VAv,
ux+v, = 0.

@ Use incompressibility to write material derivatives in conservation
form: add u(uy + vy ) to first eqn, v(uy + v,) to second, obtaining

ue+ () + (vu)y +p = VA,
Vt+(UV)x+(V2)y+Py = vAv,

ux+v, = 0.

Uri Ascher (UBC) CPSC 520: Difference methods (Ch. 5) Fall 2012 20 / 51



Hyperbolic systems
LAX-WENDROFF FOR CONSERVATION LAWS

@ Replacing 2nd time derivatives with spatial ones is trickier.
e Want to avoid the Jacobian matrix A(u) if possible.

@ One popular variant:

_ 1
Vi = E(an +vig) - 5#( T — )
vitt = vl — u(f(%) — F(Y5-1))
@ Another popular variant:
‘_’j = VJ,] - ,U'(fjp - ffll)
1 _ 1 _ _
v = S ) — alf() - F(T).
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LEAP-FROG

Difference methods for PDEs

o Recall the scheme of accuracy order (2,2):
n—1
— vJ. —

MAf(Vf+1 - Vf—l)

e This extends to conservation laws in an obvious way,

o = = E DA
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Hyperbolic systems
LEAP-FROG

o Recall the scheme of accuracy order (2,2):

n+1 _ . n—1 ne,n o on
vt = pA (Vi —viy).

o This extends to conservation laws in an obvious way,

@ This method is conservative and non-dissipative.

e Can introduce dissipativity artificially:

9 _
vt = (1= e DID? )it — uA7 Dovy.
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Hyperbolic systems
LAX-FRIEDRICHS

@ Recall the method for the advection equation

satisfies the strong stability bound ||v"*!(|., < ||v"|~ provided CFL
holds.

@ Write it for a linear hyperbolic system as

VI T S = 20 ) — AAN — ),

highlighting the extra diffusion term in the modified PDE.
e Method has accuracy order (1,1) provided 1 = k/h is fixed.
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Difference methods for PDEs Hyperbolic systems

MobpiriED PDE

@ A method constructed for a given (usually hyperbolic) PDE can often
be seen as approximating another, modified PDE, to a higher
accuracy order.

@ The properties of such a modified PDE may then shed light on the
numerical method’s properties.
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Difference methods for PDEs Hyperbolic systems

MobpiriED PDE

@ A method constructed for a given (usually hyperbolic) PDE can often
be seen as approximating another, modified PDE, to a higher
accuracy order.

The properties of such a modified PDE may then shed light on the
numerical method’s properties.

Example: Lax-Friedrichs for advection approximates the PDE

Ut + aly = Vlyxx

with v = 2% (1 — p?a?) to accuracy order (2,2).

The v-term suggests artificial viscosity (or artificial diffusion). The
larger it is, the more smoothing (and smearing) of the solution.

o Note if k = h? then v ~ 1/2. Hence error for advection equation no
longer decreases as h — 0: must have p fixed in mesh refinement
process.
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Hyperbolic systems
MobpiriED PDE FOR UPWIND AND LAX-WENDROFF

SCHEMES

o Recall the upwind (one-sided) scheme for advection:

n+l _ o0 _ (erli-l_vjn)’ a<O
g ' Ma{(vf’—v-"ﬁ» a>0

This approximates the PDE u; + auy, = vuy, with
V= ﬁ (11|a] — p?a%) to accuracy order (2,2).

@ So, both of these monotone 1st order schemes (i.e., upwind and L-F)
have artificial viscosity, though upwind has less if ;|a] < 1.
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Difference methods for PDEs Hyperbolic systems

MobpiriED PDE FOR UPWIND AND LAX-WENDROFF
SCHEMES

o Recall the upwind (one-sided) scheme for advection:

n+1 V' — ja (erli-l - an)7 a< O
"), a>0

This approximates the PDE u; + auy, = vuy, with
V= 2% (11|a] — p?a%) to accuracy order (2,2).

