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1.1– Outline

• The Gibbs Sampler

• Variable Selection Example

• Finite Mixture of Gaussians
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2.1– Summary of Last Lecture

• The Gibbs sampler is a generic method to sample from
high-dimensional distribution.

• It generates a Markov chain which converges to the
target distribution under weak assumptions: irreducibility
and aperiodicity.
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2.2– More about the Gibbs sampler

• If θ = (θ1, ..., θp) where p > 2, the Gibbs sampling
strategy still applies.

• Initialization:

• Select deterministically or randomly θ(0) =
(
θ
(0)
1 , ..., θ

(0)
p

)
.

• Iteration i; i ≥ 1:

For k = 1 : p

• Sample θ
(i)
k ∼ π

(
θk| θ(i)

−k

)
.

where θ
(i)
−k =

(
θ
(i)
1 , ..., θ

(i)
k−1, θ

(i−1)
k+1 , ..., θ

(i−1)
p

)
.
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2.3– Random Scan Gibbs sampler

• Initialization:

• Select deterministically or randomly θ(0) =
(
θ
(0)
1 , ..., θ

(0)
p

)
.

• Iteration i; i ≥ 1:

• Sample K ∼ U{1,...,p}.

• Set θ
(i)
−K = θ

(i−1)
−K .

• Sample θ
(i)
K ∼ π

(
θK | θ(i)

−K

)
.

where θ
(i)
−K =

(
θ
(i)
1 , ..., θ

(i)
K−1, θ

(i)
K+1, ..., θ

(i)
p

)
.

– Summary Page 5



2.4– Practical Recommendations

• Try to have as few “blocks” as possible.

• Put the most correlated variables in the same block.

• If necessary, reparametrize the model to achieve this.

• Integrate analytically as many variables as possible: pretty algorithms
can be much more inefficient than ugly algorithms.

• There is no general result telling strategy A is
better than strategy B in all cases: you need experience.
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3.1– Bayesian Variable Selection Example

• We select the following model

Y =
p∑

k=1

βkXk + σV where V ∼ N (0, 1)

where we assume IG (σ2; ν0
2 , γ0

2

)
and for α2 << 1

βk ∼ 1
2
N (

0, α2δ2σ2
)

+
1
2
N (

0, δ2σ2
)

• We introduce a latent variable γk ∈ {0, 1} such that

Pr (γk = 0) = Pr (γk = 1) = 1
2 ,

βk| γk = 0 ∼ N (
0, α2δ2σ2

)
, βk| γk = 1 ∼ N (

0, δ2σ2
)
.
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3.2– A Bad Gibbs Sampler

• We have parameters
(
β1:p, γ1:p, σ

2
)

and observe n observations D = {xj , yj}n
j=1.

• A potential Gibbs sampler consists of sampling iteratively
from p

(
β1:p|D, γ1:p, σ

2
)

(Gaussian), p
(
σ2
∣∣D, γ1:p, β1:p

)
(inverse-Gamma)

and p
(
γ1:p|D, β1:p, σ

2
)
.

• In particular
p
(
γ1:p|D, β1:p, σ

2
)

=
p∏

k=1

p
(
γk|βk, σ2

)
and

p
(
γk = 1|βk, σ2

)
=

1√
2πδσ

exp
(
− β2

k

2δ2σ2

)
1√

2πδσ
exp

(
− β2

k

2δ2σ2

)
+ 1√

2παδσ
exp

(
− β2

k

2α2δ2σ2

) .

• The Gibbs sampler becomes reducible as α goes to zero.
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3.3– Bayesian Variable Selection Example

• This is the result of bad modelling and bad algorithm.
You would like to put α � 0 and write

Y =
p∑

k=1

γkβkXk + σV where V ∼ N (0, 1)

where γk = 1 if Xk is included or γk = 0 otherwise. However this suggests that
βk is defined even when γk = 0.

• A neater way to write such models is to write
Y =

∑
{k:γk=1}

βkXk + σV = βT
γ Xγ + σV

where, for a vector γ = (γ1, ..., γp), βγ = {βk : γk = 1} , Xγ = {Xk : γk = 1}
and nγ =

∑p
k=1 γk.

