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1.1— Outline

e Importance Sampling.

e Normalized Importance Sampling.

e Importance Sampling versus Rejection Sampling.
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2.1-— Summary of Last Lecture

e Let m (x) be a probability density on X.

e Monte Carlo approximation is given by
1 N ..
N (z) = N ; Sx () where X P

e For any v : X —R

Bav (0 (X)) = 5 30 (X9) = B (0 (X))

and more precisely

vary (¢ (X))

Ex [Bzy (¢ (X))] = Ex (¢ (X)) and varx (Bzy (¢ (X)) = ——
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2.1-— Summary of Last Lecture

e Direct methods feasible for standard distributions: inverse method,

composition, etc.

e In case where m o< m* does not admit any standard form, we can use

a proposal distribution ¢ on X where q o< q*.

e We need ¢ to ‘dominate’ 7; i.e.

C' = sup ™ (2)

» < +00.
zeX 4 (37)
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2.2— Accept Reject - Illustration

Consider C’ > C. Then the accept/reject procedure proceeds as follows:

Accept /Reject procedure

1. Sample Y~q and U ~ U (0, 1).

2. U < qug(g) then return Y'; otherwise return to step 1.
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2.2— Accept Reject - Illustration

e This is a simple generic algorithm but it requires coming up with

a bound C.

e Its performance typically degrade exponentially fast with

the dimension of X.

e It seems you are wasting some information by rejecting samples.

e You need to wait a random time to obtain some samples from .

e s it possible to “recycle” these samples?
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3.1— Importance Sampling

e Consider again the target distribution m and the proposal distribution g.

We only require

m(z) >0=q(z)>0.

e In this case, the Importance Sampling (IS) identity is

Er(p(X)) = / o(2)m(z)dz = / w(a:)%q(x)da: — B, (w(X)p(X))

where the so-called Importance Weight is given by

e This is a simple yet very flexible identity.
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3.1— Importance Sampling

e Monte Carlo approximation of ¢ is
G () = 3 bxeo (a) where X018 g
o It follows that an estimate of F,(p(X)) = E,(w(X)p(X)) is

Fax (w(X)9(X)) =+ 3 w(X)p(x )

e It corresponds to the following approximation

i () = 1 D w(X )iy (2)
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3.1— Importance Sampling

e We have

and

vars (Ba (o (X)) "7 (0(X)0 (X)) _ Ex (w(X)? (X)) = B2 (9 (X))

N N

e In practice, it is recommended to ensure

m? (x)

dxr < 00.
q(x)

By (w(X) = [

e Even if it is not necessary, it is actually even better to ensure that

supw (x) < 00.
reEX
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3.2— Example

Target double exponential distributions and two IS distributions
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3.2— Example

IS approximation obtained using a Gaussian IS distribution

Values of the weights
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3.2— Example

IS approximation obtained using a Student-t IS distribution
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3.3— Optimal IS Distribution

e For a given test function, one can minimize the IS variance using

opt ) = |g0(33)|7'('(£13>
T = s (@) 7 (2) da

[10 500 waez (oo ™) - ([r@e@ie)

This lower bound is attained for ¢°P* (z).
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3.4— Normalized Importance Sampling

e In most if not all applications we are interested in, standard IS cannot be
used as the importance weights w (x) = 7 (x) /q () cannot be evaluated

in closed-form. In practice, we typically only know m () o« 7* () and

q(z) < q* ().

e Normalized IS identity is based on

e @ 0 @@ @)W
[m*(z)dx  [w*(x)q* (x)dx  [w*(z)q(x)dx
where
RN C)
(@) q* ()
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3.4— Normalized Importance Sampling

e For any test function ¢, we can also write

e Given a Monte Carlo approximation of ¢; gy (z) = % Zf\le dx ) () then

w” (X))

Eiy (9 (X)) =300, W (XO) .

e The estimates are a ratio of estimates.
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3.4— Normalized Importance Sampling

e Contrary to standard IS, this estimate is biased but asymptotically unbiased
by the LLN it is asymptotically consistent.

e Derivation of the asymptotic bias and variance based on the delta method.
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3.5— Proof using the Delta Method

e Assume you have Z = g (A, B) with F (A) = ua and E (B) = up then
a two-dimensional Taylor series gives around p = (pa, uB)

Z~ g () + (A~ pa) 22 (1) + (B — ) 22 ().

It follows that

E(Z)~g(u),
2692 2392 dg 9,
VW(Z)ﬁaA% (M)+UB% () 2@(#)—[)(M)UAB
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3.6— Asymptotic Variance

e We have
dg , | 9y pwa 0g%, 1 8g%, . pk
Ha = Eq(w*(X)QO(X))v :LLB—Eq(w*(X))a
2 _ varg (W (X) (X)) o varg (w” (X))
A N Y B N
Eq (’w (X)% ¢ (X)) — HA-IB
OA,B —
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3.6— Asymptotic Variance

e It follows that

Var (Ezy (¢ (X))
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e Asymptotically, we have a central limit theorem

VN (Bzy (9(X)) = Ex (9 (X)) = N (0,075 (¢))

where
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3.6— Asymptotic Variance

e In practice, it is now necessary but highly recommended to select

the proposal ¢ such that

sup w () < oo or equivalently sup w™ (z) < oo.
reX reX

e There is some empirical evidence that Normalized IS performs better

than standard IS in numerous cases.
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3.7— Asymptotic Bias

e Using a second order Taylor expansion

gives

E (Ery (9 (X)) = g () + 0% 55 () + 50555 (1) +oams o ().

