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• Slides available on the Web before lectures:
www.cs.ubc.ca/~arnaud/stat535.html

• Textbook: C.P. Robert & G. Casella, Monte Carlo Statistical Methods,
Springer, 2nd Edition.

• Additional lecture notes available on the Web.

• Textbooks which might also be of help:

• A. Gelman, J.B. Carlin, H. Stern and D.B. Rubin, Bayesian Data
Analysis, Chapman&Hall/CRC, 2nd edition.
• C.P. Robert, The Bayesian Choice, Springer, 2nd edition.
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2.1– Outline

• Summary of Previous Lecture.

• Maximum Likelihood.

• Bayesian Statistics.
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3.1– Likelihood function

• Parametric modelling: The observations x are the realization of a random
variable X of probability density function f (x| θ).

• The function f (x| θ) considered as a function of θ for a fixed realization
of the observation X = x is called the likelihood function.

• The likelihood function is

l (θ|x) = f (x| θ)

to emphasize that the observations are fixed.
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3.2– Sufficient statistics

• When X ∼ f (x| θ), a function T of X (also called a statistic) is said
to be sufficient if the distribution of X conditional upon T (X) is
independent of θ; i.e.

f (x| θ) = h (x) g (T (x)| θ) .

• Let X = (X1, ..., Xn) i.i.d. from P (θ) of distribution f (xi| θ) = e−θ θxi

xi!
.

Then

f (x1, ..., xn| θ) =
n∏

i=1

f (xi| θ) =
1∏n

i=1 xi!︸ ︷︷ ︸
h(x)

e−nθθ
∑n

i=1
xi︸ ︷︷ ︸

g(T (x)|θ)

⇒ The statistics T (x) =
∑n

i=1 xi is sufficient.
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3.3– Sufficiency principle

• Sufficiency principle: Two observations x and y such
that T (x) = T (y) must lead to the same inference on θ.

• Another way to think of it is that the inference on θ is
only based on T (x) and not on x: T (x) is sufficient.

• Note that the sufficiency principle is also useful in practice.
It is cheaper to store T (x) rather than x.
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3.4– Likelihood Principle

• Likelihood Principle. The information brought by an observation x about
θ is entirely contained in the likelihood function l (θ|x) = f (x| θ) . Moreover,
two likelihood functions contain the same information about θ if they are
proportional to each other; i.e. if

l1 (θ|x) = c (x) l2 (θ|x) .

• A simpler (?) way to think of it: You can have two different probabilistic
models for the data. However, if l1 (θ|x) ∝ l2 (θ|x) then this should lead
to the same inference.

• Some standard classical statistics procedures do not satisfy this principle
because they rely on quantity such as Pr (X > α) =

∫ ∞
α

f (x| θ) dx whereas
the likelihood principle does not bother about data you have not observed!
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4.1– Maximum Likelihood Estimation

• The likelihood principle is fairly vague since it does not lead
to the selection of a particular procedure.

• Maximum likelihood estimation is one way to implement
the sufficiency and likelihood principles

θ̂ = arg sup
θ

l (θ|x)

• Proof:

arg sup
θ

l (θ|x) = arg sup
θ

h (x) g (T (x)| θ) = arg sup
θ

g (T (x)| θ) .

l1 (θ|x) = c (x) l2 (θ|x) ⇒ arg sup
θ

l1 (θ|x) = arg sup
θ

l2 (θ|x)
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4.2– Maximum Likelihood Estimation

• Be careful: Maximum likelihood estimation is just one way
to implement the likelihood principle.

• Maximization can be difficult or several equivalent global
maxima. However, consistent and efficient in most cases.
(asymptotic properties).

• ML estimates can vary widely for small variations of
the observations (for small sample sizes).
Example: If Xi ∼ θ−11[0,θ] (xi) then for n data

l (θ|x) =
n∏

i=1

f (xi| θ) =
1
θn

1[max{xi},∞) (θ) ⇒ θ̂ = max {Xi}

• Tests require frequentists justifications.
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5.1– Alternative Approaches

• Many approaches have been proposed: penalized likelihood
(e.g. Akaike Information Criterion) or stochastic complexity theory.

• Many of these approaches have a Bayesian flavor.
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5.2– Bayesian Statistics

• A Bayesian model is made of a parametric statistical model (X , f (x| θ))
and a prior distribution on the parameters (Θ, π (θ)).

• The unknown parameters are now considered RANDOM.

• Many statisticians do not like this although they accept the
probabilistic modeling on the observations.

• Example: Assume you want to measure the speed of light given
some observations. Why should I put a prior on this physical constant?
Because of the limited accuracy of the measurement, this constant
will never be known exactly and thus it is justified to put say a
(uniform) prior on this parameter reflecting this uncertainty.
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5.2– Bayesian Statistics

• In the Bayesian approach, probability describes degrees of belief.

• In the frequentist interpretation, you should repeat an infinite
number of times an experiment and the probabilities corresponds to
the limiting frequencies.

• Problem. How do you attribute a probability to the following
event “There will be a major earthquake in Tokyo on
the 27th April 2013”?

• The selection of a prior has an obvious impact on the inference
results! However, Bayesian statisticians are honest about it.
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5.2– Bayesian Statistics

• Based on a Bayesian model, we can define

• The joint distribution of (θ, X)

π (θ, x) = π (θ) f (x| θ) .

