Stat 535 C - Statistical Computing & Monte Carlo Methods

Arnaud Doucet

Email: arnaud@cs.ubc.ca

- The Gibbs Sampler
- Variable Selection Example
- Finite Mixture of Gaussians

• The Gibbs sampler is a generic method to sample from high-dimensional distribution.

• It generates a Markov chain which converges to the target distribution under weak assumptions: irreducibility and aperiodicity.

- If $\theta = (\theta_1, ..., \theta_p)$ where p > 2, the Gibbs sampling strategy still applies.
- Initialization:

• Select deterministically or randomly
$$\theta^{(0)} = \left(\theta_1^{(0)}, ..., \theta_p^{(0)}\right)$$
.

• Iteration $i; i \ge 1$:

For k = 1: p

• Sample
$$\theta_k^{(i)} \sim \pi\left(\left.\theta_k\right| \theta_{-k}^{(i)}\right)$$
.

where
$$\theta_{-k}^{(i)} = \left(\theta_1^{(i)}, ..., \theta_{k-1}^{(i)}, \theta_{k+1}^{(i-1)}, ..., \theta_p^{(i-1)}\right).$$

- Initialization:
 - Select deterministically or randomly $\theta^{(0)} = \left(\theta_1^{(0)}, ..., \theta_p^{(0)}\right)$.
- Iteration $i; i \ge 1$:
 - Sample $K \sim U_{\{1,\dots,p\}}$.
 - Set $\theta_{-K}^{(i)} = \theta_{-K}^{(i-1)}$.
 - Sample $\theta_{K}^{(i)} \sim \pi \left(\left. \theta_{K} \right| \left. \theta_{-K}^{(i)} \right) \right)$.

where
$$\theta_{-K}^{(i)} = \left(\theta_1^{(i)}, ..., \theta_{K-1}^{(i)}, \theta_{K+1}^{(i)}, ..., \theta_p^{(i)}\right)$$
.

- Try to have as few "blocks" as possible.
- Put the most correlated variables in the same block.
- If necessary, reparametrize the model to achieve this.
- Integrate analytically as many variables as possible: pretty algorithms can be much more inefficient than ugly algorithms.
- There is no general result telling strategy A is better than strategy B in all cases: you need experience.

• We select the following model

$$Y = \sum_{k=1}^{p} \beta_k X_k + \sigma V \text{ where } V \sim \mathcal{N}(0, 1)$$

where we assume $\mathcal{IG}\left(\sigma^2; \frac{\nu_0}{2}, \frac{\gamma_0}{2}\right)$ and for $\alpha^2 << 1$ $\beta_k \sim \frac{1}{2} \mathcal{N}\left(0, \alpha^2 \delta^2 \sigma^2\right) + \frac{1}{2} \mathcal{N}\left(0, \delta^2 \sigma^2\right)$

• We introduce a latent variable $\gamma_k \in \{0, 1\}$ such that

$$\Pr\left(\gamma_{k}=0\right) = \Pr\left(\gamma_{k}=1\right) = \frac{1}{2},$$

$$\beta_{k} | \gamma_{k}=0 \sim \mathcal{N}\left(0, \alpha^{2} \delta^{2} \sigma^{2}\right), \quad \beta_{k} | \gamma_{k}=1 \sim \mathcal{N}\left(0, \delta^{2} \sigma^{2}\right).$$

- Variable Selection Example

- We have parameters $(\beta_{1:p}, \gamma_{1:p}, \sigma^2)$ and observe *n* observations $D = \{x_j, y_j\}_{j=1}^n$.
- A potential Gibbs sampler consists of sampling iteratively from $p(\beta_{1:p}|D, \gamma_{1:p}, \sigma^2)$ (Gaussian), $p(\sigma^2|D, \gamma_{1:p}, \beta_{1:p})$ (inverse-Gamma) and $p(\gamma_{1:p}|D, \beta_{1:p}, \sigma^2)$.
- In particular $p\left(\gamma_{1:p} \mid D, \beta_{1:p}, \sigma^{2}\right) = \prod_{k=1}^{p} p\left(\gamma_{k} \mid \beta_{k}, \sigma^{2}\right)$

and

$$p\left(\gamma_{k}=1|\beta_{k},\sigma^{2}\right)=\frac{\frac{1}{\sqrt{2\pi\delta\sigma}}\exp\left(-\frac{\beta_{k}^{2}}{2\delta^{2}\sigma^{2}}\right)}{\frac{1}{\sqrt{2\pi\delta\sigma}}\exp\left(-\frac{\beta_{k}^{2}}{2\delta^{2}\sigma^{2}}\right)+\frac{1}{\sqrt{2\pi\alpha\delta\sigma}}\exp\left(-\frac{\beta_{k}^{2}}{2\alpha^{2}\delta^{2}\sigma^{2}}\right)}.$$

• The Gibbs sampler becomes reducible as α goes to zero.