@ So, both of these monotone 1st order schemes (i.e., upwind and L-F)
have artificial viscosity, though upwind has less if ;|a] < 1.

@ The Lax-Wendroff scheme for advection has the modified PDE
2

a
us + auy = 6 (1 — /1,282) Usixx »

Note the 3rd rather than 2nd derivative in the added term!
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Hyperbolic systems
ERROR COMPARISON FOR A SMOOTH PROBLEM

us = uy, ug(x) = sin(nx), p = k/h.

n h 1 Lax-Wendroff Lax-Friedrichs  Box

1 0lr 05 1.2e-4 2.3e-2 6.1e-5
.001r 0.5 1.2e-6 2.4e-3 6.2e-7
.001r 5.0 * * 2.0e-5

10 .0lx 0.5 1.2e-1 9.0e-1 6.1e-2
0017t 0.5 1.2e-3 2.1e-1 6.2e-4
.00057 0.5 3.1e-4 1.1e-1 1.5e-4
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Difference methods for PDEs

ERROR COMPARISON FOR SQUARE
h= .01lr

Lax Fnsdm:hs t:hame
|

Lax- Wendmlf scheme

e VAN
= osf

Loap-fog scheme

i
2 05f
A y

o . ,

% BN T 5 2
Leap-trog scherms wih dssion
1.
WL
> osk

o . . .

% B ] ) 1 5 2 _ _
x = = = = DA
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Hyperbolic systems
ERROR COMPARISON FOR SQUARE WAVE pu = .5,

h = .0017

Lax-Friedrichs scheme

1
i
> 05
o . . . . . . .
% 15 S 05 0 05 T 5 2
Lax-Wendroff scheme
1 T
m 1
> 05
|
L.
o . . . . . .
% ED ] EX o 05 1 5 2
Leap-irog scheme
1 :
i
> 05
o - v
%2 15 1 1 5 2
1
' 1
> 05 [ L
o )| b -
o . . . . . . .
% 15 E 05 o 05 T 5 2
x
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Difference methods for PDEs Hyperbolic systems

e Finite volume: Integrate conservation law u; + f(u), = 0 over “box”

V =[x, xj1] X [tn, tar1].

e Obtain ) )
n+1 n n+1 2 n+1/2
ullip Ul LT =0

where quantities are line integrals.

o Discretize by trapezoidal rule:

n+1 n _\n
J+1 +V Vj+1 VJ

+ p(f L — P 7)) = 0.

e The method is compact, conservative, implicit, unconditionally
stable, and has accuracy order (2,2).

Uri Ascher (UBC) CPSC 520: Difference methods (Ch. 5) Fall 2012 29 / 51



Semi-Lagrangian methods
OUTLINE

Freezing coefficients and dissipativity

@ Schemes for hyperbolic systems in 1D

Discontinuous solutions (Ch. 10)

Semi-Lagrangian methods

o Nonlinear stability and energy method
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Semi-Lagrangian methods
OUTLINE

Freezing coefficients and dissipativity

@ Schemes for hyperbolic systems in 1D

Discontinuous solutions (Ch. 10)

Semi-Lagrangian methods

o Nonlinear stability and energy method
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Semi-Lagrangian methods
SEMI-LAGRANGIAN (SL) METHOD FOR ADVECTION

o For the advection equation u; + auy, = 0, extend the interpretation of
the one-sided scheme as tracing the characteristic, by tracing the
characteristic curve further back!

@ Imagine the one-sided scheme on a coarse grid with widths k = Ik
and h = |h for some / > 1, but instead of interpolating between x;
and X1 = xj + h, find v such that xj,, < x. < xj4,41 and
in:cerpolate an+y and an+u+1 linearly for v,.. Then set this value to be
an+1 as before. The new time step is therefore / times larger, with

the same spatial mesh as before.

@ Explicit stability restriction is no longer binding because can increase /
arbitrarily for the (k, h) mesh, so, for a fixed h can take k arbitrarily
large without stability concerns in this way!