• The marginal distribution of X

π (x) =
∫

π (θ) f (x| θ) dθ

For a realization X = x, π (x) is called marginal likelihood
or evidence.
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5.3– Ingredients of Bayesian Inference

• Given the prior π (θ) and the likelihood l (θ|x) = f (x| θ) then
Bayes’s formula yields

π (θ|x) =
f (x| θ)π (θ)∫
f (x| θ)π (θ) dθ

.

⇒ It represents all the information on θ than can be extracted from x.

• Note the integral appearing at the denominator of the Bayes’ rule!

• The predictive distribution of Y when Y ∼ g (y| θ, x)

g (y|x) =
∫

g (y| θ, x) π (θ|x) dθ.

This is to distinguish from prediction based on g
(

y| θ̂, x
)

.
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5.3– Ingredients of Bayesian Inference

• In case where θ = (θ1, ..., θp) and one is only interested
in the parameter θk. Then θ−k = (θ1, ..., θk−1, θk+1, ..., θp) are
so-called nuisance parameters.

• Bayesian inference tells us that all the information on θk that
can be extracted from x is the marginal posterior distribution.

π (θk|x) =
∫

· · ·
∫

π (θ|x) dθ−k.

• Once more, computing π (θk|x) requires computing a (possibly high
dimensional) integral.

• Nuisance parameters are often handled using profile likelihood
technique in a maximum likelihood framework.
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5.3– Ingredients of Bayesian Inference

• Bayesian statistics do satisfy automatically the sufficiency principle,
and the likelihood principle.
• Sufficiency principle: If f (x| θ) = h (x) g (T (x)| θ) then

π (θ|x) =
h (x) g (T (x)| θ) π (θ)

h (x)
∫

g (T (x)| θ) π (θ) dθ
=

g (T (x)| θ) π (θ)∫
g (T (x)| θ)π (θ) dθ

= π (θ|T (x)) .

• Likelihood principle: Assume we have f1 (x| θ) = c (x) f2 (x| θ) then

π (θ|x) =
f1 (x| θ)π (θ)∫
f1 (x| θ)π (θ) dθ

=
c (x) f2 (x| θ)π (θ)∫
c (x) f2 (x| θ)π (θ) dθ

=
f2 (x| θ)π (θ)∫
f2 (x| θ)π (θ) dθ

.
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5.4– Simple Examples

• For events A and B, the Bayes rule is

P (A|B) =
P (B|A) P (A)

P (B|A)P (A) + P
(
B|A)

P
(
A

) =
P (B|A) P (A)

P (B)

• Be careful to subtle exchanging of P (A|B) for P (B|A).

• Prosecutor’s Fallacy. A zealous prosecutor has collected an evidence and
has an expert testify that the probability of finding this evidence if the accused
were innocent is one-in-a-million. The prosecutor concludes that the probability
of the accused being innocent is one-in-a-million. This is WRONG.
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5.4– Simple Examples

• Assume no other evidence is available and the population is of
10 million people.
• Defining A = ”The accused is guilty” then P (A) = 10−7.

• Defining B =”Finding this evidence” then P (B|A) = 1 & P
(
B|A)

= 10−6.

• Bayes formula yields

P (B|A) P (A)
P (B|A)P (A) + P

(
B|A)

P
(
A

) =
10−7

10−7 + 10−6 × (1 − 10−7)

≈ 0.1.

• Real-life Example: Sally Clark was condemned in UK (The RSS pointed out
the mistake). Her convinction was eventually quashed (on other grounds).
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5.4– Simple Examples

• Coming back from a trip, you feel sick and your GP thinks
you might have contracted a rare disease (0.01% of the
population has the disease).

• A test is available but not perfect.
If a tested patient has the disease, 100% of the time the test
will be positive.
If a tested patient does not have the diseases, 95% of the
the time the test will be negative (5% false positive).

• Your test is positive, should you really care?
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5.4– Simple Examples

• Let A be the event that the patient has the disease and
B be the event that the test returns a positive result

P (A|B) =
1 × 0.0001

1 × 0.0001 + 0.05 × 0.9999
� 0.002

• Such a test would be a complete waste of money for you or the National
Health System.

• A similar question was asked to 60 students and staff at Harvard Medical
School: 18% got the right answer, the modal response was 95%!
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5.5– What do we gain from information?

• Bayesian inference involves passing from a prior π (θ) to
a posterior π (θ|x) .We might expect that because the posterior
incorporates the information from the data, it will be less variable
than the prior.

• We have the following identities
E [θ] = E [E [θ|X ]] ,

var [θ] = E [var [θ|X ]] + var [E [θ|X ]] .

• It means that, on average (over the realizations of the data X)
we expect the conditional expectation E [θ|X ] to be equal to E [θ]
and the posterior variance to be on average smaller than the prior
variance by an amount that depend on the variations in posterior
means over the distribution of possible data.
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5.6– Variance Decomposition Identity

If (θ, X) are two scalar random variables then we have

var (θ) = E (var (θ|X)) + var (E (θ|X)) .

Proof:

var (θ) = E
(
θ2

) − E (θ)2

= E
(
E

(
θ2

∣∣X
)) − (E (E (θ|X)))2

= E
(
E

(
θ2

∣∣X
)) − E

(
(E (θ|X))2

)

+E
(
(E (θ|X))2

)
− (E (E (θ|X)))2

= E (var (θ|X)) + var (E (θ|X)) .
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5.7– Be careful

• Such results appear attractive but one should be careful.

• Here there is an underlying assumption that the observations
are indeed distributed according to π (x) =

∫
π (θ) f (x| θ) dθ.
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