• Prior distributions

πγ

(
βγ , σ2

)
= N (

βγ ; 0, δ2σ2Inγ

) IG (σ2;
ν0

2
,
γ0

2

)
and π (γ) =

∏p
k=1 π (γk) = 2−p.
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3.4– A Better Gibbs Sampler

• We are interested in sampling from the trans-dimensional distribution π
(
γ, βγ , σ2

∣∣D)
• However, we know that

π
(
γ, βγ , σ2

∣∣D) = π (γ|D)π
(
βγ , σ2

∣∣D, γ
)

where
π (γ|D) ∝ π (D| γ)π (γ)

and

π (D| γ) =
∫

π
(
D, βγ , σ2

∣∣ γ) dβγdσ2

∝ Γ
(

ν0 + n

2
+ 1
)

δ−nγ |Σγ |1/2

(
γ0 +

∑n
j=1 y2

k − μT
γ Σ−1

γ μγ

2

)−( ν0+n

2 +1)
.
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3.4– A Better Gibbs Sampler

• The full conditional distribution for π
(
βγ , σ2

∣∣D, γ
)

is

πγ

(
βγ , σ2

∣∣D) = N (
βγ ; μγ , σ2Σγ

)
×IG

(
σ2;

ν0 + n

2
,
γ0 +

∑n
j=1 y2

j − μT
γ Σ−1

γ μγ

2

)

where

μγ = Σγ

⎛⎝ n∑
j=1

yjxγ,j

⎞⎠ , Σ−1
γ = δ−2Inγ +

n∑
i=1

xγ,jx
T
γ,j .
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3.4– A Better Gibbs Sampler

• Popular alternative Bayesian models include

γi ∼ B (λ) where λ ∼ U [0, 1] ,

γi ∼ B (λi) where λi ∼ Be (α, β) .

• g-prior (Zellner)

βγ |σ2 ∼ N
(
βγ ; 0, δ2σ2

(
XT

γ Xγ

)−1
)

.

• Robust models where additionally one has

δ2 ∼ IG
(

a0

2
,
b0

2

)
.

• Such variations are very important and can modify dramatically
the performance of the Bayesian model.
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3.5– Collapsed Gibbs Sampler for Bayesian Variable Selection

• π (γ|D) is a discrete probability distribution with 2p potential
values, we assume δ2 known here.
• Initialization:

• Select deterministically or randomly γ(0) =
(
γ

(0)
1 , ..., γ

(0)
p

)
.

• Iteration i; i ≥ 1:

For k = 1 : p

• Sample γ
(i)
k ∼ π

(
γk|D, γ

(i)
−k

)
.

where γ
(i)
−k =

(
γ

(i)
1 , ..., γ

(i)
k−1, γ

(i−1)
k+1 , ..., γ

(i−1)
p

)
.

• Optional step: Sample
(
β

(i)
γ , σ2(i)

)
∼ π

(
βγ , σ2

∣∣D, γ(i)
)
.
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3.6– Bayesian Variable Selection Example

• Consider the case where δ2 is unknown.
• Initialization:

• Select deterministically or randomly
(
γ(0), β

(0)
γ , σ2(0), δ2(0)

)
• Iteration i; i ≥ 1:

For k = 1 : p

• Sample γ
(i)
k ∼ π

(
γk|D, γ

(i)
−k, δ2(i−1)

)
.

where γ
(i)
−k =

(
γ

(i)
1 , ..., γ

(i)
k−1, γ

(i−1)
k+1 , ..., γ

(i−1)
p

)
.

• Sample
(
β

(i)
γ , σ2(i)

)
∼ π

(
βγ , σ2

∣∣D, γ(i), δ2(i)
)
.

• Sample δ2(i) ∼ π
(

δ2(i)
∣∣β(i)

γ

)
.
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3.7– Bayesian Variable Selection Example

• Caterpillar dataset: 1973 study to assess the influence of some forest
settlement characteristics on the development of catepillar colonies.

• The response variable is the log of the average number of nests of
caterpillars per tree on an area of 500 square meters.