• This is the result of bad modelling and bad algorithm. You would like to put $\alpha \simeq 0$ and write

$$Y = \sum_{k=1} \gamma_k \beta_k X_k + \sigma V \text{ where } V \sim \mathcal{N}(0, 1)$$

where $\gamma_k = 1$ if X_k is included or $\gamma_k = 0$ otherwise. However this suggests that β_k is defined even when $\gamma_k = 0$.

• A neater way to write such models is to write

$$Y = \sum_{\{k:\gamma_k=1\}} \beta_k X_k + \sigma V = \beta_{\gamma}^{\mathrm{T}} X_{\gamma} + \sigma V$$

where, for a vector $\gamma = (\gamma_1, ..., \gamma_p), \beta_{\gamma} = \{\beta_k : \gamma_k = 1\}, X_{\gamma} = \{X_k : \gamma_k = 1\}$ and $n_{\gamma} = \sum_{k=1}^p \gamma_k$.

• Prior distributions

$$\pi_{\gamma} \left(\beta_{\gamma}, \sigma^{2} \right) = \mathcal{N} \left(\beta_{\gamma}; 0, \delta^{2} \sigma^{2} I_{n_{\gamma}} \right) \mathcal{IG} \left(\sigma^{2}; \frac{\nu_{0}}{2}, \frac{\gamma_{0}}{2} \right)$$
$$\pi \left(\gamma \right) = \prod_{k=1}^{p} \pi \left(\gamma_{k} \right) = 2^{-p}.$$

- Variable Selection Example

and

- We are interested in sampling from the trans-dimensional distribution $\pi(\gamma, \beta_{\gamma}, \sigma^2 | D)$
- However, we know that

$$\pi\left(\gamma,\beta_{\gamma},\sigma^{2} \mid D\right) = \pi\left(\gamma \mid D\right)\pi\left(\beta_{\gamma},\sigma^{2} \mid D,\gamma\right)$$

where

$$\pi \left(\left. \gamma \right| D \right) \propto \pi \left(\left. D \right| \gamma \right) \pi \left(\gamma \right)$$

and

$$\pi \left(D \right| \gamma \right) = \int \pi \left(D, \beta_{\gamma}, \sigma^{2} \right| \gamma \right) d\beta_{\gamma} d\sigma^{2}$$

$$\propto \Gamma \left(\frac{\nu_{0} + n}{2} + 1 \right) \delta^{-n_{\gamma}} |\Sigma_{\gamma}|^{1/2} \left(\frac{\gamma_{0} + \sum_{j=1}^{n} y_{k}^{2} - \mu_{\gamma}^{\mathrm{T}} \Sigma_{\gamma}^{-1} \mu_{\gamma}}{2} \right)^{-\left(\frac{\nu_{0} + n}{2} + 1\right)}$$

• The full conditional distribution for $\pi \left(\beta_{\gamma}, \sigma^2 | D, \gamma \right)$ is

$$\pi_{\gamma} \left(\beta_{\gamma}, \sigma^{2} \middle| D \right) = \mathcal{N} \left(\beta_{\gamma}; \mu_{\gamma}, \sigma^{2} \Sigma_{\gamma} \right)$$
$$\times \mathcal{IG} \left(\sigma^{2}; \frac{\nu_{0} + n}{2}, \frac{\gamma_{0} + \sum_{j=1}^{n} y_{j}^{2} - \mu_{\gamma}^{\mathrm{T}} \Sigma_{\gamma}^{-1} \mu_{\gamma}}{2} \right)$$

where

$$\mu_{\gamma} = \Sigma_{\gamma} \left(\sum_{j=1}^{n} y_j x_{\gamma,j} \right), \ \Sigma_{\gamma}^{-1} = \delta^{-2} I_{n_{\gamma}} + \sum_{i=1}^{n} x_{\gamma,j} x_{\gamma,j}^{\mathrm{T}}.$$

