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• CS students: don’t forget to re-register in CS-535D.

• Even if you just audit this course, please do register.
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2.1– Outline

• Bayesian Statistics.

• Testing Hypotheses: The Bayesian way.

• Bayesian Model Selection.
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3.1– Ingredients of Bayesian Inference

• Given the prior π (θ) and the likelihood l (θ|x) = f (x| θ) then
Bayes’s formula yields

π (θ|x) =
f (x| θ)π (θ)∫
f (x| θ)π (θ) dθ

.

⇒ It represents all the information on θ than can be extracted from x.

• It satisfies sufficiency and likelihood principles.

• On average (with respect to X), reduce the uncertainty about θ; i.e.

E [var [θ|X ]] = var [θ] − var [E [θ|X ]] ≤ var [θ] .
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3.2– Variance Decomposition Identity

If (θ, X) are two scalar random variables then we have

var (θ) = E (var (θ|X)) + var (E (θ|X)) .

Proof:

var (θ) = E
(
θ2
)− E (θ)2

= E
(
E
(
θ2
∣∣X))− (E (E (θ|X)))2

= E
(
E
(
θ2
∣∣X))− E

(
(E (θ|X))2

)

+E
(
(E (θ|X))2

)
− (E (E (θ|X)))2

= E (var (θ|X)) + var (E (θ|X)) .
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3.3– Be careful

• Such results appear attractive but one should be careful.

• Here there is an underlying assumption that the observations
are indeed distributed according to π (x) =

∫
π (θ) f (x| θ) dθ.
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3.4– Simple Binomial example

• (Bayes, 1764): A billiard ball W is rolled on a line of length one,
with a uniform probability of stopping anywhere. It stops at θ.
A second ball O is then rolled n times under the same assumptions
and X denotes the number of times the ball O stopped on the left of W.

Given X , what inference can we make on θ?
• WeX | θ ∼ B (n, θ) binomial distribution and select θ ∼ U [0, 1] and

Pr (X = x| θ) = f (x| θ) =

⎛
⎜⎜⎜⎝

n

x

⎞
⎟⎟⎟⎠ θx (1 − θ)n−x ⇒ π (θ|x) =

θx (1 − θ)n−x 1[0,1] (θ)∫ 1

0
θx (1 − θ)n−x dθ
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3.4– Simple Binomial example

• We have

π (x) =
∫ 1

0

Pr (X = x| θ) π (θ) dθ =
1

n + 1
for x = 0, ..., n

• It follows that π (θ|x) = Be (x + 1, n + 1 − x).

• Prediction. Given X = x, you roll the ball once more and
Pr (Y = 1| θ) = θ then

Pr (Y = 1|x) =
∫

Pr (Y = 1| θ, x)π (θ|x) dθ

=
∫

θπ (θ|x) dθ = E [θ|x] =
x + 1
n + 2

.
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3.4– Simple Binomial example

• Application. Laplace developed independently such a model.
From 1745 to 1770, 241,945 girls and 251,527 boys were born
in Paris. Let θ be the probability that any birth is female, then
n = 251, 527 + 241, 945

Pr (θ ≥ 0.5|x = 241, 945) ≈ 1.15 × 10−42.

• Remark: This is completely different from a p-value. We do
not integrate over observations we have never seen.
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3.5– A Simple Gaussian example

• Consider X1| θ ∼ N (
θ, σ2

)
and θ ∼ N (

m0, σ
2
0

)
π (θ|x1) ∝ f (x1| θ) π (θ) ∝ exp

(
− (x1 − θ)2

2σ2
− (θ − m0)

2

2σ2
0

)

∝ exp
(
−θ2

2

(
1
σ2

+
1
σ2

0

)
+ θ

(x1

σ2
+

m

σ2

))

∝ exp
(
− 1

2σ2
1

(θ − m1)
2

)

⇒ θ|x1 ∼ N (
m1, σ

2
1

)

with
1
σ2

1

=
1
σ2

0

+
1
σ2

⇒ σ2
1 =

σ2
0σ

2

σ2
0 + σ2

,

m1 = σ2
1

(
x1

σ2
+

m

σ2
0

)
.
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3.5– A Simple Gaussian example