• We have n = 33 data and 10 explanatory variables
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3.8– Bayesian Variable Selection Example

• x1 is the altitude (in meters),
• x2 is the slope (in degrees),
• x3 is the number of pines in the square,
• x4 is the height (in meters) of the tree sampled at the center of the square,
• x5 is the diameter of the tree sampled at the center of the square,
• x6 is the index of the settlement density,
• x7 is the orientation of the square (from 1 if southbound to 2 otherwise),
• x8 is the height (in meters) of the dominant tree,
• x9 is the number of vegetation strata,
• x10 is the mix settlement index (from 1 if not mixed to 2 if mixed).
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3.8– Bayesian Variable Selection Example

x1 x2 x3

x4 x5 x6

x7 x8 x9
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3.8– Bayesian Variable Selection Example

• Top five most likely models

π (γ|x) (Ridge δ2 = 10) π (γ|x) (g-p δ2 = 10) π (γ|x) (g-p, δ2 estimated)

0,1,2,4,5/0.1946 0,1,2,4,5/0.2316 0,1,2,4,5/0.0929

0,1,2,4,5,9/0.0321 0,1,2,4,5,9/0.0374 0,1,2,4,5,9/0.0325

0,12,4,5,10/0.0327 0,1,9/0.0344 0,1,2,4,5,10/0.0295

0,1,2,4,5,7/0.0306 0,1,2,4,5,10/0.0328 0,1,2,4,5,7/0.0231

0,1,2,4,5,8/0.0251 0,1,4,5/0.0306 0,1,2,4,5,8/0.0228

– Variable Selection Example Page 18



3.8– Bayesian Variable Selection Example

• This very simple sampler is much more efficient than the ones where
γ is sampled conditional upon

(
β, σ2

)
.

• However, it can also mix very slowly because the components are
updated one at a time.

• It is possible to compared to true values for fixed δ2 and
20000 iterations appears sufficients.

• Updating correlated components together would increase significantly
the convergence speed of the algorithm at the cost of an increased
complexity.
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4.1– Finite Mixture of Distributions

Velocity (km/sc) of galaxies in the Corona Borealis Region
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4.1– Finite Mixture of Distributions

• Consider the case where one has n i.i.d. data Xi

Xi ∼
K∑

k=1

pkN
(
μk, σ2

k

)
where K is fixed and θ =

{
μk, σ2

k, pk

}
k=1,...,K

are unknown.

• A standard approach consists of finding a local maximum of the log-likelihood

log f (x1:n| θ) =
n∑

i=1

log f (xi| θ)

where
f (x| θ) =

K∑
k=1

pk√
2πσk

exp

(
− (x − μk)2

2σ2
k

)
.

• Problem: The likelihood is unbounded.
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4.2– Bayesian Mixture Model

• We consider the Bayesian framework where we set priors

π (θ) = π (p1, ..., pK)
K∏

k=1

π
(
μk, σ2

k

)
where

(p1, ..., pK) ∼ D (γ1, ..., γK) .

μk|σ2
k ∼ N

(
αk,

σ2
k

λk

)
, σ2

k ∼ IG
(

λk + 3
2

,
βk

2

)
.

• It is impossible to use the Gibbs sampler to sample from π (θ|x1:n) .
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4.2– Bayesian Mixture Model

• We can introduce the missing data Zi ∈ {1, ..., K} such that

Xi|Zi ∼ N (
μZi , σ

2
Zi

)
and

Pr (Zi = k) = pk.

• The “complete” likelihood admits a simple form

π (x1:n, z1:n| θ) =
n∏

k=1

f (xi| θ, zi)π (zi| θ) .

• Thus we propose to sample the joint posterior π (θ, z1:n| y1:n) through MCMC.
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4.3– Gibbs Sampler for Finite Mixture of Distributions

• We have

π (z1:n| θ, x1:n) =
n∏

i=1

π (zi| θ, xi)

where

π (zi = j| θ, xi) =
f (xi| θ, j) pj∑K

k=1 f (xi| θ, k) pk

.

• We have

π (θ| z1:n, x1:n) = π (p1, ..., pK| z1:n)
K∏

k=1

π
(
μk, σ2

k

∣∣ z1:n, x1:n

)
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4.3– Gibbs Sampler for Finite Mixture of Distributions

• Introducing

nk =
n∑

i=1

1{k} (zi) , nkxk =
n∑

i=1

xi1{k} (zi) , s2
k =

n∑
i=1

(xi − xk)2 1{k} (zi) .

• We have the full conditionals

p1, ..., pK | z1:n ∼ D (γ1 + n1, ..., γK + nK)

σ2
k

∣∣ z1:n, x1:n ∼ IG
(

λk + nk + 3
2

,
λks2

k + βk + s2
k − (λk + nk)−1 (λkαk + nkxk)2

2

)

μk|σ2
k, z1:n, x1:n ∼ N

(
λkαk + nkxk

λk + nk
,

σ2
k

λk + nk

)
.

