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1.1– Outline

• Bayesian Model Selection

• Metropolis-Hastings on a General State-Space

• Trans-dimensional Markov chain Monte Carlo.
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2.1– Bayesian Model Selection

• Most Bayesian models discussed until now: prior p (θ) and likelihood
p (y| θ). Using MCMC, we sample from

p (θ| y) =
p (θ) p (y| θ)∫
p (θ) p (y| θ) dθ

.

• We discuss several examples where the model under study is
fully specified.

• In practice, we might have a collection of candidate models.
This class of problems include cases where “the number of unknowns
is something you don’t know” (Green, 1995).
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2.1– Bayesian Model Selection

• Assume we have a (countable) set K of candidate models then
an associated Bayesian model is such that

• k denotes the model and has a prior probability p (k)

• θk ∈ Θk is the unknown parameter associated to model k

of prior p (θk| k) .

• The likelihood is p (y| k, θk) .

• You can think of it as a “standard” Bayesian model of parameter
(k, θk) ∈ ∪k∈K ({k} × Θk) .
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2.1– Bayesian Model Selection

• The Bayes’ rule gives the posterior

p (k, θk| y) =
p (k) p (θk| k) p (y| k, θk)∑

k∈K
∫
Θk

p (k) p (θk| k) p (y| k, θk) dθk

defined on ∪k∈K ({k} × Θk) .

• From this posterior, we can compute

p (k| y) and
p (y| k)
p (y| j) =

p (k| y)
p (j| y)

p (j)
p (k)

or performing Bayesian model averaging

p (y′| y) =
∑
k∈K

∫
Θk

p (y′| k, θk) p (k, θk| y) dθk
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2.2– Example: Autoregressive Time Series

• The model k ∈ K = {1, ..., kmax} is given by an AR of order k

Yn =
k∑

i=1

aiYn−i + σVn where Vn ∼ N (0, 1)

and we have θk =
(
a1:k, σ2

) ∈ R
k × R

+.

• We need to defined a prior p (k, θk) = p (k) p (θk| k), say

p (k) = k−1
max for k ∈ K,

p (θk| k) = N (
a1:k; 0, σ2δ2Ik

) IG (σ2;
ν0

2
,
γ0

2

)
.

• One should be careful, the parameters denoted similarly can have a different
“meaning” so that computing say p

(
σ2
∣∣ y) does not mean much.

• Some authors favour a more precise notation θk =
(
ak,1:k, σ2

k

)
but this can be cumbersome.
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2.3– Example: Finite Mixture of Gaussians

• The model k ∈ K = {1, ..., kmax} is given by a mixture of k Gaussians

Yn ∼
k∑

i=1

πiN
(
μi, σ

2
i

)
.

and we have θk =
(
π1:k, μ1:k, σ2

1:k

) ∈ Sk × R
k × (R+)k.

• We need to defined a prior p (k, θk) = p (k) p (θk| k), say

p (k) = k−1
max for k ∈ K,

p (θk| k) = D (π1:k; 1, ..., 1)
k∏

i=1

N (μi; α, β)IG
(
σ2

i ;
ν0

2
,
γ0

2

)
.

• Some authors favour a more precise notation θk =
(
πk,1:k, μk,1:k, σ2

k,1:k

)
.
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2.4– Example: Bayesian Variable Selection

• Assume Y ∈ R, Xk ∈ R and

Y =
∑

{k:γk=1}
βkXk + σV = βT

γ Xγ + σV

where, for a vector γ = (γ1, ..., γp), βγ = {βk : γk = 1} , Xγ = {Xk : γk = 1}
and nγ =

∑p
k=1 γk.

• Prior distributions

πγ

(
βγ , σ2

)
= N (

βγ ; 0, δ2σ2Inγ

) IG (σ2;
ν0

2
,
γ0

2

)
and π (γ) =

∏p
k=1 π (γk) = 2−p.

• In this case we have 2p models (i.e. configurations of γ) and the parameter
space associated to any vector γ is R

nγ × R
+.
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3.1– General State-Space Metropolis-Hastings Algorithm

• For such problems, we could use the following approach:
For each k ∈ K, one could use MCMC to sample from

p (θk| y, k) =
p (θk| k) p (y| k, θk)∫

Θk
p (θk| k) p (y| k, θk) dθk

=
p (θk| k) p (y| k, θk)

p (y| k)
.

