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Difference methods for PDEs Dissipativity

Freezing coefficients

Consider linear problems with variable coefficients, and nonlinear
problems.

Example: advection equations

ut + a(x)ux = 0, and ut + a(u)ux = 0.

To check stability, a common approach is to freeze coefficients:
Check stability by Fourier analysis for a linearized version with
constant coefficients. Based on this, choose a time step k
(conservatively).
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Difference methods for PDEs Dissipativity

Freezing coefficients cont.

For the variable coefficients advection example, for a typical CFL
condition, set

â = max
x
|a(x)|

and require µâ < 1, i.e., k < hâ.

For the nonlinear advection example, it’s a bit trickier:

either use a known bound â ≥ maxt,x |a(u(t, x))|,
or, at each time step n use â = ân = maxj |a(vn

j ))|. Then
k = kn < hân.

Works well often but not always
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Difference methods for PDEs Dissipativity

Example: Korteweg - de Vries (KdV)

A famous PDE: nonlinear, third derivative in x , admits soliton
solutions:

ut = α(u2)x + ρux + νuxxx

= [V ′(u)]x + νuxxx , V (u) =
α

3
u3 +

ρ

2
u2.

Initial conditions u(0, x) = u0(x)

Boundary conditions: periodic

Set ρ = 0. Consider Eulerian finite volume/difference discretizations:
on a fixed grid with step sizes k , h.
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Difference methods for PDEs Dissipativity

KdV soliton

Solution progress in time for a certain set of parameters displaying two
solitons, using a conservative, implicit method:
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Difference methods for PDEs Dissipativity

Explicit numerical method

[Zabusky & Kruskal (’65)]: use an extension of leap-frog – an explicit
scheme.

Their (good) variant reads

vn+1
j = vn−1

j +
2αk

3h
(vn

j−1 + vn
j + vn

j+1)(vn
j+1 − vn

j−1)

+
νk

h3
(vn

j+2 − 2vn
j+1 + 2vn

j−1 − vn
j−2).

Constant coefficient stability analysis: restrict time step to

k < h/

[
|ν|
h2

+ 2|αumax|
]

Which can be very restrictive indeed, unless ν � 1.
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Difference methods for PDEs Dissipativity

Numerical example

[Zhao & Qin (’00), Ascher & McLachlan (’04,’05)]: take

ν = −0.0222, α = −0.5,

u0(x) = cos(πx), periodic on [0, 2].

Try various k, h satisfying linear stability bound.

Obtain blowup for t > 21/π (!)
The instability takes time to develop, so results at t = 1 (say) do not
indicate the trouble at a later time.
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Difference methods for PDEs Dissipativity

Solution for different times
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Difference methods for PDEs Dissipativity

Dissipativity

Observe that instability is caused by high wave numbers that do not
necessarily contribute to accuracy.

Hence, require damping of high wave number modes. The method
has dissipativity of order 2r if

ρ(G (ζ)) ≤ eα̃k(1− δ|ζ|2r ), ∀|ζ| ≤ π.

Kreiss (60’s): This is sufficient for stability in many realistic situations
for linear PDEs.

Generally, dissipativity is natural for parabolic PDEs but not for
hyperbolic PDEs.
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Difference methods for PDEs Dissipativity

Dissipativity for heat equation, µ = k/h2 = .4
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Difference methods for PDEs Dissipativity

Dissipativity for heat equation, µ = k/h2 = 4
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Difference methods for PDEs Dissipativity

Dissipativity for heat equation, µ = k/h2 = 40
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Difference methods for PDEs Hyperbolic systems
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Difference methods for PDEs Hyperbolic systems

Outline: schemes for hyperbolic systems

Lax-Wendroff

Conservation laws

Leap-frog

Lax-Friedrichs

Upwind

Modified PDE

Box
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Difference methods for PDEs Hyperbolic systems

Lax-Wendroff scheme

For hyperbolic problems, “natural” discretizations do not
automatically possess dissipativity. Nonetheless, the Lax-Wendroff
scheme is dissipative!

