CS520: Introduction (Ch. 1)

Uri Ascher

Department of Computer Science
University of British Columbia
asher@cs.ubc.ca
people.cs.ubc.ca/~asher/520.html
Differential equations: ODEs and PDEs
PDE example
Well-posed initial value PDE problems
Numerical methods: a taste of finite differences
Differential equations

Arise in all branches of science and engineering, economics, computer science.

Relate physical state to rate of change. e.g., rate of change of particle is velocity

\[
\frac{dx}{dt} = v(t) = g(t, x), \quad a < t < b.
\]

- **Ordinary differential equation (ODE):** one independent variable ("time").
- **Partial differential equation (PDE):** several independent variables.
Simplest elliptic PDE: Poisson.

\[
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = g(x, y).
\]

Simplest parabolic PDE: heat.

\[
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}.
\]

Simple hyperbolic PDE: wave.

\[
\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0.
\]
ORDINARY DIFFERENTIAL EQUATIONS

e.g., pendulum.
Ordinary differential equations

e.g., pendulum.

\[\frac{d^2 \theta}{dt^2} \equiv \theta'' = -g \sin(\theta), \]

where \(g \) is the scaled constant of gravity, e.g., \(g = 9.81 \), and \(t \) is time.

- Write as first order ODE system: \(y_1(t) = \theta(t), \ y_2(t) = \theta'(t) \). Then \(y_1' = y_2, \ y_2' = -g \sin(y_1) \).
- ODE in standard form:

\[y' = f(t, y), \quad a < t < b. \]

For the pendulum

\[f(t, y) = \begin{pmatrix} y_2 \\ -g \sin(y_1) \end{pmatrix}. \]
SIDE CONDITIONS

e.g.

\[y' = -y \quad \Rightarrow \quad y(t) = c \cdot e^{-t}. \]

- **Initial value problem**: \(y(a) \) given. (In the pendulum example: \(\theta(0) \) and \(\theta'(0) \) given.)
- **Boundary value problem**: relations involving \(y \) at more than one point given. (In the pendulum example: \(\theta(0) \) and \(\theta(\pi) \) given.)

We stick to initial value ODEs!
A SIMPLE PDE

Consider

\[u_t = \nu u_{xx} - 3u_x. \]

- \(t \) and \(x \) are independent variables, \(t \geq 0 \) time, \(0 \leq x \leq b \) space, and \(\nu \) is a parameter.
- Subscripts denote partial derivatives, so PDE is

\[\frac{\partial u}{\partial t} = \nu \frac{\partial^2 u}{\partial x^2} - 3 \frac{\partial u}{\partial x}. \]

- Initial conditions:

\[u(0, x) = u_0(x), \quad 0 \leq x \leq b. \]

- Boundary conditions: e.g. Dirichlet

\[u(t, 0) = g_0(t), \quad u(t, b) = g_b(t). \]
Simple analysis

- Ignore boundary conditions, seek special solution of the form

$$u(t, x) = \hat{u}(t, \xi) e^{i\xi x},$$

where $$i = \sqrt{-1}$$.

- $$\xi$$ is wave number; $$e^{i\xi x}$$ is mode; $$|\hat{u}(t, \xi)|$$ is amplitude.

- For this special solution

$$u_x = i\xi \hat{u} e^{i\xi x}; \quad u_{xx} = -\xi^2 \hat{u} e^{i\xi x}; \quad u_t = \hat{u}_t e^{i\xi x}.$$

- Obtain ODE

$$\hat{u}_t = - (\nu \xi^2 + 3i\xi) \hat{u}.$$
The solution of the initial value ODE problem

\[\hat{u}_t = -\left(\nu \xi^2 + 3\nu \xi\right) \hat{u}, \]

is

\[\hat{u}(t, \xi) = e^{-\left(\nu \xi^2 + 3\nu \xi\right) t} \hat{u}(0, \xi). \]

Hence

\[|\hat{u}(t, \xi)| = e^{-\nu \xi^2 t} |\hat{u}(0, \xi)|, \]

so also

\[|u(t, x)| = e^{-\nu \xi^2 t} |u(0, x)|. \]
Different cases of ν

- If $\nu > 0$, the solution magnitude decays in time, faster for larger wave numbers (typical for **parabolic PDEs**).
- If $\nu = 0$, the solution magnitude remains constant in time (typical for **hyperbolic PDEs**).