• Popular alternative Bayesian models include

1

$$\gamma_i \sim \mathcal{B}(\lambda) \text{ where } \lambda \sim \mathcal{U}[0,1],$$

$$\gamma_i \sim \mathcal{B}(\lambda_i) \text{ where } \lambda_i \sim \mathcal{B}e(\alpha, \beta).$$

• g-prior (Zellner)

$$\beta_{\gamma} | \sigma^2 \sim \mathcal{N} \left(\beta_{\gamma}; 0, \delta^2 \sigma^2 \left(X_{\gamma}^{\mathrm{T}} X_{\gamma} \right)^{-1} \right).$$

• Robust models where additionally one has $\delta^2 \sim \mathcal{IG}\left(\frac{a_0}{2},\frac{b_0}{2}\right).$

• Such variations are very important and can modify dramatically the performance of the Bayesian model.

- Variable Selection Example

- $\pi(\gamma | D)$ is a discrete probability distribution with 2^p potential values, we assume $\delta^2 known$ here.
- Initialization:
 - Select deterministically or randomly $\gamma^{(0)} = \left(\gamma_1^{(0)}, ..., \gamma_p^{(0)}\right)$.
- Iteration $i; i \ge 1$:

For
$$k = 1 : p$$

• Sample $\gamma_k^{(i)} \sim \pi \left(\gamma_k | D, \gamma_{-k}^{(i)} \right)$.
where $\gamma_{-k}^{(i)} = \left(\gamma_1^{(i)}, ..., \gamma_{k-1}^{(i)}, \gamma_{k+1}^{(i-1)}, ..., \gamma_p^{(i-1)} \right)$.
• Optional step: Sample $\left(\beta_{\gamma}^{(i)}, \sigma^{2(i)} \right) \sim \pi \left(\beta_{\gamma}, \sigma^2 | D, \gamma^{(i)} \right)$

- Consider the case where δ^2 is unknown.
- Initialization:

• Select deterministically or randomly $\left(\gamma^{(0)}, \beta^{(0)}_{\gamma}, \sigma^{2(0)}, \delta^{2(0)}\right)$

• Iteration
$$i; i \ge 1$$
:

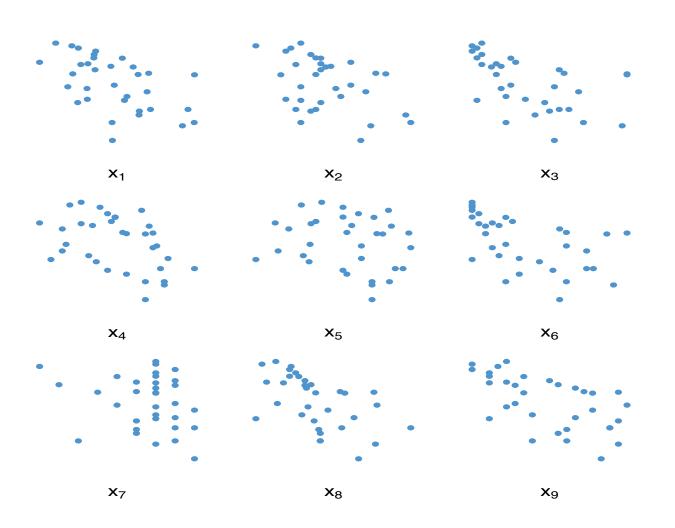
$$\begin{split} & \text{For } k = 1:p \\ & \bullet \text{ Sample } \gamma_k^{(i)} \sim \pi \left(\gamma_k | \, D, \gamma_{-k}^{(i)}, \delta^{2(i-1)} \right). \\ & \text{where } \gamma_{-k}^{(i)} = \left(\gamma_1^{(i)}, ..., \gamma_{k-1}^{(i)}, \gamma_{k+1}^{(i-1)}, ..., \gamma_p^{(i-1)} \right). \\ & \bullet \text{ Sample } \left(\beta_{\gamma}^{(i)}, \sigma^{2(i)} \right) \sim \pi \left(\beta_{\gamma}, \sigma^2 | \, D, \gamma^{(i)}, \delta^{2(i)} \right). \\ & \bullet \text{ Sample } \delta^{2(i)} \sim \pi \left(\delta^{2(i)} | \, \beta_{\gamma}^{(i)} \right). \end{split}$$

• Caterpillar dataset: 1973 study to assess the influence of some forest settlement characteristics on the development of catepillar colonies.