Derivation idea: Apply Taylor for u(t + k , x), viz.

u(t + k, x) = u + kut +
k2

2
utt + · · · ,

and replace t-derivatives by x-derivatives using the PDE.

For advection ut + aux = 0, we have ut = −aux and
utt = (−aux)t = a2uxx . So, set µ = k/h and obtain

vn+1
j =

(
I − µ

2
aD0 +

µ2

2
a2D+D−

)
vn
j .

This gives accuracy order (2, 2).
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Difference methods for PDEs Hyperbolic systems

Lax-Wendroff scheme

vn+1
j =

(
I − µ

2
aD0 +

µ2

2
a2D+D−

)
vn
j .

Fourier analysis promises stability if CFL condition holds, i.e.,
µ|a| ≤ 1. But what about dissipativity?

Calculating amplification factor, obtain

|g(ζ)| ≤ 1− δ|ζ|4

if the CFL condition holds.

Hence this scheme has dissipativity of order 4 and has guaranteed
stability, under certain conditions, for variable coefficient problems.
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Difference methods for PDEs Hyperbolic systems

Conservation laws

Many nonlinear hyperbolic systems can be written as

ut + f(u)x = 0.

With Jacobian

A(u) =
∂f

∂u
can write conservation law in non-conservation form

ut + A(u)ux = 0,

but the conservation form is often preferable.
As usual, solution is constant along characteristics

dx

dt
= a(u(t, x)).

So, the direction of the characteristic curves depends on the solution
through initial values u0(x), but the characteristic curves are straight
lines.
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Difference methods for PDEs Hyperbolic systems

Example: the inviscid Burgers equation

ut +
1

2
(u2)x = 0 conservative

ut + uux = 0 non− conservative.

Obtain shock when characteristic curves meet!
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Difference methods for PDEs Hyperbolic systems

Example: Incompressible Navier-Stokes

Models incompressible fluid flow. In two space dimensions,
(u, v)–velocity, p–pressure, ν–viscosity constant.

ut + uux + vuy + px = ν∆u,

vt + uvx + vvy + py = ν∆v ,

ux + vy = 0.

Use incompressibility to write material derivatives in conservation
form: add u(ux + vy ) to first eqn, v(ux + vy ) to second, obtaining

ut + (u2)x + (vu)y + px = ν∆u,

vt + (uv)x + (v2)y + py = ν∆v ,

ux + vy = 0.
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Difference methods for PDEs Hyperbolic systems

Lax-Wendroff for conservation laws

Replacing 2nd time derivatives with spatial ones is trickier.

Want to avoid the Jacobian matrix A(u) if possible.

One popular variant:

v̄j =
1

2
(vnj + vnj+1)− 1

2
µ(fnj+1 − fnj )

vn+1
j = vnj − µ(f(v̄j)− f(v̄j−1))

Another popular variant:

v̄j = vnj − µ(fnj − fnj−1)

vn+1
j =

1

2
(vnj + v̄nj )− 1

2
µ(f(v̄j+1)− f(v̄j)).
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Difference methods for PDEs Hyperbolic systems

Leap-frog

Recall the scheme of accuracy order (2,2):

vn+1
j = vn−1j − µAn

j (vnj+1 − vnj−1).

This extends to conservation laws in an obvious way,

vn+1
j = vn−1j − µ(fnj+1 − fnj−1).

This method is conservative and non-dissipative.

Can introduce dissipativity artificially:

vn+1
j =

(
I − ε

16
D2
+D2
−

)
vn−1j − µAn

j D0vnj .
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Difference methods for PDEs Hyperbolic systems

Lax-Friedrichs

Recall the method for the advection equation

vn+1
j =

1

2

(
vn
j+1 + vn

j−1
)
− k

2h
a
(
vn
j+1 − vn

j−1
)

satisfies the strong stability bound ‖vn+1‖∞ ≤ ‖vn‖∞ provided CFL
holds.