Uri Ascher (UBC) CPSC 520: Difference methods (Ch. 5) Fall 2012 32 /51



Difference methods for PDEs

Semi-Lagrangian methods

EXAMPLE: u; = uy WITH Uy A SQUARE WAVE

up square wave on [.25,

1.5

One-sided
T

X
PSC 520: Difference methods (Ch. 5)

Uri Ascher (UBC)

C

Fall 2012

.75], k = .9h, five times larger for SL, h = .017
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Difference methods for PDEs

Semi-Lagrangian methods

EXAMPLE: u; = uy WITH Uy A SQUARE WAVE

h=.0017w

up square wave on [.25,.75], k = .9h, five times larger for SL,
15 Onef‘sided
1+ 4
0
08 e = 5 I
L5 Leap‘—frog
Al
s 05F
0
08 = = 5 I
s Seml—La‘grangian
Al
0
055 = = 5 I
Uri Ascher (UBC) CPSC 520: Differenc methods (Ch. 5)
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Semi-Lagrangian methods
SECOND ORDER SEMI-LAGRANGIAN METHOD:

CONSTANT COEFFICIENTS

@ The foot of the characteristic is at

Xe =X+ ka= x4, +hy, v= fix((fa)l}/h), h, = wh.

@ The method we have seen is given by linear interpolation

vl

— J— n n
= =war v g (- w) e vy,

so it's 1st order accurate.
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Semi-Lagrangian methods
SECOND ORDER SEMI-LAGRANGIAN METHOD:
CONSTANT COEFFICIENTS

@ The foot of the characteristic is at

Xe =X+ ka= x4, +hy, v= fix((fa)l}/h), h, = wh.

@ The method we have seen is given by linear interpolation

n+1
Yj

so it's 1st order accurate.

e To obtain 2nd order, can interpolate using also vj, .o, i.e., quadratic
interpolation:

— J— n n
=V =wH Vi, g+ (1 -w)xvl,,

n+1 _ o n n n
VJ’ = VeQ = VaL — 5W(1 - W) (\/j+y+2 - 2Vj+u+1 + Vj+1/) :
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Semi-Lagrangian methods
SECOND ORDER SEMI-LAGRANGIAN METHOD:

CONSTANT COEFFICIENTS

@ The foot of the characteristic is at

Xe =X+ ka= x4, +hy, v= fix((fa)l}/h), h, = wh.

@ The method we have seen is given by linear interpolation

n+1
Yj

so it's 1st order accurate.

e To obtain 2nd order, can interpolate using also vj, .o, i.e., quadratic
interpolation:

— J— n n
=V =wH Vi, g+ (1 -w)xvl,,

n+1 _ o n n n
VT = e = va = Sw(L = w) (V0 — 2V 11 V) -

@ Numerical results for both smooth and square wave initial profiles:
behaves essentially like Lax-Wendroff!
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Difference methods for PDEs
SL EARLY ASSESSMENT g
be true”!

@ For constant-coefficient advection the SL method looks “too good to

o = = E DA
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Semi-Lagrangian methods
SLL EARLY ASSESSMENT

@ For constant-coefficient advection the SL method looks “too good to
be true"!

@ Indeed, it makes heavy use of particular knowledge regarding a test
equation, for which the exact solution is known.

Uri Ascher (UBC) CPSC 520: Difference methods (Ch. 5) Fall 2012 36 / 51



Semi-Lagrangian methods
SL EARLY ASSESSMENT

@ For constant-coefficient advection the SL method looks “too good to
be true"!

@ Indeed, it makes heavy use of particular knowledge regarding a test
equation, for which the exact solution is known.

o Still, there are many fluid problems where non-constant advection
equations arise. Then, using a large time step, we are trading
accuracy for stability.

e Method is particularly useful in computer graphics and for weather
simulation applications.
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Semi-Lagrangian methods
SL EARLY ASSESSMENT

@ For constant-coefficient advection the SL method looks “too good to
be true"!

