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1.1— Outline

e The Gibbs Sampler

e Variable Selection Example

e Finite Mixture of Gaussians
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2.1-— Summary of Last Lecture

e The Gibbs sampler is a generic method to sample from

high-dimensional distribution.
e It generates a Markov chain which converges to the

target distribution under weak assumptions: irreducibility

and aperiodicity.
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2.2— More about the Gibbs sampler

o If 0 =(01,...,0,) where p > 2, the Gibbs sampling
strategy still applies.

e Initialization:

e Select deterministically or randomly () = (9%0), e (92(90)) :
e lteration 7; 7 > 1:

Fork=1:p

e Sample 6’,@ ~ T (Hk\ 982)

where 0, = (01,0, 0070, .. 057").
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2.3— Random Scan Gibbs sampler

e Initialization:

e Select deterministically or randomly (0 = (0%0), s 92(90)) :
e lteration 7; 7 > 1:

e Sample K ~ Ugy, . .

o Set 9 =Y

e Sample 9;? ~ T (6’K| 6’(_z)K)

where 0} = (017,00, 0%, ... 07 )
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2.4— Practical Recommendations

e Iry to have as few “blocks” as possible.
e Put the most correlated variables in the same block.
e If necessary, reparametrize the model to achieve this.

e Integrate analytically as many variables as possible: pretty algorithms
can be much more inefficient than ugly algorithms.

e There is no general result telling strategy A is

better than strategy B in all cases: you need experience.
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3.1— Bayesian Variable Selection Example

e We select the following model

p
Y =) Xy + oV where V ~ N (0,1)
k=1

where we assume ZG (0?; %2, 22) and for a? << 1

B~ SN (0.025%0%) + LN (0.6%?)

e We introduce a latent variable v € {0, 1} such that

Pr(ye=0)=Pr(w=1)=

Y

N

Bil v =0~ N (0,0%6%02), Bkl =1~N(0,6%0?).
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3.2— A Bad Gibbs Sampler

n

e We have parameters (ﬁlzp, Vips 02) and observe n observations D = {z, y; }j:1'

e A potential Gibbs sampler consists of sampling iteratively

from p (Bi.p| D, v1:p,02) (Gaussian), p (02| D, 1., B1:p) (inverse-Gamma)
and p (lep‘ D7 61:197 U2> .

e In particular

p

p (sl D: Bropso?) = [T o (01 B1.0)
k=1

and

1 B
5 Vorso SXP (_ 252@2)

1 1
V2mdo exXp (_ 25202) T V2mado exXp (_ 2a26%02

e The Gibbs sampler becomes reducible as o goes to zero.
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3.3— Bayesian Variable Selection Example

e This is the result of bad modelling and bad algorithm.
You would like to put a ~ 0 and write

p
Y =) kBeXk + 0V where V ~ N (0,1)
k=1
where 7. = 1 if X} is included or v, = 0 otherwise. However this suggests that

By, is defined even when v, = 0.

e A neater way to write such models is to write
Y = Z ﬁka+0V=ﬁ$X7+0V
{kiy=1}
where, for a vector v = (v1,...,%), By =18k : e =1}, Xy ={Xp : 7 =1}
and n, = > r_1 Vk-
e Prior distributions

oy (ﬁ7,02) =N (ﬁfy; 0,52021n,y) G ((72; %, %)
and 7 (7) = [[—; ™ (%) =277,
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3.4— A Better Gibbs Sampler

e We are interested in sampling from the trans-dimensional distribution m ('y, B, o’ ‘ D)

e However, we know that
T (775770'2‘ D) — W(V‘D)ﬂ- (6770'2‘ Dafy)

where
T (y| D) o< 7 (D]vy) ()

and

7(Dl7) = [ 7 (D607 ) 8o’

1/0;—71 +1)