• Problem: K can contain a very large/infinite number of models
and many have a very low posterior p (k| y) and so are not relevant
for prediction. Moreover, the calculation of p (y| k) is not direct.
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3.1– General State-Space Metropolis-Hastings Algorithm

• As stated before, Bayesian model selection problems corresponds to the case
where the parameter space is simply ∪k∈K ({k} × Θk).

• Can we define MCMC algorithms - i.e. Markov chain kernels with fixed
invariant distribution p (k, θk| y)- ?

• We are going to present a generalization of MH after revisiting first the
MH algorithm.
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3.2– Revisiting the MH algorithm

• Consider the STANDARD case where the target is π (dx)
where x ∈ X ⊂R

d.

• The MH kernel is given by

K (x, dx′) = α (x, x′) q (x, dx′) +
(

1 −
∫

α (x, z) q (x, dz)
)

δx (dx′)

and to ensure its π−invariance we just to ensure its π−reversibility∫
(x,x′)∈A×B

π (dx) K (x, dx′) =
∫
(x,x′)∈A×B

π (dx′) K (x′, dx)

⇔ ∫
(x,x′)∈A×B

π (dx) α (x, x′) q (x, dx′) =
∫
(x,x′)∈A×B

π (dx′) α (x′, x) q (x′, dx)

as we always have∫
(x,x′)∈A×B

π (dx)
(
1 − ∫ α (x, z) q (x, dz)

)
δx (dx′)

=
∫
(x,x′)∈A×B

π (dx′)
(
1 − ∫ α (x′, z) q (x′, dz)

)
δx′ (dx)

– General State-Space Metropolis-Hastings Algorithm Page 11



3.2– Revisiting the MH algorithm

• We say that a measure γ (dx) admits a density with respect to a measure
λ (dx) if for any (measurable) set A ∈ B (X )

λ (A) = 0 ⇒ γ (A) = 0

and we call

γ (dx)
λ (dx)

= f (x)

the density of γ (dx) with respect to λ (dx) .

• In 95% of the applications in statistics λ (dx) is the Lebesgue measure dx and
we write

γ (dx)
λ (dx)

=
γ (dx)

dx
= γ (x) .
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3.2– Revisiting the MH algorithm

• In the case where we have π (dx) = π (x) dx and q (x, dx′) = q (x, x′) dx′ and

π (dx)α (x, x′) q (x, dx′) = π (dx′) α (x′, x) q (x′, dx)

⇔ π (x) α (x, x′) q (x, x′) dxdx′ = π (x′) α (x′, x) q (x′, x) dxdx′

⇔ π (x) α (x, x′) q (x, x′) = π (x′) α (x′, x) q (x′, x)

• This is clearly satisfied if

α (x, x′) = min
{

1,
π (x′) q (x′, x)
π (x) q (x, x′)

}
= min

{
1,

π (dx′) q (x′, dx)
π (dx) q (x, dx′)

}
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3.2– Revisiting the MH algorithm

• In practice, we typically define q (x, dx′) indirectly. Say if X ⊂R
d then

we propose u ∼ g of dimension r and then define x′ = h (x, u) so that

(1) -
∫

(x,x′)∈A×B

π (dx) q (x, dx′)α (x, x′) =
∫

(x,x′)∈A×B

π (x) g (u)α (x, x′) dxdu.

• We propose to define the reverse transition by x = h′ (x′, u′) where u′ ∼ g′

and

(2) -
∫

(x,x′)∈A×B

π (dx′) q (x′, dx)α (x′, x) =
∫

(x,x′)∈A×B

π (x′) g′ (u′) α (x′, x) dx′du′.

• We want to ensure reversibility i.e. (1)=(2).
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3.2– Revisiting the MH algorithm

• (1)=(2) if (loosely speaking!)