e It follows that asymptotically we have

N (B (¢ (X)) = Ex (p (X)) =~ [ ()

q(x)

(¢ (x) — Ex (¢)) da.

e We have Bias? of order 1/N? and Variance of order 1/N.
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3.8— Optimal Importance Sampling

e For a given test function, one can minimize the normalized IS asymptotic

variance using

e @) = Ergy| 7 (2)
[ |¢ (2) = Exgpy| 7 (x) da

¢ (z)
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_ (/w<x>|¢<az>—Ew<s@>dx)2

and this lower bound is attained for ¢°P* (z).

e This result is practically useless because it requires knowing F (¢) but
it suggests approximations.
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3.9— In practice...

e In statistics, we are usually not interested in a specific ¢ but in several

functions and we prefer having ¢ (x) as close as possible to 7 ().

e For flat functions, one can approximate the variance by

var (Ex (¢ (X)))
~ .

var (Bry (2 (X)) = (1 + varg (w (X))

e Simple interpretation: The N weighted samples are approximately equivalent

to M unweighted samples from 7 where

N
M = < N.
1 +wvary (w (X))
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3.9— In practice...

e However, we are often interested in estimating the ratio of

normalizing constants

Jr (@) dz _ w* (z) q (x) de = E, [w*
e = [ v @@ de = By ()
using
By 0" (X)) = 1= Y- w0 (X))

which is unbiased and has variance

var |E

agnN
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3.10— Open Question

e Clearly if you have ¢ (z) = 7 () then

var [Eyy [w (X)]] = 0

e However if ¢ () = 7 () then the estimate is simply

_ [ 7* (z) dx
Jq () dz’

Eqy [w” (X)]

e Open Question: How could you come up with a good estimate of f ™ (x) dx

based on samples of 7.
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3.11— Application to Bayesian Inference

e Consider a Bayesian model: prior 7 (#) and likelihood f (x|@).

e The posterior distribution is given by

x 7 (0| x) where n* (0| z) =7 (0) f (z|0).

e We can use the prior distribution as a candidate distribution

q(0) =q" () =7 (0).

e We also get an estimate of the marginal likelihood

/W(Q)f(:l:w)d@.
©
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3.11— Application to Bayesian Inference

e IS is more powerful than you think.

e Assume you have say to compute the importance weight

w(ﬁ(i)) oc/f(zz:,z\@) dz;

i.e. the likelihood is very complex and might not admit

a closed-form expression.

e You do NOT need to compute w (6(9) exactly,

an unbiased estimate of it is sufficient.
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3.12— Importance sampling does not work well in high-dimension

e Consider the case where X= R"

() = —— exp (—Z?ﬂ@?)

and 1 S 62
Qo ((9) = 5 €Xp (_ z:12 i )
(27TO'2)n/ 20

e We have for any o > 1

wa(ﬁ)—%w)—a exp(Z;( ;))ga for any 6

1=1

and  (0) 52
varg, (C]a (9)) = o"0™ — 1 with 0'* = 71/ > 1

e Despites having a very good proposal then the variance of the weights
increases exponentially fast with the dimension of the problem.
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3.13— Rejection Sampling versus Importance Sampling

e Given N samples from ¢, we estimate E (¢ (X)) through IS

>l wt (X)) o (X))
27];11 w* (X(i)>

or we “filter” the samples through rejection and propose instead

EIS (p (X)) =

7 (p (X)) = ;fso (X))

where K is a random variable.

e We want to know which strategy performs the best.

— Importance Sampling Page 29



3.14— Rejection Sampling is a special case of Importance Sampling

e Define the artificial target 7 (x,y) on X x |0, 1] as

i

Cq*(x) " (z)
fﬂ'?‘(ac)dac’ forv e X,y e {O, Cq*(x)}

T (z,y) =

0 otherwise
\

then

T ()

/ﬁ(w,y) dy = /OW fifzx(;ﬂ;xdy =7 (x).

e Now let us consider the proposal distribution

q(z,y) = q(x)Upq (y) for (z,y) € X x[0,1].
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3.14— Rejection Sampling is a special case of Importance Sampling

e Then rejection sampling is nothing but IS on X x |0, 1] where

/

C [ ¢ (z)dw () (X))
ﬁ(gj7 y) [ 7 (z)dx for Y** € [O’ Cq* (X(i))

0, otherwise.
\

e We have

Zi\; w (X(i)7 y(i)) % (X(i))
fo\; w (X(i),Y(i)) |

EFS (p (X)) = %is& (x0) =
k=1

e Compared to standard IS, RS performs IS on an enlarged space.
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3.14— Rejection Sampling is a special case of Importance Sampling

e The variance of the importance weights from RS is higher than
for standard IS:

vary lw (X,Y)] > var, [w (X)].

More precisely, we have

var lw(X,Y)] = wvar|EFlw((X,Y)|X]]+ Fvar |[w(X,Y)] X]]

= wvar|w (X)|+ E [var [w (X, Y)| X]].

e To compute integrals, Rejection sampling is inefficient

and you should simply use IS.
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3.15— Discussion

e Like Rejection, IS is useful for small non-standard distributions

but collapses for most “interesting” problems.

e In both cases, the problem is to be able to design

“clever” proposal distributions.

e Towards the end of this course, we will present advanced

dynamic method to address this problem.
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