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1.1– Outline

• Importance Sampling.

• Normalized Importance Sampling.

• Importance Sampling versus Rejection Sampling.
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2.1– Summary of Last Lecture

• Let π (x) be a probability density on X .

• Monte Carlo approximation is given by

π̂N (x) =
1
N

N∑
i=1

δX(i) (x) where X(i) i.i.d.∼ π.

• For any ϕ : X →R

Eπ̂N
(ϕ (X)) =

1
N

N∑
i=1

ϕ
(
X(i)

)
� Eπ (ϕ (X))

and more precisely

EX [Eπ̂N
(ϕ (X))] = Eπ (ϕ (X)) and varX (Eπ̂N

(ϕ (X))) =
varπ (ϕ (X))

N
.
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2.1– Summary of Last Lecture

• Direct methods feasible for standard distributions: inverse method,
composition, etc.

• In case where π ∝ π∗ does not admit any standard form, we can use
a proposal distribution q on X where q ∝ q∗.

• We need q to ‘dominate’ π; i.e.

C = sup
x∈X

π∗ (x)
q∗ (x)

< +∞.
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2.2– Accept Reject - Illustration

Consider C′ ≥ C. Then the accept/reject procedure proceeds as follows:

Accept/Reject procedure

1. Sample Y ∼q and U ∼ U (0, 1).

2. If U < π∗(Y )
C′q∗(Y ) then return Y ; otherwise return to step 1.
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2.2– Accept Reject - Illustration

• This is a simple generic algorithm but it requires coming up with
a bound C.

• Its performance typically degrade exponentially fast with
the dimension of X.

• It seems you are wasting some information by rejecting samples.

• You need to wait a random time to obtain some samples from π.

• Is it possible to “recycle” these samples?
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3.1– Importance Sampling

• Consider again the target distribution π and the proposal distribution q.

We only require

π (x) > 0 ⇒ q (x) > 0.

• In this case, the Importance Sampling (IS) identity is

Eπ(ϕ(X)) =
∫

X

ϕ(x)π(x)dx =
∫

X

ϕ(x)
π(x)
q(x)

q(x)dx = Eq(w(X)ϕ(X))

where the so-called Importance Weight is given by

w (x) =
π(x)
q(x)

• This is a simple yet very flexible identity.
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3.1– Importance Sampling

• Monte Carlo approximation of q is

q̂N (x) =
1
N

N∑
i=1

δX(i) (x) where X(i) i.i.d.∼ q.

• It follows that an estimate of Eπ(ϕ(X)) = Eq(w(X)ϕ(X)) is

Eq̂N
(w(X)ϕ(X)) =

1
N

N∑
i=1

w(X(i))ϕ(X(i))

• It corresponds to the following approximation

π̂N (x) =
1
N

N∑
i=1

w(X(i))δX(i) (x)
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3.1– Importance Sampling

• We have

EX [Eq̂N
(w(X)ϕ (X))] = Eπ (ϕ (X))

and

varX (Eq̂N
(ϕ (X))) =

varq (w(X)ϕ (X))
N

=
Eπ

(
w(X)ϕ2 (X)

)− E2
π (ϕ (X))

N

• In practice, it is recommended to ensure

Eπ (w(X)) =
∫

π2 (x)
q (x)

dx < ∞.

• Even if it is not necessary, it is actually even better to ensure that

sup
x∈X

w (x) < ∞.
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3.2– Example

Target double exponential distributions and two IS distributions
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3.2– Example

IS approximation obtained using a Gaussian IS distribution

−4 −3 −2 −1 0 1 2 3 4
0

0.002

0.004

0.006

0.008

0.01

0.012

Values of x

V
al

ue
s 

of
 th

e 
w

ei
gh

ts

– Importance Sampling Page 11



3.2– Example

IS approximation obtained using a Student-t IS distribution
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3.3– Optimal IS Distribution

• For a given test function, one can minimize the IS variance using

qopt (x) =
|ϕ (x)|π (x)∫

X |ϕ (x)|π (x) dx

Proof:

varq (w(X)ϕ (X)) =
∫

q (x)
π2 (x)
q2 (x)

ϕ2 (x) dx −
(∫

π (x) ϕ (x) dx

)2

and

∫
q (x)

π2 (x)
q2 (x)

ϕ2 (x) dx ≥
(∫

q (x)
π (x) |ϕ (x)|

q (x)
dx

)2

=
(∫

π (x) |ϕ (x)| dx

)2

.