Write it for a linear hyperbolic system as

vn+1
j = vnj +

1

2
(vnj−1 − 2vnj + vnj+1)− µ

2
An
j (vnj+1 − vnj−1),

highlighting the extra diffusion term in the modified PDE.

Method has accuracy order (1, 1) provided µ = k/h is fixed.
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Difference methods for PDEs Hyperbolic systems

Modified PDE

A method constructed for a given (usually hyperbolic) PDE can often
be seen as approximating another, modified PDE, to a higher
accuracy order.

The properties of such a modified PDE may then shed light on the
numerical method’s properties.

Example: Lax-Friedrichs for advection approximates the PDE

ut + aux = νuxx

with ν = h
2µ

(
1− µ2a2

)
to accuracy order (2, 2).

The ν-term suggests artificial viscosity (or artificial diffusion). The
larger it is, the more smoothing (and smearing) of the solution.

Note if k = h2 then ν ≈ 1/2. Hence error for advection equation no
longer decreases as h→ 0: must have µ fixed in mesh refinement
process.
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Difference methods for PDEs Hyperbolic systems

Modified PDE for upwind and Lax-Wendroff
schemes

Recall the upwind (one-sided) scheme for advection:

vn+1
j = vn

j − µa

{(
vn
j+1 − vn

j

)
, a < 0(

vn
j − vn

j−1
)
, a > 0

.

This approximates the PDE ut + aux = νuxx with
ν = h

2µ

(
µ|a| − µ2a2

)
to accuracy order (2, 2).

So, both of these monotone 1st order schemes (i.e., upwind and L-F)
have artificial viscosity, though upwind has less if µ|a| < 1.

The Lax-Wendroff scheme for advection has the modified PDE

ut + aux = −ah2

6

(
1− µ2a2

)
uxxx .

Note the 3rd rather than 2nd derivative in the added term!
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Difference methods for PDEs Hyperbolic systems

Error comparison for a smooth problem

ut = ux , u0(x) = sin(ηx), µ = k/h.

η h µ Lax-Wendroff Lax-Friedrichs Box

1 .01π 0.5 1.2e-4 2.3e-2 6.1e-5
.001π 0.5 1.2e-6 2.4e-3 6.2e-7
.001π 5.0 * * 2.0e-5

10 .01π 0.5 1.2e-1 9.0e-1 6.1e-2
.001π 0.5 1.2e-3 2.1e-1 6.2e-4

.0005π 0.5 3.1e-4 1.1e-1 1.5e-4
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Difference methods for PDEs Hyperbolic systems

Error comparison for square wave µ = .5,
h = .01π
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Difference methods for PDEs Hyperbolic systems

Error comparison for square wave µ = .5,
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Difference methods for PDEs Hyperbolic systems

Box

Finite volume: Integrate conservation law ut + f(u)x = 0 over “box”

V = [xj , xj+1]× [tn, tn+1].

Obtain
un+1
j+1/2 − un

j+1/2 + f
n+1/2
j+1 − f

n+1/2
j = 0

where quantities are line integrals.

Discretize by trapezoidal rule:

vn+1
j+1 + vn+1

j − vnj+1 − vnj

+ µ(fn+1
j+1 + fnj+1 − fn+1

j − fnj ) = 0.

The method is compact, conservative, implicit, unconditionally
stable, and has accuracy order (2, 2).
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Difference methods for PDEs Semi-Lagrangian methods
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Difference methods for PDEs Semi-Lagrangian methods

Semi-Lagrangian (SL) method for advection

For the advection equation ut + aux = 0, extend the interpretation of
the one-sided scheme as tracing the characteristic, by tracing the
characteristic curve further back!

Imagine the one-sided scheme on a coarse grid with widths k̃ = lk
and h̃ = lh for some l ≥ 1, but instead of interpolating between xj
and x̃j+1 = xj + h̃, find ν such that xj+ν ≤ x∗ ≤ xj+ν+1 and
interpolate v ñ

j+ν and v ñ
j+ν+1 linearly for v∗. Then set this value to be

v ñ+1
j as before. The new time step is therefore l times larger, with

the same spatial mesh as before.