@ Indeed, it makes heavy use of particular knowledge regarding a test

equation, for which the exact solution is known.

Still, there are many fluid problems where non-constant advection

equations arise. Then, using a large time step, we are trading

accuracy for stability.

Method is particularly useful in computer graphics and for weather
simulation applications.

@ Must extend the method to variable coefficient and nonlinear
advection problems.
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Semi-Lagrangian methods
SL FOR VARIABLE COEFFICIENT ADVECTION

o Consider next
us + a(t,x)ux = 0.

@ The characteristic curve passing through (t,.1,x;) and (t,, x,) is not
necessarily a straight line (even if a = a(x) is independent of time).
In any case, where is x.7?
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Semi-Lagrangian methods
SL FOR VARIABLE COEFFICIENT ADVECTION

o Consider next
us + a(t,x)ux = 0.

@ The characteristic curve passing through (t,.1,x;) and (t,, x,) is not
necessarily a straight line (even if a = a(x) is independent of time).
In any case, where is x.?

@ Integrate % = a(t, x) approximately using trapezoidal rule:

5 = % = 5 (atns1,59) + altn, x.))

N | X

This is a nonlinear equation for x,. Solve using either

1 fixed point iteration (provided .5k|a,| < 1), or
11 some variant of Newton’s method.

o Initial guess: x{ = x; — k * a(tny1.X;).
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Semi-Lagrangian methods
SL FOR VARIABLE COEFFICIENT ADVECTION CONT.

ur + a(t,x)uyx = 0.

e So, for each j
I compute x, satisfying

k
X + Ea(tn,x*) =Xxj — Ea(t,,ﬂ,xj).

11 Calculate v using either linear or quadratic interpolation as for the
constant coefficient case.
nr Set v/t = v
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Semi-Lagrangian methods
SL FOR VARIABLE COEFFICIENT ADVECTION CONT.

ur + a(t,x)uyx = 0.

e So, for each j
I compute x, satisfying

Xy Ea(tmx*) =Xj— Ea(thvXj)'

11 Calculate v using either linear or quadratic interpolation as for the
constant coefficient case.
nr Set v/t = v
e For the more general PDE

ur + a(t, x)ux + b(t,x)u = q(t, x),
use in place of step (iii) the equation

k k

(1+ Ebj"“)vj"+1 = (1- Ebf)vf + g(qf +q/).
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Difference methods for PDEs

EXAMPLE: a(x) = .2 +sin(x — 1)?

up(x) = exp(—100(x — 1)2); J =256, h=2w/J, k= h/4
4th order centred in space, leap-frog in time

\ 3
\\\\\\\ 2
‘

1 !
o
= = E DA
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Difference methods for PDEs

EXAMPLE: a(x) = .2 +sin(x — 1)?

up(x) = exp(—100(x — 1)2); J =256, h=2w/J, k= h/4
4th order centred in space, RK4 in time

s
7
)
. s
: \ a
s
) s
! 2
0
o ) | ‘
2 8
4 ] .
o
= E DA
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EXAMPLE: a(x) = .2 +sin(x — 1)?

up(x) = exp(—100(x — 1)2); J =256, h=2w/J, k= h/4

Semi-Lagrangian, linear interpolation at characteristic root

Uri Ascher (UBC)
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EXAMPLE: a(x) = .2 +sin(x — 1)?

up(x) = exp(—100(x — 1)2); J =256, h=2w/J, k= h/4
Semi-Lagrangian, quadratic interpolation at characteristic root

Uri Ascher (UBC)
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Energy method
OUTLINE

Freezing coefficients and dissipativity

@ Schemes for hyperbolic systems in 1D

Discontinuous solutions (Ch. 10)

Semi-Lagrangian methods

@ Nonlinear stability and energy method
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Energy method
STABILITY FOR NONLINEAR PROBLEMS

@ We have seen in the KdV example that nonlinear stability can be
tricky: a Fourier stability analysis for the frozen coefficient problem
gives (usually) necessary but not sufficient conditions: no guarantee.