• It is thus trivial to implement the Gibbs sampler.
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4.3– Gibbs Sampler for Finite Mixture of Distributions

• Consider some n = 100 simulated data

Xi ∼ 0.3N (−2, 1) + 0.7N (2, 1) ,

i.e. we have well-separated components.

• We set γk = 1, αk = 0, λk = 0.01, βk = 0.01 and run the Gibbs sampler for
10000 iterations.

• We obtain Ê (μ1|x1:n) = 2.17, Ê (μ2|x1:n) = −1.89, Ê
(
σ2

1

∣∣x1:n

)
= 0.92,

Ê
(
σ2

2

∣∣x1:n

)
= 1.3, Ê (p1|x1:n) = 0.32 and Ê (p2|x1:n) = 0.68.

• Increasing the number of iterations to 100000, I obtain similar results.
Should I be happy?
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4.3– Gibbs Sampler for Finite Mixture of Distributions

• You should be extremely unhappy... as one should get

E (μ1|x1:n) = E (μ2|x1:n) , E
(
σ2

1

∣∣x1:n

)
= E

(
σ2

2

∣∣x1:n

)
,

E (p1|x1:n) = E (p2|x1:n) = 0.5.

• Indeed, the prior and likelihood are exchangeable and

π
(
p1, ..., pK,μ1, ..., μK , σ2

1 , ..., σ2
K

∣∣x1:n

)
= π

(
pζ(1), ..., pζ(K),μζ(1), ..., μζ(K), σ

2
ζ(1), ..., σ

2
ζ(K)

∣∣∣ x1:n

)
for any permutation ζ of the labels.

• Clearly, conditional expectations are not useful in this case.
⇒ This does NOT mean that your Bayesian model is useless.
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4.3– Gibbs Sampler for Finite Mixture of Distributions

• One can select another point estimates; e.g. the MAP estimate

θMAP = arg max π (θ|x1:n) .

• Alternatively, constraints can be set on the priors; e.g. we ensure that

μ1 ≤ μ2 ≤ ... ≤ μP

⇒ However, this can lead to “strange” shapes of the posteriors and is not
natural in most cases.

• If no constraint is ensured, then one can check whether the algorithm “mixes”
by monitoring the conditional expectations.
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4.3– Gibbs Sampler for Finite Mixture of Distributions

• One way to improve the algorithm consists of randomly permuting the labels
(Fruwirth-Schnatter, JASA, 2002)

⇒ Realistic if K is moderate because there are K! permutations.

• Alternative ways to improve the algorithm include

• Not introducing the latent variables and using sampling
strategies different from Gibbs.

• Integrating out θ!
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4.3– Gibbs Sampler for Finite Mixture of Distributions

• The marginal distribution of z1:n can be computed analytically (for conjugate
priors)

π (z1:n|x1:n) =
∫

π (z1:n, θ|x1:n) dθ.

• π (z1:n|x1:n) is a discrete distribution with Kn >> 1 potential values.

• We can sample easily from it using Gibbs and using permutation moves.
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4.3– Gibbs Sampler for Finite Mixture of Distributions

• Initialization:
• Select deterministically or randomly z

(0)
1:n.

• Iteration i; i ≥ 1:

For k = 1 : n

• Sample z
(i)
k ∼ π

(
zk|x1:n, z

(i)
−k

)
.

where z
(i)
−k =

(
z
(i)
1 , ..., z

(i)
k−1, z

(i−1)
k+1 , ..., z

(i−1)
n

)
.

• Sample θ(i) ∼ π
(

θ|x1:n, z
(i)
1:n

)
.

We also introduce randomly permutations of the labels.
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4.3– Gibbs Sampler for Finite Mixture of Distributions

Predictive distribution for the galaxy dataset.
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4.3– Gibbs Sampler for Finite Mixture of Distributions

• The Gibbs sampler is a generic tool to sample approximately
from high-dimensional distributions.

• Each time you face a problem, you need to think hard about it
to design an efficient algorithm.

• Except the choice of the partitions of parameters, the Gibbs
sampler is parameter free; this does not mean it is efficient.
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