Explicit stability restriction is no longer binding because can increase l
arbitrarily for the (k̃ , h) mesh, so, for a fixed h can take k̃ arbitrarily
large without stability concerns in this way!
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Difference methods for PDEs Semi-Lagrangian methods

Example: ut = ux with u0 a square wave

u0 square wave on [.25, .75], k = .9h, five times larger for SL, h = .01π
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Difference methods for PDEs Semi-Lagrangian methods

Second order semi-Lagrangian method:
constant coefficients

The foot of the characteristic is at

x∗ = xj + k̃a = xj+ν + h∗, ν = fix
(
(−a)k̃/h

)
, h∗ = wh.

The method we have seen is given by linear interpolation

vn+1
j = v∗L = w ∗ vn

j+ν+1 + (1− w) ∗ vn
j+ν ,

so it’s 1st order accurate.

To obtain 2nd order, can interpolate using also vj+ν+2, i.e., quadratic
interpolation:

vn+1
j = v∗Q = v∗L − .5w(1− w)

(
vn
j+ν+2 − 2vn

j+ν+1 + vn
j+ν

)
.

Numerical results for both smooth and square wave initial profiles:
behaves essentially like Lax-Wendroff!
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Difference methods for PDEs Semi-Lagrangian methods

SL early assessment

For constant-coefficient advection the SL method looks “too good to
be true”!

Indeed, it makes heavy use of particular knowledge regarding a test
equation, for which the exact solution is known.

Still, there are many fluid problems where non-constant advection
equations arise. Then, using a large time step, we are trading
accuracy for stability.

Method is particularly useful in computer graphics and for weather
simulation applications.

Must extend the method to variable coefficient and nonlinear
advection problems.
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Difference methods for PDEs Semi-Lagrangian methods

SL for variable coefficient advection

Consider next
ut + a(t, x)ux = 0.

The characteristic curve passing through (tn+1, xj) and (tn, x∗) is not
necessarily a straight line (even if a = a(x) is independent of time).
In any case, where is x∗?

Integrate dx
dt = a(t, x) approximately using trapezoidal rule:

xj − x∗ =
k

2
(a(tn+1, xj) + a(tn, x∗)) .

This is a nonlinear equation for x∗. Solve using either

i fixed point iteration (provided .5k |ax | < 1), or
ii some variant of Newton’s method.

Initial guess: x0
∗ = xj − k ∗ a(tn+1, xj).
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Difference methods for PDEs Semi-Lagrangian methods

SL for variable coefficient advection cont.

ut + a(t, x)ux = 0.

So, for each j
i compute x∗ satisfying

x∗ +
k

2
a(tn, x∗) = xj −

k

2
a(tn+1, xj).

ii Calculate vn
∗ using either linear or quadratic interpolation as for the

constant coefficient case.
iii Set vn+1

j = vn
∗ .

For the more general PDE

ut + a(t, x)ux + b(t, x)u = q(t, x),

use in place of step (iii) the equation(
1 +

k

2
bn+1
j

)
vn+1
j =

(
1− k

2
bn
∗
)
vn
∗ +

k

2

(
qn
∗ + qn+1

j

)
.
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Difference methods for PDEs Semi-Lagrangian methods

Example: a(x) = .2 + sin(x − 1)2

u0(x) = exp(−100(x − 1)2); J = 256, h = 2π/J, k = h/4
4th order centred in space, leap-frog in time
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Example: a(x) = .2 + sin(x − 1)2

u0(x) = exp(−100(x − 1)2); J = 256, h = 2π/J, k = h/4
4th order centred in space, RK4 in time
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Difference methods for PDEs Semi-Lagrangian methods