• To predict the distribution of a new observation X | θ ∼ N (
θ, σ2

)
in light

of x1 we use the predictive distribution

f (x|x1) =
∫

f (x| θ)π (θ|x1) dθ

We can do direct calculations or alternatively use the fact that
f (x|x1) is Gaussian so characterized by its mean and variance

E [X |x1] = E [θ + V |x1] = E [θ|x1] = m1,

var [X |x1] = var [θ + V |x1] = var [θ|x1] + var [V ] = σ2
1 + σ2.
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3.5– A Simple Gaussian example

• Now assume that you observe a realization x2 of X2| θ ∼ N (
θ, σ2

)
.

Then you are interested now in
π (θ|x1, x2) ∝ f (x2| θ) f (x1| θ) π (θ)

∝ f (x2| θ)π (θ|x1)

∝ f (x1| θ)π (θ|x2) .

• Updating the prior one observation at a time, or all observations
together, does not matter.

• The sequential approach can be useful for massive dataset.
In this case at time n

π (θ|x1, ..., xn) ∝ f (xn| θ) π (θ|x1, ..., xn−1) ;

i.e. ‘the prior at time n is the posterior at time n − 1’.
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3.6– Simple Gaussian example: Bayes vs ML

• ML estimate of θ at time n is simply

θML = arg
θ

sup
n∏

i=1

f (xi| θ) =
1
n

n∑
i=1

xi.

• Posterior of θ at time n is

θ|x1, ..., xn ∼ N (
mn, σ2

n

)
where

1
σ2

n

=
1
σ2

0

+
n

σ2
⇒ σ2

n =
σ2

0σ2

nσ2
0 + σ2

∼
n→∞

σ2

n
,

mn = σ2
n

(∑n
i=1 xi

σ2
+

m

σ2
0

)
∼

n→∞

∑n
i=1 xi

n
.

• Asymptotically in n the prior is washed out by the data and
E [θ|x1, ..., xn] = mn ≈ θML.
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3.7– Bayes vs ML

• However, keep in mind that information provided by a Bayesian
approach is much richer.

• You can compute for example posterior probabilities

Pr (θ ∈ A|x1, ..., xn) or var (θ|x1, ..., xn)

or compute the distributions of future observations

f (x|x1, ..., xn) .

• ML can be reassuring because of consistency and efficiency.
For finite sample sizes, do you really care?
For time series models for example, there is no such thing.
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3.8– A Simple Poisson Model

• Assume you have some couting observations Xi
i.i.d.∼ P (θ); i.e.

f (xi| θ) = e−θ θxi

xi!

• Assume we adopt a Gamma prior for θ; i.e. θ ∼ Ga (α, β)

π (θ) = Ga (θ; α, β) =
βα

	(α)
θα−1e−βθ.

• We have

π (θ|x1, ..., xn) = Ga

(
θ; α +

n∑
i=1

xi, β + n

)
.
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4.1– Testing hypotheses in a Bayesian framework

• Consider the problem where we have π (θ) = U [0, 1] and

Pr (X = x| θ) =

⎛
⎜⎜⎜⎝

n

x

⎞
⎟⎟⎟⎠ θx (1 − θ)n−x then π (θ|x) = Be (x + 1, n + 1 − x) .

• If we want to test H0 : θ ≥ 1
2 vs H1 : θ < 1

2 then, in a Bayesian approach,
you can simply compute

π (H0|x) = 1 − π (H1|x) =
∫ 1

1/2

π (θ|x) dθ.

• Golden rule of Bayesians: Thou shalt not integrate with respect to
observations (except for design...)
⇒ Contrary to frequentists, your test is never based on observations you
don’t observe.
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4.2– Bayes Factors

• More generally,ones wants to compare two hypothesis: H0 : θ ∼ π0

versus H1 : θ ∼ π1 then the prior is

π (θ) = π (H0) π0 (θ) + π (H1) π1 (θ)

where π (H0) + π (H1) = 1.