• The response variable is the log of the average number of nests of caterpillars per tree on an area of 500 square meters.

• We have n = 33 data and 10 explanatory variables

- x_1 is the altitude (in meters),
- x_2 is the slope (in degrees),
- x_3 is the number of pines in the square,
- x_4 is the height (in meters) of the tree sampled at the center of the square,
- x_5 is the diameter of the tree sampled at the center of the square,
- x_6 is the index of the settlement density,
- x_7 is the orientation of the square (from 1 if southbound to 2 otherwise),
- x_8 is the height (in meters) of the dominant tree,
- x_9 is the number of vegetation strata,
- x_{10} is the mix settlement index (from 1 if not mixed to 2 if mixed).



• Top five most likely models

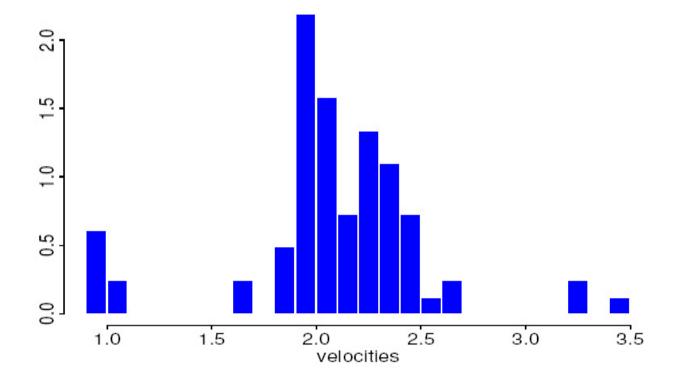
$\pi \left(\gamma x \right) \text{ (Ridge } \delta^2 = 10 \text{)}$	$\pi \left(\left. \gamma \right x \right) (\text{g-p } \delta^2 = 10)$	$\pi\left(\left.\gamma\right x\right)$ (g-p, δ^{2} estimated)
0,1,2,4,5/0.1946	$0,\!1,\!2,\!4,\!5/0.2316$	$0,\!1,\!2,\!4,\!5/0.0929$
0, 1, 2, 4, 5, 9/0.0321	$0,\!1,\!2,\!4,\!5,\!9/0.0374$	$0,\!1,\!2,\!4,\!5,\!9/0.0325$
0,12,4,5,10/0.0327	0,1,9/0.0344	0, 1, 2, 4, 5, 10/0.0295
0, 1, 2, 4, 5, 7/0.0306	$0,\!1,\!2,\!4,\!5,\!10/0.0328$	0, 1, 2, 4, 5, 7/0.0231
$0,\!1,\!2,\!4,\!5,\!8/0.0251$	$0,\!1,\!4,\!5/0.0306$	$0,\!1,\!2,\!4,\!5,\!8/0.0228$

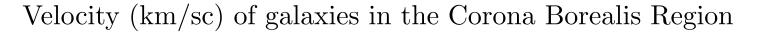
• This very simple sampler is much more efficient than the ones where γ is sampled conditional upon (β, σ^2) .

• However, it can also mix very slowly because the components are updated one at a time.

• It is possible to compared to true values for fixed δ^2 and 20000 iterations appears sufficients.

• Updating correlated components together would increase significantly the convergence speed of the algorithm at the cost of an increased complexity.





• Consider the case where one has n i.i.d. data X_i

$$X_i \sim \sum_{k=1}^{K} p_k \mathcal{N}\left(\mu_k, \sigma_k^2\right)$$

where K is fixed and $\theta = \{\mu_k, \sigma_k^2, p_k\}_{k=1,...,K}$ are unknown.

• A standard approach consists of finding a local maximum of the log-likelihood

$$\log f(x_{1:n}|\theta) = \sum_{i=1}^{n} \log f(x_i|\theta)$$

where

$$f(x|\theta) = \sum_{k=1}^{K} \frac{p_k}{\sqrt{2\pi\sigma_k}} \exp\left(-\frac{\left(x-\mu_k\right)^2}{2\sigma_k^2}\right).$$

• Problem: The likelihood is unbounded.