But... why do we care so much about such a special solution?!
ASIDE: FOURIER TRANSFORM

- The continuous version of the Fourier transform:
 \[\hat{v}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-i\xi x} v(x) \, dx. \]

- The corresponding inverse transform:
 \[v(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{i\xi x} \hat{v}(\xi) \, d\xi. \]

- \(\xi \) is called wave number when \(x \) is a space variable, and frequency when \(x \) is time.

- Note Parseval equality
 \[\| v \|^2 = \int_{-\infty}^{\infty} |v(x)|^2 \, dx = \int_{-\infty}^{\infty} |\hat{v}(\xi)|^2 \, d\xi = \| \hat{v} \|^2. \]
Return to simple PDE

- Apply Fourier transform in x

\[u(t, x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{\imath \xi x} \hat{u}(t, \xi) d\xi. \]

- Then

\[u_x(t, x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (\imath \xi) e^{\imath \xi x} \hat{u}(t, \xi) d\xi, \]

\[u_{xx}(t, x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (\imath \xi)^2 e^{\imath \xi x} \hat{u}(t, \xi) d\xi, \]

\[u_t(t, x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{\imath \xi x} \hat{u}_t(t, \xi) d\xi. \]

- So, our simple PDE can be written as

\[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{\imath \xi x} \left[\hat{u}_t + (\nu \xi^2 + 3 \imath \xi) \hat{u} \right] d\xi = 0. \]
To satisfy

\[
\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{i \xi x} \left[\hat{u}_t + (\nu \xi^2 + 3i \xi) \hat{u} \right] d\xi = 0
\]

for all \(x \), what’s in square brackets must vanish, so we obtain the ODE

\[
\hat{u}_t = -(\nu \xi^2 + 3i \xi) \hat{u},
\]

for each wavenumber \(\xi \).

The symbol of this PDE is

\[
P(s) = \nu s^2 - 3s,
\]

so

\[
P(\nu \xi) = -(\nu \xi^2 + 3i \xi).
\]
Well-posed initial-value problems

Next, consider the more general case – a constant-coefficient Cauchy problem

\[u_t = P(\partial_x)u, \quad -\infty < x < \infty, \ t > 0 \]
\[u(t, 0) = u_0(x). \]

The initial value problem is well-posed if there are constants \(K \) and \(\alpha \) such that

\[\|u(t)\| \leq Ke^{\alpha t}\|u(0)\| = Ke^{\alpha t}\|u_0\|, \quad \forall u_0 \in \mathcal{L}_2. \]
To check well-posedness, apply \textbf{Fourier transform} as before.

Obtain well-posedness iff there are constants K and α such that

$$
\sup_{-\infty < \xi < \infty} |e^{P(\xi)t}| \leq Ke^{\alpha t}.
$$

Heat Equation

- The simplest parabolic PDE:
 \[u_t = u_{xx}. \]

- we get the symbol
 \[P(\imath \xi) = -\xi^2. \]

- Hence
 \[|e^{P(\imath \xi)t}| = |e^{-\xi^2 t}| \leq 1 \quad \forall \xi. \]

So, \(K = 1, \alpha = 0. \)

- Moreover, higher wave numbers are attenuated more! Thus, the heat equation operator is a smoother.

- Note ill-posedness for \(t < 0 \): heat equation is not reversible.
Example: Heat Equation Smoothing Effect

fig1_4
Advection equation

- A simple hyperbolic PDE:

\[u_t + au_x = 0 \]

- we get

\[P(\xi) = -a\xi. \]

Hence

\[|e^{P(\xi)t}| = |e^{-a\xi t}| = 1 \quad \forall \xi. \]

- Note no attenuation of any wave number. No smoothing of solution in time. Also, advection equation is reversible.