N T S —(
< I (VO;_n T 1) 0" |27‘1/2 (”yo 23—1 y’; oy &y :LW)
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3.4— A Better Gibbs Sampler

e The full conditional distribution for = ( B, 02‘ D, 7) s

Ty (ﬁw“z}D) = N(ﬁvmwazzv)

xIG (02. vo+n Yo+ 25 Yj — N$271m>
2 2

where

n n
— , , -1 _ g2 T
oy = 2y E :ij%J , Xyt =0 T+ E :37%3337,3'-
j=1 i=1
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3.4— A Better Gibbs Sampler

e Popular alternative Bayesian models include

vi ~ B(\) where A\ ~U[0,1],

vi ~ B(\;) where \; ~ Be(a, ().

e g-prior (Zellner)
Byl 0 ~ N (B5:0,6%0% (XTx,) 7).

e Robust models where additionally one has
ao b()
P ~IG —, = ).
9(53)

e Such variations are very important and can modify dramatically
the performance of the Bayesian model.
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3.5— Collapsed Gibbs Sampler for Bayesian Variable Selection

e m (| D) is a discrete probability distribution with 2P potential
values, we assume 52 known here.
e Initialization:
Co. (0) _ (0) (0)

e Select deterministically or randomly v\ = (77, ...,vp 7 ) .
e lteration 7; 7 > 1:

Fork=1:p

e Sample fy](;) ~ T (fyk| D,,y(_%]){)_

Where fygl’])g — (,‘Y§Z)7 "'7,‘}/](62217,‘Y](g7:—i—_11)7 "'7’)/1()7:_1)) :

e Optional step: Sample ( f(yi),a2(i)) ~ 7 (By, 0% D,~).
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3.6— Bayesian Variable Selection Example

e Consider the case where §2 is unknown.
e Initialization:
e Select deterministically or randomly (%0),550’, o2(0), 52(0))
e lteration 7; 7 > 1:
Fork=1:p
(¢) (4) $2(i—1)
e Sample v,/ ~ 7 x| D, v 1,0 .

where 19, = (4, o i, o nf DY

e Sample ( gi),gw)) ~ 7 (By,0%| D, 4@, 520).
e Sample §2() ~ 1 (52(i)‘ 6@).
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3.7— Bayesian Variable Selection Example

#FT

] .. - '..‘.i ".il " 'I ."‘.:Jr'::- - .::r 1o "' " | H
i AT 3 i 2
OB A ; o 7“' oo S ﬂ"'
e, L A H}g,r -3 "“? h

'!1' ‘!{nq ‘ "'.'l- ﬁln“h {#‘ hr hﬂ;‘_lh

e Caterpillar dataset: 1973 study to assess the influence of some forest
settlement characteristics on the development of catepillar colonies.

e The response variable is the log of the average number of nests of
caterpillars per tree on an area of 500 square meters.

e We have n = 33 data and 10 explanatory variables
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3.8— Bayesian Variable Selection Example

e 11 is the altitude (in meters),

e 15 is the slope (in degrees),

e 3 is the number of pines in the square,

e 1, is the height (in meters) of the tree sampled at the center of the square,
e 15 is the diameter of the tree sampled at the center of the square,

e ¢ is the index of the settlement density,

e 7 is the orientation of the square (from 1 if southbound to 2 otherwise),

e g is the height (in meters) of the dominant tree,

® 9 is the number of vegetation strata,

e r1( is the mix settlement index (from 1 if not mixed to 2 if mixed).
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3.8— Bayesian Variable Selection Example

f o &*
°® hs. ° %
e % ° o’ 4 oo T % °
® o [ J P eo® [ ]
°® e ° ®oe o ° ¢ e © o ¢
s°® ) L) ° e ®®°®
°® °® ® ° °® ° ®
[ ] [ ] [ ]
X4 Xo X3
o® o ©
° [ ‘.’ ° [ ] [ 4 : c e y .: oo ®
Y [ J ..‘ Y ‘. “. ° : ® “ o ®
@ > ] [ J ® e e ® ®
.. .‘ [ J [ ] ¢ “ [ J ® ® o e ®
® ° [ ] [ J ‘ [ 1] ® ® <O
e g g °® ° ° °
[ ] [ ] [ J
Xq X5 Xe
[ ] o ©® [ J
. . & S .°
° 8 % 8 e o
© [ J : z : c - to LY [ J © “Q “‘ [ J
o o ©® L 4 ® [ J o® [ ]
® ‘ [ J © o o ® © [ J [ J o [ J © ®
' ® e ‘ [ J [ J .. [ J
) e ©® ° ® ° ° ®
[ J [ J [ J
X7 Xg X9