π (x) g (u)α (x, x′) dxdu = π (x′) g′ (u′) α (x′, x) dx′du′

• If the transformation (x, u) to (x′, u′) is a diffeomorphism (the transformation
and its inverse are differentiable) then this equality is satisfied if

π (x) g (u)α (x, x′) = π (x′) g′ (u′) α (x′, x)
∣∣∣∣∂ (x′, u′)

∂ (x, u)

∣∣∣∣ .
• It follows that a choice ensuring π-reversibility is given by

α (x, x′) = min
(

1,
π (x′) g′ (u′)
π (x) g (u)

∣∣∣∣∂ (x′, u′)
∂ (x, u)

∣∣∣∣
)

.
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3.3– Revisiting the Random-Walk Metropolis

• This presentation appears (and is!) unnecessarily complex when X ⊂R
d.

• Assume x = (x1, x2) ∈ R
2 and u ∼ g ∈ R and we have

x′
1 = x1 + u, x′

2 = x2, u′ = −u

and we propose the reverse move where u′ ∼ g ∈ R

x1 = x′
1 + u′, x2 = x′

2, u = −u′

and the acceptance probability is simply

α (x, x′) = min
(

1,
π (x′

1, x2) g (x1 − x′
1)

π (x1, x2) g (x′
1 − x1)

)

• The main benefit of this approach is that it can also be used whatever the
dimension of x in different parts of X when X = ∪k∈K ({k} × R

nk).
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4.1– Trans-dimensional MCMC

• Suppose the dimensions of x, x′, u and u′ are respectively
d, d′, r and r′ then we have functions

h : R
d × R

r → R
d′

and h′ : R
d′ × R

r′ → R
d

used respectively for x′ = h (x, u) and x = h′ (x′, u′).

• To ensure that we have a diffeomorphism between (x, u) and (x′, u′), we need
the so-called matching condition d + r = d′ + r′.

• Then we can also used exactly the same reasoning to build the moves.
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4.2– Example: Birth/Death Moves

• Assume we have a distribution defined on {1} × R ∪ {2} × R × R. We want
to propose some moves to go from (1, θ) to (2, θ1, θ2) .

• We can propose u ∼ g ∈ R and set

(θ1, θ2) = h (θ, u) = (θ, u) .

Its inverse is given by

(θ, u) = h′ (θ1, θ2) = (θ1, θ2) .

• The acceptance probability for this “birth” move is given by

min
(

1,
π (2, θ1, θ2)

π (1, θ)
1

g (u)

∣∣∣∣∂ (θ1, θ2)
∂ (θ, u)

∣∣∣∣
)

= min
(

1,
π (2, θ1, θ2)

π (1, θ1) g (θ2)

)
.
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4.2– Example: Birth/Death Moves

• The acceptance probability for the associated “death move” is

min
(

1,
π (1, θ)

π (2, θ1, θ2)
g (u)

∣∣∣∣ ∂ (θ, u)
∂ (θ1, θ2)

∣∣∣∣
)

= min
(

1,
π (1, θ) g (u)
π (2, θ, u)

)

• Once the birth move is defined then the death move follows automatically.
In the death move, we do not simulate from g but its expression still
appear in the acceptance probability.
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4.3– Example: Birth/Death Moves

• To simplify notation has in Green (1995) & Robert (2004), we don’t
emphasize that actually we can have the proposal g which is a function
of the current point θ but it is possible!

• We can propose u ∼ g ( ·| θ) ∈ R and set

(θ1, θ2) = h (θ, u) = (θ, u) .

Its inverse is given by

(θ, u) = h′ (θ1, θ2) = (θ1, θ2) .

• The acceptance probability for this “birth” move is given by

min
(

1,
π (2, θ1, θ2)

π (1, θ)
1

g (u| θ)

∣∣∣∣∂ (θ1, θ2)
∂ (θ, u)

∣∣∣∣
)

= min
(

1,
π (2, θ1, θ2)

π (1, θ1) g (θ2| θ1)

)
.
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4.3– Example: Birth/Death Moves

• The acceptance probability for the associated “death move” is

min
(

1,
π (1, θ)

π (2, θ1, θ2)
g (u| θ)

∣∣∣∣ ∂ (θ, u)
∂ (θ1, θ2)

∣∣∣∣
)

= min
(

1,
π (1, θ) g (u| θ)

π (2, θ, u)

)

• Once the birth move is defined then the death move follows automatically.
In the death move, we do not simulate from g but its expression still
appears in the acceptance probability.