- Solution is constant along characteristics \(x = at \) with wave speed \(\frac{dx}{dt} = a \), so exact solution is:

\[u(t, x) = u_0(x - at). \]
Example: Advection Equation Solution

\[u(x, t) \]
Wave equation

- A better behaved hyperbolic PDE, the classical wave equation:
 \[w_{tt} - c^2 w_{xx} = 0. \]

- Define \(u_1 = w_t, \ u_2 = c w_x, \ u = (u_1, u_2)^T \), obtain
 \[u_t - \begin{pmatrix} 0 & c \\ c & 0 \end{pmatrix} u_x = 0. \]

- The eigenvalues of this matrix are \(\pm c \). They are real, hence the wave equation is hyperbolic.
Laplace Equation

- The simplest elliptic equation is
 \[w_{tt} + w_{xx} = 0. \]

- Same analysis as above but \(c = i \) not real.
- the initial-value problem for Laplace and other elliptic PDEs is not well-posed.
- But the boundary-value problem for elliptic equations is well-posed.
Consider the PDE system

\[u_t = Au_{xx}. \]

This is a parabolic system if \(A \) is symmetric positive definite (SPD). Then the initial value problem (IVP) is well-posed.

The PDE system

\[u_t = Au_x \]

is a hyperbolic system if \(A \) is diagonalizable and has real eigenvalues (like the wave equation). Then IVP is well-posed.
Introduction

- Differential equations: ODEs and PDEs
- PDE example
- Well-posed initial value PDE problems
- Numerical methods: a taste of finite differences
Step sizes $\Delta t = k$, $\Delta x = h$

$$v^n_j = v(t^n, x_j) \equiv v(nk, jh) \approx u(nk, jh)$$
THREE DISCRETIZATIONS FOR ADVECTION EQUATION

Advection equation: $u_t + au_x = 0$.

1. One sided

$$\frac{1}{k}(v_{j+1}^n - v_j^n) + \frac{a}{h}(v_{j+1}^n - v_j^n) = 0.$$

2. Centered in x

$$\frac{1}{k}(v_{j+1}^n - v_j^n) + \frac{a}{2h}(v_{j+1}^n - v_{j-1}^n) = 0.$$

3. Leap-frog

$$\frac{1}{2k}(v_{j+1}^n - v_j^{n-1}) + \frac{a}{2h}(v_{j+1}^n - v_{j-1}^n) = 0.$$

These schemes are all explicit: knowing $\{v^n\}$ march forward to $\{v^{n+1}\}$.
THREE DISCRETIZATIONS: MOLECULAR REPRESENTATION

Set $\mu = k/h$.

\[v_j^{n+1} = v_j^n - \mu a (v_{j+1}^n - v_j^n) \]

\[v_j^{n+1} = v_j^n - \frac{\mu a}{2} (v_{j+1}^n - v_{j-1}^n) \]

\[v_j^{n+1} = v_j^{n-1} - \mu a (v_{j+1}^n - v_{j-1}^n) \]
Simple Example

- Set \(a = 1 \), so \(u_t + u_x = 0 \); consider **Cauchy problem** (pure IVP on half space)

\[
 u(0, x) = u_0(x) = \begin{cases}
 1, & x \leq 0 \\
 0, & x > 0
 \end{cases}.
\]

- The exact solution is \(u(t, x) = u_0(x - t) \), so

\[
 u(1, x) = \begin{cases}
 1, & x \leq 1 \\
 0, & x > 1
 \end{cases}.
\]

- Consider the **one-sided** difference scheme.

 If \(x_0 = 0 \) then \(v_{j}^0 = 0, \ \forall \ j > 0 \), implying \(v_{j}^1 = 0, \ \forall \ j > 0 \), then \(v_{j}^2 = 0, \ \forall \ j > 0 \), etc.

- So for \(Nk = 1 \) obtain \(v_{j}^N = 0, \ \forall \ j > 0 \), which has the error

\[
 |v_{j}^N - u(1, x_j)| = 1 \quad \text{for} \quad 0 < x_j \leq 1.
\]
Simple example cont.

Note **domain of dependence** (triangle spanned by black dots) of numerical method. The characteristic line arrives from outside it.
Another simple example

Setting $a = -1$, so $u_t - u_x = 0$, likewise have inconsistency if $\mu > 1$.
The domain of dependence of the PDE must be contained in the domain of dependence of the difference scheme.
Stability of numerical method

- CFL condition is necessary but not sufficient for scheme to be well-behaved.
- Require stability: For fixed $h > 0$ small enough, solution norm should not increase in time: as $k \to 0$, $nk \leq t_f$, must have $\|v^{n+1}\| \leq \|v^n\|$.

$$\|v^n\| = \sqrt{h \sum_j (v^n_j)^2}.$$

- This condition for the numerical method parallels well-posedness for the PDE problem.
- So, consider the same sort of analysis for

$$v(t, x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{i\xi x} \hat{v}(t, \xi) d\xi.$$
Stability of one-sided scheme

For advection equation \(u_t + au_x = 0 \) consider one-sided scheme.