This lower bound is attained for qopt (x) .
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3.4– Normalized Importance Sampling

• In most if not all applications we are interested in, standard IS cannot be
used as the importance weights w (x) = π (x) /q (x) cannot be evaluated
in closed-form. In practice, we typically only know π (x) ∝ π∗ (x) and
q (x) ∝ q∗ (x) .

• Normalized IS identity is based on

π (x) =
π∗ (x)∫
π∗ (x) dx

=
w∗ (x) q∗ (x)∫
w∗ (x) q∗ (x) dx

=
w∗ (x) q (x)∫
w∗ (x) q (x) dx

where

w∗ (x) =
π∗ (x)
q∗ (x)

.
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3.4– Normalized Importance Sampling

• For any test function ϕ, we can also write

Eπ (ϕ (X)) =
Eq (w∗ (X)ϕ (X))

Eq (w∗ (X))
=

Eq (w (X)ϕ (X))
Eq (w (X))

.

• Given a Monte Carlo approximation of q; q̂N (x) = 1
N

∑N
i=1 δX(i) (x) then

π̂N (x) =
∑N

i=1 W (i)δX(i) (x) where W (i) =
w∗(X(i))∑N

j=1 w∗(X(j)) ,

Eπ̂N
(ϕ (X)) =

∑N
i=1 W (i)ϕ

(
X(i)

)
.

• The estimates are a ratio of estimates.
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3.4– Normalized Importance Sampling

• Contrary to standard IS, this estimate is biased but asymptotically unbiased
by the LLN it is asymptotically consistent.

• Derivation of the asymptotic bias and variance based on the delta method.
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3.5– Proof using the Delta Method

• Assume you have Z = g (A, B) with E (A) = μA and E (B) = μB then
a two-dimensional Taylor series gives around μ = (μA, μB)

Z � g (μ) + (A − μA)
∂g

∂a
(μ) + (B − μB)

∂g

∂b
(μ) .

It follows that

E (Z) � g (μ) ,

V ar (Z) � σ2
A

∂g

∂a

2

(μ) + σ2
B

∂g

∂b

2

(μ) + 2
∂g

∂a
(μ)

∂g

∂b
(μ)σA,B .

• In our case

Z = Eπ̂N
(ϕ (X)) =

EqN (w∗ (X)ϕ (X))
EqN

(w∗ (X))
=

A

B
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3.6– Asymptotic Variance

• We have

∂g

∂a
(μ)

∂g

∂b
(μ) = −μA

μ3
B

,
∂g

∂a

2

(μ) =
1

μ2
B

,
∂g

∂b

2

(μ) =
μ2

A

μ4
B

,

μA = Eq (w∗ (X)ϕ (X)) , μB = Eq (w∗ (X)) ,

σ2
A =

varq (w∗ (X)ϕ (X))
N

, σ2
B =

varq (w∗ (X))
N

σA,B =
Eq

(
w∗ (X)2 ϕ (X)

)
− μA.μB

N
.
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3.6– Asymptotic Variance

• It follows that

V ar (Eπ̂N
(ϕ (X))) � σ2

A

∂g

∂a

2

(μ) + σ2
B

∂g

∂b

2

(μ) + 2
∂g

∂a
(μ)

∂g

∂b
(μ)σA,B

=
σ2

A

μ2
B

+
σ2

Bμ2
A

μ4
B

− 2
μAσA,B

μ3
B

• Asymptotically, we have a central limit theorem

√
N (Eπ̂N

(ϕ (X)) − Eπ (ϕ (X))) ⇒ N (
0, σ2

IS (ϕ)
)

where

σ2
IS (ϕ) =

∫
π2 (x)
q (x)

(ϕ (x) − Eπ (ϕ))2 dx
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3.6– Asymptotic Variance

• In practice, it is now necessary but highly recommended to select
the proposal q such that

sup
x∈X

w (x) < ∞ or equivalently sup
x∈X

w∗ (x) < ∞.