— Variable Selection Example Page 17



3.8— Bayesian Variable Selection Example

e Top five most likely models

7 (v|z) (Ridge 6% = 10)

T (7| z) (g-p 0% = 10)

7 (v x) (g-p, 2 estimated)

0,1,2,4,5/0.1946

0,1,2,4,5/0.2316

0,1,2,4,5/0.0929

0,1,2,4,5,9/0.0321

0,1,2,4,5,9/0.0374

0,1,2,4,5,9/0.0325

0,12,4,5,10/0.0327

0,1,9/0.0344

0,1,2,4,5,10/0.0295

0,1,2,4,5,7/0.0306

0,1,2,4,5,10/0.0328

0,1,2,4,5,7/0.0231

0,1,2,4,5,8/0.0251

0,1,4,5/0.0306

0,1,2,4,5,8/0.0228
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3.8— Bayesian Variable Selection Example

e This very simple sampler is much more efficient than the ones where

v is sampled conditional upon (3, c?).

e However, it can also mix very slowly because the components are

updated one at a time.

e It is possible to compared to true values for fixed 62 and

20000 iterations appears sufficients.
e Updating correlated components together would increase significantly

the convergence speed of the algorithm at the cost of an increased

complexity.
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4.1— Finite Mixture of Distributions

e
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Velocity (km/sc) of galaxies in the Corona Borealis Region
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4.1— Finite Mixture of Distributions

e Consider the case where one has n 1.1.d. data X;

K
X~ ZPkN (1, %)

where K is fixed and 0 = {px,0},pr},_, , are unknown.

e A standard approach consists of finding a local maximum of the log-likelihood

log f (x1:n| 0) Zlogf ;| 0

where K ( )2
Pk L —
x| ) = exp | — :
(i)~ 3 Ao (-3 )
e Problem: The likelihood is unbounded.
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4.2— Bayesian Mixture Model

e We consider the Bayesian framework where we set priors

7 (0) =7 (p1,...,PK) H ™ (ks 0%)

=1

-

where

(p1, -, PK) ~ D1,y vK) -

o2 A+ 3
:uki|0-12€ ~ N(aka_k)7 O-]%Nz.g( k2 7@1{;)

e It is impossible to use the Gibbs sampler to sample from 7 (0| z1.,) .
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4.2— Bayesian Mixture Model

e We can introduce the missing data Z; € {1, ..., K} such that

Xil Zi ~ N (pz,,0%,)

and

e The “complete” likelihood admits a simple form

7-‘-(:'61:7’1,721:7’11‘ (9) — H f(x1| 9721)7‘-(2@‘ 9) :

k=1

e Thus we propose to sample the joint posterior 7 (0, z1.,| Y1.,) through MCMC.
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4.3— Gibbs Sampler for Finite Mixture of Distributions

e We have
T (21.n] 0, T1.0) —ﬁw(ziw,azi)
i=1
where
7 (2 = 71 0.2;) — Kf(%'waj)pj |
D k=1 J (il 0, k) i
e We have

K
7T (‘9| Z1:ns xl:n) =T (pla 7pK| Zl:n) H 7T (Mka O_I%} ARY xl:n)
k=1
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4.3— Gibbs Sampler for Finite Mixture of Distributions

e Introducing
i=1 i=1 '
e We have the full conditionals

P1, 7pK‘ Rl:n ™ D (’Yl + ni, .-y YK + nK)

5 A +ngp + 3 )\ksi —+ ﬁk + S% — ()\k + nk)_l ()\kak + nkfk)2
OL|Rliny, L1n Ig 9 ) 9

= 2
5 1% ALOE + NETk o
Mk|akazlznax1:n ~ .