Substituting in one-sided scheme,

\[
\int_{-\infty}^{\infty} e^{i\xi x} \hat{\nu}(t + k, \xi) d\xi = \int_{-\infty}^{\infty} \left[e^{i\xi x} - \mu a \left(e^{i\xi(x+h)} - e^{i\xi x} \right) \right] \hat{\nu}(t, \xi) d\xi.
\]

Integrands must agree:

\[
\hat{\nu}(t + k, \xi) = \left[1 - \mu a e^{i\xi h} - 1 \right] \hat{\nu}(t, \xi).
\]

Set \(\zeta = \xi h \) and \(g(\zeta) = 1 - \mu a (e^{i\zeta} - 1) \). So, each Fourier mode is multiplied by \(g(\zeta) \) over each time step.

For stability, require amplification factor to satisfy

\[
|g(\zeta)| \leq 1, \forall \zeta.
\]
Stability of one-sided scheme cont.

- Need $|g(\zeta)| = |1 - \mu a(e^{\zeta} - 1)| \leq 1, -\pi \leq \zeta \leq \pi$.
- Must have $a \leq 0$.
- For $a \leq 0$, circle centred at $1 + \mu a$ with radius $-\mu a$ must be contained in unit disk.
- This implies $(-a)\mu \leq 1$, obtaining stability iff CFL condition holds!
For the scheme

\[(v_j^{n+1} - v_j^n) + \frac{\mu a}{2} (v_{j+1}^n - v_{j-1}^n) = 0,\]

(forward in time, centred in space), apply same analysis.

Obtain

\[\hat{v}(t + k, \xi) = \left[1 - \frac{\mu a}{2} (e^{i\xi h} - e^{-i\xi h})\right] \hat{v}(t, \xi).\]

So,

\[g(\zeta) = 1 - \frac{\mu a}{2} (e^{i\zeta} - e^{-i\zeta}) = 1 - \mu a \sin \zeta.\]

Here, \(|g|^2 = 1 + \mu^2 a^2 \sin^2 \zeta > 1 \) so this scheme is unconditionally unstable.
Stability of leap-frog scheme

For the leap-frog scheme

\[(v_j^{n+1} - v_j^{n-1}) + \mu a(v_{j+1}^n - v_{j-1}^n) = 0,\]

(centred in time, centred in space), apply same analysis.

Obtain

\[\hat{v}(t + k, \xi) = \hat{v}(t - k, \xi) - \mu a(e^{i\xi h} - e^{-i\xi h})\hat{v}(t, \xi).\]

Ansatz: try to solve this with \(\hat{v}(t_n, \xi) = \kappa^n\).

Substitute and divide by \(\kappa^{n-1}\), obtaining

\[\kappa^2 = 1 - 2(\mu a \sin \xi)\kappa.\]

Solve quadratic equation:

\[g(\xi) \sim \kappa = -\mu a \sin \xi \pm \sqrt{-\mu^2 a^2 \sin^2 \xi + 1}.\]
Stability of leap-frog scheme cont.

- **Ansatz**: try to solve this with \(\hat{\nu}(t_n, \xi) = \kappa^n \).
 Substitute and divide by \(\kappa^{n-1} \), obtaining
 \[
 \kappa^2 = 1 - 2(\nu a \sin \xi) \kappa.
 \]

- Solve quadratic equation:
 \[
 g(\xi) \sim \kappa = -\nu a \sin \xi \pm \sqrt{-\mu^2 a^2 \sin^2 \xi + 1}.
 \]

- To get \(|\kappa| \leq 1 \), must have nonnegative argument under square root sign. Obtain **stability** iff
 \[
 \mu |a| \leq 1
 \]
 (which again agrees with the CFL condition).
Finite differences

Numerical example

\[u_t = u_x, \quad u_0(x) = \sin(\eta x), \text{ periodic BC}. \]

- Run `fig1_12`
- Play with step sizes \(k, h \), oscillation parameter \(\eta \).
- Check stability and accuracy
- See Figure 1.12 and Table 1.1 in text.