• Clearly if we have g (θ2| θ1) = π (θ2| 2, θ1) then the expressions simplify

min
(

1,
π (2, θ1, θ2)

π (1, θ1) g (θ2| θ1)

)
= min

(
1,

π (2, θ1)
π (1, θ1)

)
,

min
(

1,
π (1, θ) g (u| θ)

π (2, θ, u)

)
= min

(
1,

π (1, θ)
π (2, θ)

)
.
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4.4– Example: Split/Merge Moves

• Assume we have a distribution defined on {1} × R ∪ {2} × R × R. We want
to propose some moves to go from (1, θ) to (2, θ1, θ2) .

• We can propose u ∼ g ∈ R and set

(θ1, θ2) = h (θ, u) = (θ − u, θ + u) .

Its inverse is given by

(θ, u) = h′ (θ1, θ2) =
(

θ1 + θ2

2
,
θ2 − θ1

2

)
.

• The acceptance probability for this “split” move is given by

min
(

1,
π (2, θ1, θ2)

π (1, θ)
1

g (u)

∣∣∣∣∂ (θ1, θ2)
∂ (θ, u)

∣∣∣∣
)

= min

(
1,

π (2, θ1, θ2)
π
(
1, θ1+θ2

2

) 2
g
(

θ2−θ1
2

)
)

.
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4.4– Example: Split/Merge Moves

• The acceptance probability for the associated “merge move” is

min
(

1,
π (1, θ)

π (2, θ1, θ2)
g (u)

∣∣∣∣ ∂ (θ, u)
∂ (θ1, θ2)

∣∣∣∣
)

= min
(

1,
π (1, θ)

π (2, θ − u, θ + u)
g (u)

2

)

• Once the split move is defined then the merge move follows automatically.
In the merge move, we do not simulate from g but its expression still
appear in the acceptance probability.
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4.5– Mixture of Moves

• In practice, the algorithm is based on a combination of moves to move from
x = (k, θk) to x′ = (k′, θk′) indexed by i ∈ M and in this case we just need
to have∫

(x,x′)∈A×B

π (dx)αi (x, x′) qi (x, dx′) =
∫

(x,x′)∈A×B

π (dx′) αi (x′, x) qi (x′, dx)

to ensure that the kernel P (x, B) defined for x /∈ B

P (x, B) =
∑
i∈M

αi (x, x′) qi (x, dx′)

is π-reversible.

• In practice, we would like to have

P (x, B) =
∑
i∈M

ji (x) αi (x, x′) qi (x, dx′)

where ji (x) is the probability of selecting the move i once we are in x

and
∑

i∈M ji (x) = 1.
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4.5– Mixture of Moves

• In this case reversibility is ensured if

∫
(x,x′)∈A×B

π (dx) ji (x) αi (x, x′) qi (x, dx′)

=
∫
(x,x′)∈A×B

π (dx′) ji (x′)αi (x′, x) qi (x′, dx)

which is satisfied if

αi (x, x′) = min
(

1,
π (x′) ji (x′) g′i (u′)
π (x) ji (x) gi (u)

∣∣∣∣∂ (x′, u′)
∂ (x, u)

∣∣∣∣
)

.

• In practice, we will only have a limited number of moves possible from each

point x.

– Trans-dimensional MCMC Page 25



4.6– Summary

• For each point x = (k, θk), we define a collection of potential moves selected
randomly with probability ji (x) where i ∈ M.

• To move from x = (k, θk) to x′ = (k′, θk′), we build one (or several)
deterministic differentiable and inversible mapping(s)

(θk′ , uk′,k) = Tk,k′ (θk, uk,k′)

where uk,k′ ∼ gk,k′ and uk′,k ∼ gk′,k and we accept the move with proba

min
(

1,
π (k′, θk′) ji (k′, θk′) gk′,k (uk′,k)
π (k, θk) ji (k, θk) gk,k′ (uk,k′)

∣∣∣∣∂Tk,k′ (θk, uk,k′)
∂ (θk, uk,k′)

∣∣∣∣
)

.
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4.7– One minute break

• This brilliant idea is due to P.J. Green, Reversible Jump MCMC and Bayesian
Model Determination, Biometrika, 1995 although special cases had appeared
earlier in physics.