Example: a(x) = .2 + sin(x − 1)2

u0(x) = exp(−100(x − 1)2); J = 256, h = 2π/J, k = h/4
Semi-Lagrangian, linear interpolation at characteristic root
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Difference methods for PDEs Semi-Lagrangian methods

Example: a(x) = .2 + sin(x − 1)2

u0(x) = exp(−100(x − 1)2); J = 256, h = 2π/J, k = h/4
Semi-Lagrangian, quadratic interpolation at characteristic root
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Difference methods for PDEs Energy method

Outline

Freezing coefficients and dissipativity

Schemes for hyperbolic systems in 1D

Discontinuous solutions (Ch. 10)

Semi-Lagrangian methods

Nonlinear stability and energy method
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Difference methods for PDEs Energy method

Stability for nonlinear problems

We have seen in the KdV example that nonlinear stability can be
tricky: a Fourier stability analysis for the frozen coefficient problem
gives (usually) necessary but not sufficient conditions: no guarantee.

Other examples exist: certainly for problems with discontinuous
solutions, but also splitting methods for the nonlinear Schrödinger
equation, etc.

So instead try to bound

‖v(nk, ·)‖ ≤ ‖v(0, ·)‖

in the `2 norm, if a corresponding bound for the exact solution holds.
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Difference methods for PDEs Energy method

Energy method: PDE problem

Observe ∫ ∞
−∞

2uutdx =
∂

∂t

∫ ∞
−∞

u2(t, x)dx .

So, for pure IVP (Cauchy) PDE

ut = f (t, x , ux , uxx , uxxx , ...),

if ∫ ∞
−∞

uf (t, x , ux , uxx , uxxx , ...)dx ≤ 0

then ‖u(t)‖ ≤ ‖u(0)‖, ∀t ≥ 0, yielding L2-stability.
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Difference methods for PDEs Energy method

Energy method: PDE problem

Important tool: integration by parts. If f and g are periodic on [a, b]
then

0 = f (b)g(b)− f (a)g(a) =

∫ b

a
(fg)′dx =

∫ b

a
f ′gdx +

∫ b

a
fg ′dx .

Example: Cauchy problem for heat equation, or periodic BC for

ut = uxx .

Then
∫

u · uxxdx = −
∫

(ux(t, x))2 dx ≤ 0.
So, ‖u(t)‖2 ≤ ‖u(0)‖2.
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Difference methods for PDEs Energy method

Energy method: discretized problem

For an infinite, uniform mesh, define

(v ,w) = h
∞∑

j=−∞
vj w̄j , ‖v‖2 = (v , v).

Identities:

∂

∂t
(‖v‖2) = 2< (v , vt)

(v ,D0w) = −(D0v ,w), hence < (v ,D0v) = 0

(v ,D+w) = −(D−v ,w)

< (v ,Rv) = 0 ⇔ < (v ,Rw) = −< (Rw , v), ∀v ,w ∈ `2
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Difference methods for PDEs Energy method

Example: the Burgers equation

Obviously, for the pure initial value PDE

ut +
1

2

(
u2
)
x

= 0,

so long as the solution is smooth,

‖u(t)‖ = ‖u(0)‖ ∀t.

So does the KdV equation for all times.

Consider the discretizations D0

(
v2
)

for
(
u2
)
x

and 2vD0v for 2uux .

Obtain (v ,D0v2) = −(D0v , v2), which is different from
2(v , vD0v) = 2(v2,D0v) = 2(D0v , v2).

Write Burgers as

ut +
θ

2

(
u2
)
x

+ (1− θ)uux = 0,

and discretize.
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Difference methods for PDEs Energy method

Example: the Burgers equation cont.

Write Burgers as

ut +
θ

2

(
u2
)
x

+ (1− θ)uux = 0.

Discretize:

vt +
1

2h

[
θ

2
D0v2 + (1− θ)vD0v

]
= 0.

Multiply by v and sum up:

(v , vt) +
1

2h

[
θ

2
(v ,D0v2) + (1− θ)(v , vD0v)

]
= 0.