• There is some empirical evidence that Normalized IS performs better

than standard IS in numerous cases.
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3.7– Asymptotic Bias

• Using a second order Taylor expansion

Z � g (μ) + (A − μA)
∂g

∂a
(μ) + (B − μB)

∂g

∂b
(μ)

+
1
2

(A − μA)2
∂2g

∂a2
(μ) +

1
2

(B − μB)2
∂2g

∂b2
(μ) + (A − μA) (B − μB)

∂2g

∂a∂b
(μ)

gives

E (Eπ̂N
(ϕ (X))) � g (μ) +

1
2
σ2

A

∂2g

∂a2
(μ) +

1
2
σ2

B

∂2g

∂b2
(μ) + σA,B

∂2g

∂a∂b
(μ) .

• It follows that asymptotically we have

N (Eπ̂N
(ϕ (X)) − Eπ (ϕ (X))) → −

∫
π2 (x)
q (x)

(ϕ (x) − Eπ (ϕ)) dx.

• We have Bias2 of order 1/N2 and Variance of order 1/N .
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3.8– Optimal Importance Sampling

• For a given test function, one can minimize the normalized IS asymptotic
variance using

qopt (x) =

∣∣ϕ (x) − Eπ(ϕ)

∣∣π (x)∫
X
∣∣ϕ (x) − Eπ(ϕ)

∣∣π (x) dx

Proof:∫
q (x)

π2 (x)
q2 (x)

(ϕ (x) − Eπ (ϕ))2 dx ≥
(∫

q (x)
π (x) |ϕ (x) − Eπ (ϕ)|

q (x)
dx

)2

=
(∫

π (x) |ϕ (x) − Eπ (ϕ)| dx

)2

and this lower bound is attained for qopt (x) .

• This result is practically useless because it requires knowing Eπ (ϕ) but
it suggests approximations.
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3.9– In practice...

• In statistics, we are usually not interested in a specific ϕ but in several
functions and we prefer having q (x) as close as possible to π (x) .

• For flat functions, one can approximate the variance by

var (Eπ̂N
(ϕ (X))) � (1 + varq (w (X)))

var (Eπ (ϕ (X)))
N

.

• Simple interpretation: The N weighted samples are approximately equivalent
to M unweighted samples from π where

M =
N

1 + varq (w (X))
≤ N.
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3.9– In practice...

• However, we are often interested in estimating the ratio of
normalizing constants

∫
π∗ (x) dx∫
q∗ (x) dx

=
∫

w∗ (x) q (x) dx = Eq [w∗ (X)] .

using

EqN [w∗ (X)] =
1
N

N∑
i=1

w∗
(
X(i)

)
which is unbiased and has variance

var [EqN [w∗ (X)]] =
varq (w∗ (X))

N
.
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3.10– Open Question

• Clearly if you have q (x) = π (x) then

var [EqN [w∗ (X)]] = 0

• However if q (x) = π (x) then the estimate is simply

EqN [w∗ (X)] =
∫

π∗ (x) dx∫
q∗ (x) dx

.

• Open Question: How could you come up with a good estimate of
∫

π∗ (x) dx

based on samples of π.
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3.11– Application to Bayesian Inference

• Consider a Bayesian model: prior π (θ) and likelihood f (x| θ) .

• The posterior distribution is given by

π (θ|x) =
π (θ) f (x| θ)∫

Θ
π (θ) f (x| θ) dθ

∝ π∗ (θ|x) where π∗ (θ|x) = π (θ) f (x| θ) .