• We consider the Bayesian framework where we set priors

$$\pi\left(\theta\right) = \pi\left(p_1, \dots, p_K\right) \prod_{k=1}^K \pi\left(\mu_k, \sigma_k^2\right)$$

where

$$(p_1, ..., p_K) \sim \mathcal{D}(\gamma_1, ..., \gamma_K).$$

 $\mu_k | \sigma_k^2 \sim \mathcal{N}\left(\alpha_k, \frac{\sigma_k^2}{\lambda_k}\right), \ \sigma_k^2 \sim \mathcal{IG}\left(\frac{\lambda_k + 3}{2}, \frac{\beta_k}{2}\right).$

• It is impossible to use the Gibbs sampler to sample from $\pi(\theta | x_{1:n})$.

• We can introduce the missing data $Z_i \in \{1, ..., K\}$ such that

$$X_i | Z_i \sim \mathcal{N}\left(\mu_{Z_i}, \sigma_{Z_i}^2\right)$$

and

$$\Pr\left(Z_i=k\right)=p_k.$$

• The "complete" likelihood admits a simple form

$$\pi(x_{1:n}, z_{1:n} | \theta) = \prod_{k=1}^{n} f(x_i | \theta, z_i) \pi(z_i | \theta).$$

• Thus we propose to sample the joint posterior $\pi(\theta, z_{1:n} | y_{1:n})$ through MCMC.

• We have

$$\pi(z_{1:n} | \theta, x_{1:n}) = \prod_{i=1}^{n} \pi(z_i | \theta, x_i)$$

where

$$\pi \left(z_i = j | \theta, x_i \right) = \frac{f \left(x_i | \theta, j \right) p_j}{\sum_{k=1}^{K} f \left(x_i | \theta, k \right) p_k}.$$

• We have

$$\pi\left(\left.\theta\right|z_{1:n}, x_{1:n}\right) = \pi\left(\left.p_{1}, \dots, p_{K}\right|z_{1:n}\right) \prod_{k=1}^{K} \pi\left(\left.\mu_{k}, \sigma_{k}^{2}\right|z_{1:n}, x_{1:n}\right)$$

- Finite Mixture of Distributions

• Introducing

$$n_{k} = \sum_{i=1}^{n} \mathbf{1}_{\{k\}} (z_{i}), \ n_{k} \overline{x}_{k} = \sum_{i=1}^{n} x_{i} \mathbf{1}_{\{k\}} (z_{i}), \ s_{k}^{2} = \sum_{i=1}^{n} (x_{i} - \overline{x}_{k})^{2} \mathbf{1}_{\{k\}} (z_{i}).$$

• We have the full conditionals

$$p_1, \dots, p_K | z_{1:n} \sim \mathcal{D} \left(\gamma_1 + n_1, \dots, \gamma_K + n_K \right)$$

$$\sigma_k^2 | z_{1:n}, x_{1:n} \sim \mathcal{IG} \left(\frac{\lambda_k + n_k + 3}{2}, \frac{\lambda_k s_k^2 + \beta_k + s_k^2 - (\lambda_k + n_k)^{-1} \left(\lambda_k \alpha_k + n_k \overline{x}_k\right)^2}{2} \right)$$

$$\mu_k | \sigma_k^2, z_{1:n}, x_{1:n} \sim \mathcal{N} \left(\frac{\lambda_k \alpha_k + n_k \overline{x}_k}{\lambda_k + n_k}, \frac{\sigma_k^2}{\lambda_k + n_k} \right).$$

• It is thus trivial to implement the Gibbs sampler.

- Finite Mixture of Distributions

• Consider some n = 100 simulated data

$$X_i \sim 0.3 \mathcal{N}(-2, 1) + 0.7 \mathcal{N}(2, 1),$$

i.e. we have well-separated components.

• We set $\gamma_k = 1$, $\alpha_k = 0$, $\lambda_k = 0.01$, $\beta_k = 0.01$ and run the Gibbs sampler for 10000 iterations.

• We obtain
$$\widehat{E}(\mu_1 | x_{1:n}) = 2.17$$
, $\widehat{E}(\mu_2 | x_{1:n}) = -1.89$, $\widehat{E}(\sigma_1^2 | x_{1:n}) = 0.92$,
 $\widehat{E}(\sigma_2^2 | x_{1:n}) = 1.3$, $\widehat{E}(p_1 | x_{1:n}) = 0.32$ and $\widehat{E}(p_2 | x_{1:n}) = 0.68$.