• This is one of the top ten most cited paper in maths and is used nowadays
in numerous applications including genetics, econometrics, computer graphics,
ecology, etc.
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4.8– Example: Bayesian Model for Autoregressions

• The model k ∈ K = {1, ..., kmax} is given by an AR of order k

Yn =
k∑

i=1

aiYn−i + σVn where Vn ∼ N (0, 1)

and we have θk =
(
ak,1:k, σ2

k

) ∈ R
k × R

+ where

p (k) = k−1
max for k ∈ K,

p (θk| k) = N (
ak,1:k; 0, σ2

kδ2Ik

) IG (σ2;
ν0

2
,
γ0

2

)
.

• For sake of simplicity, we assume here that the initial conditions
y1−kmax:0 = (0, ..., 0) are known and we want to sample from

p (θk, k| y1:T ) .

• Note that this is not very clever as p (k| y1:T ) is known up to a normalizing
constant!
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4.8– Example: Bayesian Model for Autoregressions

• We propose the following moves. If we have
(
k, a1:k, σ2

k

)
then with probability

bk we propose a birth move if k ≤ kmax, with proba uk we propose an update
move and with proba dk = 1 − bk − uk we propose a death move.

• We have d1 = 0 and bk max = 0.

• The update move can simply done in a Gibbs step as

p (θk| y1:T , k) = N (
ak,1:k; mk, σ2Σk

)IG (σ2;
νk

2
,
γk

2

)
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4.8– Example: Bayesian Model for Autoregressions

• Birth move: We propose to move from k to k + 1(
ak+1,1:k, ak+1,k+1, σ

2
k+1

)
=
(
ak,1:k, u, σ2

k

)
where u ∼ gk,k+1

and the acceptance probability is

min

(
1,

p
(
ak,1:k, u, σ2

k, k + 1
∣∣ y1:T

)
dk+1

p (ak,1:k, σ2
k, k| y1:T ) bkgk,k+1 (u)

)
.

• Death move: We propose to move from k to k − 1(
ak−1,1:k−1, u, σ2

k−1

)
=
(
ak,1:k−1, ak,k, σ2

k

)
and the acceptance probability is

min

(
1,

p
(
ak,1:k−1, σ

2
k, k − 1

∣∣ y1:T

)
bk−1gk−1,k (ak,k)

p (ak,1:k, σ2
k, k| y1:T ) dk

)
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4.8– Example: Bayesian Model for Autoregressions

• The performance are obviously very dependent on the selection of the proposal
distribution. We select whenever possible the full conditional distribution, i.e.
we have u = ak+1,k+1 ∼ p

(
ak+1,k+1| y1:T , ak,1:k, σ2

k, k + 1
)

and

min

(
1,

p
(
ak,1:k, u, σ2

k, k + 1
∣∣ y1:T

)
dk+1

p (ak,1:k, σ2
k, k| y1:T ) bkp (u| y1:T , ak,1:k, σ2

k, k + 1)

)

= min

(
1,

p
(
ak,1:k, σ2

k, k + 1
∣∣ y1:T

)
dk+1

p (ak,1:k, σ2
k, k| y1:T ) bk

)
.

• In such cases, it is actually possible to reject a candidate before sampling it!
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4.8– Example: Bayesian Model for Autoregressions

• We simulate 200 data with k = 5 and use 10,000 iterations of RJMCMC.

• The algorithm output is
(
k(i), θ

(i)
k

)
∼ p (θk, k| y) (asymptotically).

• The histogram of
(
k(i)
)

yields an estimate of p (k| y) .

• Histograms of
(
θ
(i)
k

)
for which k(i) = k0 yields estimates of p (θk0 | y, k0).

• The algorithm provides us with an estimate of p (k| y) which matches
analytical expressions.
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4.9– Summary

• Trans-dimensional MCMC allows us to implement numerically problems with
Bayesian model uncertainty.

• Practical implementation is relatively easy, theory behind not so easy...

• Designing efficient trans-dimensional MCMC algorithms is still a research
problem.

• On thursday, we will detail several non-trivial examples.
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