@ Other examples exist: certainly for problems with discontinuous
solutions, but also splitting methods for the nonlinear Schrodinger
equation, etc.

@ So instead try to bound
[Iv(nk,-)[| < [Iv(0,-)]]

in the /2 norm, if a corresponding bound for the exact solution holds.
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Difference methods for PDEs
ENERGY METHOD: PDE PROBLEM !
@ Observe

/ 2uupdx = 2

8t/

u?(t, x)dx.
e So, for pure IVP (Cauchy) PDE

ur = f(taxa Uxy Uxxy Uxxxs

),
/.

Uri Ascher (UBC)

uf (t, X, Uy Usxc, Uy -2 )dX < 0
then [|u(t)|| < [|u(0)||, ¥t > 0, yielding Lp-stability.

[m]

=
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Difference methods for PDEs Energy method

ENERGY METHOD: PDE PROBLEM

e Important tool: integration by parts. If f and g are periodic on [a, b]
then

b b b
0= f(b)g(b) — f(a)g(a) :/ (fg) dx :/ f’gdx+/ fg' dx.

e Example: Cauchy problem for heat equation, or periodic BC for
U = Uxx-

Then [ u- updx = — [ (ux(t,x))* dx <O0.
So, [Ju(t)|* < [lu(0)]>.
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Difference methods for PDEs
ENERGY METHOD: DISCRETIZED PROBLEM !

e For an infinite, uniform mesh, define

(v,w)=nh Z Vi wj, “VH2 = (v, v).

j=—o0

o Identities:

0

7 IVII%) = 2R (v, ve)

(v, Dow) = —(Dov, w), hence R (v, Dgv) =0
(V7 D+W) = _(D—V? W)

R(v,Rv)=0 < R(v,Rw)=—-R(Rw,v), Vv,w € {,

o F

it
N)
yel
)
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Energy method
EXAMPLE: THE BURGERS EQUATION

@ Obviously, for the pure initial value PDE

1
us + = (U2) = O,
2 X
so long as the solution is smooth,

[u(®)[| = [[u(O)[] Ve

@ So does the KdV equation for all times.
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Energy method
EXAMPLE: THE BURGERS EQUATION

@ Obviously, for the pure initial value PDE
1
us + 5 (U2)X = O,

so long as the solution is smooth,

[u(®)[| = [[u(O)[] Ve

@ So does the KdV equation for all times.
o Consider the discretizations Dy (v2) for (u2)x and 2vDyv for 2uuy.
e Obtain (v, Dgv?) = —(Dgv, v?), which is different from

2(v, vDov) = 2(v?, Dov) = 2(Dgv, v?).
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Energy method
EXAMPLE: THE BURGERS EQUATION

@ Obviously, for the pure initial value PDE

1
us + 5 (U2)X = O,

so long as the solution is smooth,

[u(®)[| = [[u(O)[] Ve

So does the KdV equation for all times.

Consider the discretizations Dy (v2) for (u2)x and 2vDgv for 2uus.
Obtain (v, Dyv?) = —(Dov, v?), which is different from

2(v, vDov) = 2(v?, Dov) = 2(Dgv, v?).

Write Burgers as

ur + g (u2)X + (1= 0)uuy =0,

and discretize.
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Difference methods for PDEs
EXAMPLE: THE BURGERS EQUATION cog
o Write Burgers as

0
v+ 5 (uz)x + (1 —60)uu, =0.
@ Discretize:

1760,
Vt+ﬂ |:§D()V +(1—9)VDOV:| =0

= = = E DA
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Difference methods for PDEs
EXAMPLE: THE BURGERS EQUATION CONT!
o Write Burgers as
0

us+ = (uz)x + (1 —60)uu, =0.