• Increasing the number of iterations to 100000, I obtain similar results. Should I be happy? • You should be extremely unhappy... as one should get

$$E(\mu_1 | x_{1:n}) = E(\mu_2 | x_{1:n}), \ E(\sigma_1^2 | x_{1:n}) = E(\sigma_2^2 | x_{1:n}),$$
$$E(p_1 | x_{1:n}) = E(p_2 | x_{1:n}) = 0.5.$$

• Indeed, the prior and likelihood are exchangeable and

$$\pi \left(p_1, ..., p_K, \mu_1, ..., \mu_K, \sigma_1^2, ..., \sigma_K^2 \middle| x_{1:n} \right)$$

= $\pi \left(p_{\zeta(1)}, ..., p_{\zeta(K)}, \mu_{\zeta(1)}, ..., \mu_{\zeta(K)}, \sigma_{\zeta(1)}^2, ..., \sigma_{\zeta(K)}^2 \middle| x_{1:n} \right)$

for any permutation ζ of the labels.

• Clearly, conditional expectations are not useful in this case. \Rightarrow This does NOT mean that your Bayesian model is useless.

• One can select another point estimates; e.g. the MAP estimate

 $\theta_{MAP} = \arg \max \pi \left(\theta | x_{1:n} \right).$

• Alternatively, constraints can be set on the priors; e.g. we ensure that

$$\mu_1 \le \mu_2 \le \dots \le \mu_P$$

 \Rightarrow However, this can lead to "strange" shapes of the posteriors and is not natural in most cases.

• If no constraint is ensured, then one can check whether the algorithm "mixes" by monitoring the conditional expectations.

- One way to improve the algorithm consists of randomly permuting the labels (Fruwirth-Schnatter, JASA, 2002)
- \Rightarrow Realistic if K is moderate because there are K! permutations.
- Alternative ways to improve the algorithm include
 - Not introducing the latent variables and using sampling strategies different from Gibbs.
 - Integrating out θ !

• The marginal distribution of $z_{1:n}$ can be computed analytically (for conjugate priors)

$$\pi(z_{1:n}|x_{1:n}) = \int \pi(z_{1:n}, \theta | x_{1:n}) d\theta.$$

- $\pi(z_{1:n}|x_{1:n})$ is a discrete distribution with $K^n >> 1$ potential values.
- We can sample easily from it using Gibbs and using permutation moves.

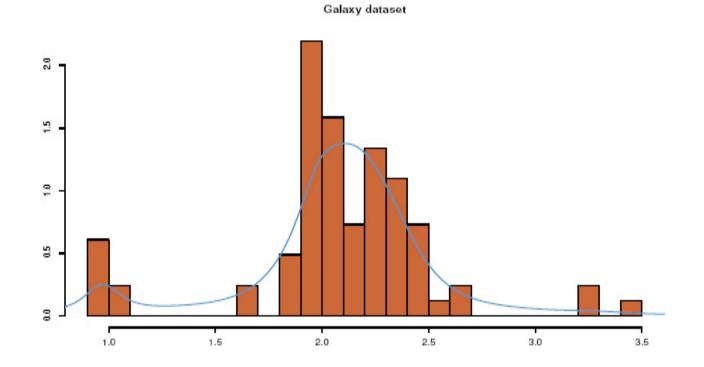
- Initialization:
 - Select deterministically or randomly $z_{1:n}^{(0)}$.
- Iteration $i; i \ge 1$:

For
$$k = 1 : n$$

• Sample $z_k^{(i)} \sim \pi \left(z_k | x_{1:n}, z_{-k}^{(i)} \right)$.
where $z_{-k}^{(i)} = \left(z_1^{(i)}, ..., z_{k-1}^{(i)}, z_{k+1}^{(i-1)}, ..., z_n^{(i-1)} \right)$
• Sample $\theta^{(i)} \sim \pi \left(\theta | x_{1:n}, z_{1:n}^{(i)} \right)$.

We also introduce randomly permutations of the labels.

4.3– Gibbs Sampler for Finite Mixture of Distributions



Predictive distribution for the galaxy dataset.

- The Gibbs sampler is a generic tool to sample approximately from high-dimensional distributions.
- Each time you face a problem, you need to think hard about it to design an efficient algorithm.
- Except the choice of the partitions of parameters, the Gibbs sampler is parameter free; this does not mean it is efficient.