• In the previous example, π0 (θ) = U [1
2 , 1
]

and π1 (θ) = U [0, 1
2

)
and π (H0) = π (H1) = 1

2 .

• To compare H0 versus H1, we typically compute the Bayes factor
which partially eliminated the influence of the prior modelling (i.e. π (Hi))

Bπ
10 =

π (x|H1)
π (x|H0)

=
∫

f (x| θ) π1 (θ) dθ∫
f (x| θ) π0 (θ) dθ

=
π (H1|x)
π (H0|x)

π (H0)
π (H1)
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4.3– Towards Bayes Model Selection

• Bayes factors are not limited to the comparison of models with the
same parameter space.

• Assume you have some data and two statistical models.
Under H0, θ0 ∈ Θ0, the prior is π0 (θ0) and the likelihood is f0 (x| θ0) ,

under H1, θ1 ∈ Θ1, the prior is π1 (θ1) and the likelihood is f1 (x| θ1)
then

Bπ
10 =

π (x|H1)
π (x|H0)

=
∫

f1 (x| θ1) π1 (θ1) dθ1∫
f0 (x| θ2) π0 (θ0) dθ0

• One can have Θ0 = R and Θ1 = R
1000.
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4.3– Towards Bayes Model Selection

• Jeffreys’ scale of evidence says that

- if log10 (Bπ
10) varies between 0 and 0.5, the evidence against H0 is poor,

- if it is between 0.5 and 1, it is substantial,

- if it is between 1 and 2, it is strong, and

- if it is above 2, it is decisive.

• Bayes factor tell you where one should prefer H0 to H1: it does NOT
tell you whether model H1 any of these models are sensible!
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4.3– Towards Bayes Model Selection

• Bayes procedures can be directly used to test point null hypothesis; i.e.
H0 : θ = θ0 (that is π0 (θ) = δθ0 (θ)) versus H1 : θ ∼ π1 where the prior
is then defined as

π (θ) = π (H0) δθ0 (θ) + π (H1)π1 (θ)

• The associated Bayes factor is simply

Bπ
10 (x) =

π (x|H1)
π (x|H0)

=
∫

f (x| θ)π1 (θ) dθ

f (x| θ0)
.
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4.4– Example: The celebrated coin example

• Assume you have a coin, you toss it 10 times and gets x = 10 heads.
Is it biased?

• Let θ be the proba of having an head then we can test H0 : θ = 1
2 .

• The p-value Pr (X ≥ 10|H0) = 2−9 and the hypothesis is rejected.

• In a Bayesian framework, we test H0 versus H1 : θ ∼ U (1
2 , 1
]

using

Bπ
10 =

1
2

∫ 1
1
2

θx (1 − θ)10−x
dθ(

1
2

)x (1 − 1
2

)10−x =
1
2

∫ 1
1
2

θ10dθ(
1
2

)10 
 50.
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4.5– Testing the mean of a Gaussian

• Assume you have X | (μ, σ2
) ∼ N (

μ, σ2
)

where σ2 is assumed known but

μ (the parameter θ) is unknown.

• We want to test H0 : μ = 0 vs H1 : μ ∼ N (
ξ, τ2

)
then

Bπ
10 (x) =

π (x|H1)
π (x|H0)

=

∫ N (
x; μ, σ2

)N (
μ; ξ, τ2

)
dμ

f (x| 0)

=
σ√

σ2 + τ2
exp

(
τ2x2

2σ2 (σ2 + τ2)

)
.

• Alternatively if π (H0) = ρ = 1 − π (H1) then

π (H0|x) = π (μ = 0|x) =
[
1 +

1 − ρ

ρ
Bπ

10 (x)
]−1
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4.5– Testing the mean of a Gaussian

• The Bayes factor depends heavily on τ2. As τ2 → ∞, the prior becomes
uniformative but then Bπ

10 (x) → 0 whatever being x and π (H0|x) → 1.

• We will see that next week but using vague priors for model selection
is a very very bad idea... (Lindley’s paradox).
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