Choose θ = 2/3. Then θ/2 = 1− θ, so
(
‖v‖2

)
t

= 0, hence

‖v(t)‖ = ‖v(0)‖ ∀t.

Obtain stability of semi-discretization so long as solution is smooth!

Uri Ascher (UBC) CPSC 520: Difference methods (Ch. 5) Fall 2012 49 / 51



Difference methods for PDEs Energy method

Example: the Burgers equation cont.

Write Burgers as

ut +
θ

2

(
u2
)
x

+ (1− θ)uux = 0.

Discretize:

vt +
1

2h

[
θ

2
D0v2 + (1− θ)vD0v

]
= 0.

Multiply by v and sum up:

(v , vt) +
1

2h

[
θ

2
(v ,D0v2) + (1− θ)(v , vD0v)

]
= 0.

Choose θ = 2/3. Then θ/2 = 1− θ, so
(
‖v‖2

)
t

= 0, hence

‖v(t)‖ = ‖v(0)‖ ∀t.

Obtain stability of semi-discretization so long as solution is smooth!

Uri Ascher (UBC) CPSC 520: Difference methods (Ch. 5) Fall 2012 49 / 51



Difference methods for PDEs Energy method

Example: the Burgers equation cont.

Write Burgers as

ut +
θ

2

(
u2
)
x

+ (1− θ)uux = 0.

Discretize:

vt +
1

2h

[
θ

2
D0v2 + (1− θ)vD0v

]
= 0.

Multiply by v and sum up:

(v , vt) +
1

2h

[
θ

2
(v ,D0v2) + (1− θ)(v , vD0v)

]
= 0.

Choose θ = 2/3. Then θ/2 = 1− θ, so
(
‖v‖2

)
t

= 0, hence

‖v(t)‖ = ‖v(0)‖ ∀t.

Obtain stability of semi-discretization so long as solution is smooth!

Uri Ascher (UBC) CPSC 520: Difference methods (Ch. 5) Fall 2012 49 / 51



Difference methods for PDEs Energy method

Example: the Burgers equation cont.

In the presence of shocks want to discretize the conservation form
θ = 1.

But if solution is smooth, use θ = 2/3 for a stable semi-discretization.

Discretize in time: leap-frog may generate difficulties (recall KdV
example).

Using instead implicit midpoint, obtain method

vn+1
j − vn

j +
k

6h

(
v
n+1/2
j+1 + v

n+1/2
j + v

n+1/2
j−1

)
D0v

n+1/2
j = 0.

Multiply by 2v
n+1/2
j and sum:

‖vn+1‖2−‖vn‖2+
µ

3

(
v
n+1/2
j , [v

n+1/2
j+1 + v

n+1/2
j + v

n+1/2
j−1 ]D0v

n+1/2
j

)
= 0.

Hence ‖vn+1‖ = ‖vn‖ and the scheme is unconditionally stable.
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Difference methods for PDEs Energy method

RK for skew-symmetric semi-discretization

Consider a large constant-coefficient ODE system

vt = Lv,

where L is J × J skew-symmetric: LT = −L.

Obtain such L e.g. from symmetric (centred) semi-discretization of a
constant-coefficient hyperbolic PDE.

Note all eigenvalues of L are imaginary; and ‖v(t)‖ = ‖v(0)‖, ∀t.

Implicit midpoint in time stable for all k and conserves the invariant

‖vn‖ = ‖v0‖, ∀n.

If k ≤ 2
√
2

ρ(L) then the classical explicit RK4 satisfies

‖vn+1‖ ≤ ‖vn‖, ∀n.

See Example 5.12 (pp. 175–177) in the text.
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Implicit midpoint in time stable for all k and conserves the invariant

‖vn‖ = ‖v0‖, ∀n.

If k ≤ 2
√
2

ρ(L) then the classical explicit RK4 satisfies

‖vn+1‖ ≤ ‖vn‖, ∀n.

See Example 5.12 (pp. 175–177) in the text.
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