1. Consider the Cauchy problem for the constant coefficient PDE

\[u_t = P(\partial_x) u, \quad P(\partial_x) = \sum_{j=1}^{m} p_j \frac{\partial^j}{\partial x^j}. \]

(a) Assuming that \(p_m \) is a complex scalar, show that if \(i^m p_m \) has a positive real part, then the problem cannot be well-posed.

(b) Assuming that \(p_j \) are all real, \(m \) is odd, and \(p_{2l} = 0, \ l = 0, 1, \ldots, (m - 1)/2 \), show that

\[|e^{P(i\xi)t}| = 1, \ -\infty < \xi < \infty. \]

What does this imply regarding the smoothing properties of the solution operator? Does integrating backward in time lead to a well-posed problem?

2. The celebrated Black-Scholes model for the pricing of stock options is central in mathematical finance. The PDE is given by

\[u_t + \frac{1}{2} \sigma^2 x^2 u_{xx} + r x u_x - r u = 0, \quad 0 < x < \infty, \quad t \leq T. \tag{1} \]

For the sake of completeness let us add that \(u \) is the sought value of the option under consideration, \(t \) is time, \(x \) is the current value of the underlying asset, \(r \) is the interest rate, \(\sigma \) the volatility of the underlying asset, \(T \) the expiry date and \(E \) is the exercise price. In general, \(r \) and \(\sigma \) may vary, but here they are assumed to be known constants, as are \(E \) and \(T \).

For the European call option we have the terminal condition

\[u(T, x) = \max(x - E, 0), \tag{2a} \]

and the boundary conditions

\[u(t, 0) = 0, \quad u(t, x) \sim x - E e^{-r(T-t)} \quad \text{as} \ x \to \infty. \tag{2b} \]
(a) Show that the transformation

\[x = E e^y, \quad t = T - \frac{2s}{\sigma^2}, \quad u = Ev(s, y), \]

results in the initial value PDE

\[v_s = v_{yy} + (\kappa - 1)v_y - \kappa v, \quad -\infty < y < \infty, \quad v(0, y) = \max(e^y - 1, 0), \]

where \(\kappa = \frac{2r}{\sigma^2} \).

(b) Show further that transforming

\[v = e^{\gamma y + \beta s} w(s, y), \quad \text{where} \]
\[\gamma = \frac{(1 - \kappa)}{2}, \quad \beta = -\frac{(\kappa + 1)^2}{4}, \]

yields the PDE problem

\[w_s = w_{yy}, \quad -\infty < y < \infty, \quad s \geq 0, \quad w(0, y) = \max(e^{\frac{1}{2}(\kappa + 1)y} - e^{\frac{1}{2}(\kappa - 1)y}, 0). \]

(c) Prove that the terminal-value PDE (1)-(2) is well-posed.

[Note that the solution of (4), and therefore also of (3) and (1)-(2), can be specified exactly in terms of the integral

\[N(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\zeta^2/2} d\zeta. \]

However, you don’t need this for the purpose of the present exercise.]

3. Consider the advection equation

\[u_t + au_x = 0, \]

and recall that the consistent scheme (1.15b) is unconditionally unstable. The Lax-Friedrichs scheme is a variation:

\[v_j^{n+1} = \frac{1}{2} (v_{j-1}^n + v_{j+1}^n) - \frac{\mu a}{2} (v_{j+1}^n - v_{j-1}^n). \]

Show that the Lax-Friedrichs scheme is stable, provided that the CFL condition holds.

4. Carry out calculations using the three difference schemes (1.15) introduced in class and in the text for the problem

\[u_t = 2u_x, \quad u(0, x) = u_0(x) = \sin(\eta x), \]
with periodic boundary conditions on $[-\pi, \pi]$. Set $\eta = 2$, $\mu = 0.4$, and employ the three spatial step sizes $h = .1\pi$, $.01\pi$ and $.001\pi$. Record the maximum errors at $t = 1$ using the three schemes. Try also $\eta = 1$ and $\eta = 10$ to see trends, but do not report the obtained errors. What are your observations?

5. The TR-BDF2 is a one-step method for the ODE $y' = f(t, y)$ consisting of applying first the trapezoidal scheme over half a step $k/2$ to approximate the midpoint value, and then the BDF2 scheme over one step:

$$
y_{n+1/2} = y_n + \frac{k}{4}(f(y_n) + f(y_{n+1/2})),
$$
(5a)

$$
y_{n+1} = \frac{1}{3}[4y_{n+1/2} - y_n + kf(y_{n+1})].
$$
(5b)

One advantage is that only two systems of the original size need be solved per time step.

(a) Write the method (5) as a Runge-Kutta method in standard tableau form (i.e. find A and b). This is an instance of a diagonally implicit Runge-Kutta (DIRK) method: please explain this name.

(b) Show that both the order and the stage order equal 2.

(c) Show that the stability function satisfies $R(-\infty) = 0$: this method is L-stable and has stiff decay.

(d) Can you construct an example where this method would fail where the BDF2 method would not?