2
o Discretize:
Ve + >h EDOV2
e Multiply by v and sum up:

1|0
(V, Vt)‘f‘ﬂ |:—

2

+(1- e)voov] =0

(v, Dov?) + (1 — 6)(v, vDov)} =0
Uri Ascher (UBC)

[m]

=
CPSC 520: Difference methods (Ch. 5)



Energy method
EXAMPLE: THE BURGERS EQUATION CONT.

o Write Burgers as

u + g (u2)x + (1 —60)uu, =0.

o Discretize: )
+or [ Dov? —i—(l—@)vDov} =0.
e Multiply by v and sum up:

1

(vove) + o

[H(V Dov?) + (1 — 0)(v, vDov)} —0.

@ Choose # =2/3. Then /2 =1—10, so (||v|]2)t =0, hence
V()] = [Iv(0)[} Ve

Obtain stability of semi-discretization so long as solution is smooth!
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Difference methods for PDEs
EXAMPLE: THE BURGERS EQUATION CONg
0=1.

@ In the presence of shocks want to discretize the conservation form

o = = E DA
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Energy method
EXAMPLE: THE BURGERS EQUATION CONT.

@ In the presence of shocks want to discretize the conservation form
0=1.

e But if solution is smooth, use # = 2/3 for a stable semi-discretization.
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Energy method
EXAMPLE: THE BURGERS EQUATION CONT.

@ In the presence of shocks want to discretize the conservation form
0=1.

e But if solution is smooth, use # = 2/3 for a stable semi-discretization.

o Discretize in time: leap-frog may generate difficulties (recall KdV
example).
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Energy method
EXAMPLE: THE BURGERS EQUATION CONT.

@ In the presence of shocks want to discretize the conservation form
0=1.

But if solution is smooth, use ¢ = 2/3 for a stable semi-discretization.

o Discretize in time: leap-frog may generate difficulties (recall KdV
example).

Using instead implicit midpoint, obtain method

k
+1 n+1/2 n+1/2 n+1/2 n+1/2
= e (R ) o =0

n+1/2 and sum:

Multiply by 2v
[P P (2 L v 2 0gy ) < 0

Hence ||[v"*!| = ||v"|| and the scheme is unconditionally stable.
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Energy method
RK FOR SKEW-SYMMETRIC SEMI-DISCRETIZATION

o Consider a large constant-coefficient ODE system
vy = Lv,

where L is J x J skew-symmetric: L7 = —L.

e Obtain such L e.g. from symmetric (centred) semi-discretization of a
constant-coefficient hyperbolic PDE.

o Note all eigenvalues of L are imaginary; and [|v(t)|| = [[v(0)], Vt.
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Energy method
RK FOR SKEW-SYMMETRIC SEMI-DISCRETIZATION

o Consider a large constant-coefficient ODE system
vy = Lv,

where L is J x J skew-symmetric: LT = —L.

e Obtain such L e.g. from symmetric (centred) semi-discretization of a
constant-coefficient hyperbolic PDE.

o Note all eigenvalues of L are imaginary; and [|v(t)|| = [[v(0)], Vt.
o Implicit midpoint in time stable for all k and conserves the invariant

vl = [Iv°][, ¥n.

Uri Ascher (UBC) CPSC 520: Difference methods (Ch. 5) Fall 2012 51 / 51



Energy method
RK FOR SKEW-SYMMETRIC SEMI-DISCRETIZATION

o Consider a large constant-coefficient ODE system
vy = Lv,

where L is J x J skew-symmetric: LT = —L.

e Obtain such L e.g. from symmetric (centred) semi-discretization of a
constant-coefficient hyperbolic PDE.

Note all eigenvalues of L are imaginary; and ||v(t)| = [|v(0)|, Vt.

Implicit midpoint in time stable for all k and conserves the invariant

vl = [Iv°][, ¥n.

If kK < % then the classical explicit RK4 satisfies

V™| < (v, V.
See Example 5.12 (pp. 175-177) in the text.
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