A+ N ’)\k+nk

e It is thus trivial to implement the Gibbs sampler.
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4.3— Gibbs Sampler for Finite Mixture of Distributions

e Consider some n = 100 simulated data

X; ~ 0.3V (=2,1) + 0.7N (2, 1),

i.e. we have well-separated components.

e Weset v, =1, ar =0, \py = 0.01, 5 = 0.01 and run the Gibbs sampler for
10000 iterations.

e We obtain E (p1|x1.0m) = 2.17, E (po|x1.n) = —1.89, E (a%‘ $1:n) = 0.92,
E (03| z1:0) = 1.3, E(p1]21:0) = 0.32 and E (pa] z1.,) = 0.68.

e Increasing the number of iterations to 100000, I obtain similar results.
Should I be happy?
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4.3— Gibbs Sampler for Finite Mixture of Distributions

e You should be extremely unhappy... as one should get

E(plain) = E(pol21m), E(0f|21m) = E (03] 21m)

E(pilxim) = E(p2|z1m)=0.5.

e Indeed, the prior and likelihood are exchangeable and

2 2
7T (p17 oy DKL ooy MK Oy ooy O-K‘ xl:n)

= 7 (pcuw s (), HE(1) s s HE(R) s TE (1) -+ U?(K)’ 5’71%)

for any permutation ¢ of the labels.

e Clearly, conditional expectations are not useful in this case.
= This does NOT mean that your Bayesian model is useless.
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4.3— Gibbs Sampler for Finite Mixture of Distributions

e One can select another point estimates; e.g. the MAP estimate

Opap = arg max m (6| x1.,) -

e Alternatively, constraints can be set on the priors; e.g. we ensure that

p1 S p2 <o S pp

= However, this can lead to “strange” shapes of the posteriors and is not

natural in most cases.

e If no constraint is ensured, then one can check whether the algorithm “mixes”

by monitoring the conditional expectations.
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4.3— Gibbs Sampler for Finite Mixture of Distributions

e One way to improve the algorithm consists of randomly permuting the labels
(Fruwirth-Schnatter, JASA, 2002)

= Realistic if K is moderate because there are K! permutations.
e Alternative ways to improve the algorithm include

e Not introducing the latent variables and using sampling
strategies different from Gibbs.

e Integrating out 6!
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4.3— Gibbs Sampler for Finite Mixture of Distributions

e The marginal distribution of z7.,, can be computed analytically (for conjugate

priors)

T (21| T1m) = /W(zl;n,H\xlm)dQ.

o T (21.n|%1.n) is a discrete distribution with K™ >> 1 potential values.

e We can sample easily from it using Gibbs and using permutation moves.
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4.3— Gibbs Sampler for Finite Mixture of Distributions

e Initialization:
(0)
1:n-

e Select deterministically or randomly 2.

e lteration 7; 7 > 1:
Fork=1:n
e Sample z,(:) ~ T (zk| :131;n729€>-

where z(_zll = (zfi), e 21(217 z,g:ll), e zf,(f_l)> :

e Sample 01) ~ 1 (9\ T1in, zﬁl)

We also introduce randomly permutations of the labels.
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4.3— Gibbs Sampler for Finite Mixture of Distributions

Galaxy dataset

210
1
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5
1
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1

Predictive distribution for the galaxy dataset.
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4.3— Gibbs Sampler for Finite Mixture of Distributions

e The Gibbs sampler is a generic tool to sample approximately
from high-dimensional distributions.

e Fach time you face a problem, you need to think hard about it

to design an efficient algorithm.

e Eixcept the choice of the partitions of parameters, the Gibbs
sampler is parameter free; this does not mean it is efficient.
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