• We can use the prior distribution as a candidate distribution
q (θ) = q∗ (θ) = π (θ).

• We also get an estimate of the marginal likelihood

∫
Θ

π (θ) f (x| θ) dθ.
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3.11– Application to Bayesian Inference

• IS is more powerful than you think.

• Assume you have say to compute the importance weight

w
(
θ(i)
)
∝
∫

f (x, z| θ) dz;

i.e. the likelihood is very complex and might not admit
a closed-form expression.

• You do NOT need to compute w
(
θ(i)
)

exactly,
an unbiased estimate of it is sufficient.
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3.12– Importance sampling does not work well in high-dimension

• Consider the case where X= R
n

π (θ) =
1

(2π)n/2
exp

(
−
∑n

i=1 θ2
i

2

)
and

qσ (θ) =
1

(2πσ2)n/2
exp

(
−
∑n

i=1 θ2
i

2σ2

)

• We have for any σ > 1

wσ (θ) =
π (θ)
qσ (θ)

= σn exp

(
−

n∑
i=1

θ2
i

2

(
1 − 1

σ2

))
≤ σn for any θ

and
varqσ

(
π (θ)
qσ (θ)

)
= σnσ′n − 1 with σ′2 =

σ2

σ2 − 1/2
> 1

• Despites having a very good proposal then the variance of the weights
increases exponentially fast with the dimension of the problem.
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3.13– Rejection Sampling versus Importance Sampling

• Given N samples from q, we estimate Eπ (ϕ (X)) through IS

ÊIS
π (ϕ (X)) =

∑N
i=1 w∗ (X(i)

)
ϕ
(
X(i)

)∑N
i=1 w∗ (X(i)

)
or we “filter” the samples through rejection and propose instead

ÊRS
π (ϕ (X)) =

1
K

K∑
k=1

ϕ
(
X(ik)

)
where K is a random variable.

• We want to know which strategy performs the best.

– Importance Sampling Page 29



3.14– Rejection Sampling is a special case of Importance Sampling

• Define the artificial target π (x, y) on X × [0, 1] as

π (x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Cq∗(x)∫
π∗(x)dx

, for x ∈ X , y ∈
[
0, π∗(x)

Cq∗(x)

]
0 otherwise

then ∫
π (x, y) dy =

∫ π∗(x)
Cq∗(x)

0

Cq∗ (x)∫
π∗ (x) dx

dy = π (x) .

• Now let us consider the proposal distribution

q (x, y) = q (x) U[0,1] (y) for (x, y) ∈ X × [0, 1] .
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3.14– Rejection Sampling is a special case of Importance Sampling

• Then rejection sampling is nothing but IS on X × [0, 1] where

w (x, y) =
π (x, y)

q (x) U[0,1] (y)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C
∫

q∗(x)dx∫
π∗(x)dx

for Y (i) ∈
[
0,

π∗(X(i))
Cq∗(X(i))

]
0, otherwise.

• We have

ÊRS
π (ϕ (X)) =

1
K

K∑
k=1

ϕ
(
X(ik)

)
=
∑N

i=1 w
(
X(i), Y (i)

)
ϕ
(
X(i)

)∑N
i=1 w

(
X(i), Y (i)

) .

• Compared to standard IS, RS performs IS on an enlarged space.
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3.14– Rejection Sampling is a special case of Importance Sampling

• The variance of the importance weights from RS is higher than
for standard IS:

varq [w (X, Y )] ≥ varq [w (X)] .

More precisely, we have

var [w (X, Y )] = var [E [w (X, Y )|X ]] + E [var [w (X, Y )|X ]]

= var [w (X)] + E [var [w (X, Y )|X ]] .

• To compute integrals, Rejection sampling is inefficient
and you should simply use IS.
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3.15– Discussion

• Like Rejection, IS is useful for small non-standard distributions
but collapses for most “interesting” problems.

• In both cases, the problem is to be able to design
“clever” proposal distributions.

• Towards the end of this course, we will present advanced
dynamic method to address this problem.
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