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e Slides available on the Web before lectures:

WWW.cs.ubc.ca/ “arnaud/stat535.html

e Textbook: C.P. Robert & G. Casella, Monte Carlo Statistical Methods,
Springer, 2nd Edition.

e Additional lecture notes available on the Web.
e Textbooks which might also be of help:
e A. Gelman, J.B. Carlin, H. Stern and D.B. Rubin, Bayestan Data

Analysis, Chapman&Hall/CRC, 2nd edition.
e C.P. Robert, The Bayesian Choice, Springer, 2nd edition.



1.1— Preliminaries

e Several assignements including programs (R or Matlab).
o Mid-term exam.
e Final project.

e Final weighting not determined.
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1.2— Objectives of this course

e To provide an introduction to Bayesian statistics.

e To provide an introduction to modern computational methods used

in statistics.

e To provide an introduction to complex (but realistic!) statistical

models.
e At the end of this course you should be able to understand and fit

complex models (and be able to assess if your analysis makes

any sense!).
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1.2— Objectives of this course

e Even if you have already followed the course by Kevin
Murphy during the 1st term, you will still learn quite a few things.

e In this course, the emphasis is on computational methods.

e We will go through detailed case studies.
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2.1— Overview of the Course Contents

e Introduction to Bayesian Statistics
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e Explosion of Bayesian statistics over the past 15 years: approximately
30% of papers in top statistical reviews are about Bayesian statistics.

e Among the top 10 most cited mathematicians over the last 10 years,

5 are Bayesian statisticians!

e Over the last 5 years, 4 Copss Medals were awarded to Bayesian

statisticians.
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2.2— Why focusing on Bayesian Statistics?

e The Bayesian approach is very well-adapted to many application
areas: bioinformatics, genetics, epidemiology, econometrics, machine

learning, nuclear magnetic resonance etc.

e It allows one to incorporate in a principled way any prior information

available on a given problem.
e Straightforward to handle missing data, outliers, censored data etc.

e It is a simple framework and, in my opinion, much simpler than

“standard” approaches.

e It is honest and makes clear that any analysis relies on a part of

subjectivity.
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2.3— Computational Methods

e Why have Bayesian statistics enjoyed such an increasing popularity

over the last 15 years?
= Implementation difficult and requires computational methods.

e For complex models, Bayesian methods require computing very
high dimensional integrals.

e Deterministic methods are completely inefficient

= Curse of dimensionality.
e Monte Carlo methods are the only possible way to address

such problems.
= Standard Monte Carlo methods are inefficient.
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2.4— Monte Carlo Computational Methods

e Monte Carlo are stochastic algorithms with a wide range of
applications in physics, chemistry, mechanics, optimization.

e Markov chain Monte Carlo (MCMC) are a very popular
class of Monte Carlo algorithms
= The Metropolis algorithm was named the top algorithm of the 20th

century by mathematicians, computer scientists & physicists!

e Here you will learn MCMC algorithms and why they work (or don’t work!).

— Overview of the Course Contents Page 9



2.5— Monte Carlo Computational Methods

e MCMUC algorithms are iterative algorithms and hence inadequate for many
problems of interest.

e For massive datasets browsing repeatedly the data is too expensive.
e For high-frequency volatility data or target tracking, users

are impatient!

e Sequential Monte Carlo (SMC) also known as particle filters are a recent

class of algorithms to address such probems.
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3.1- Example: Capture-Recapture Experiments

e Eixample: You are interested in estimating the population size
of the bears in BC.

e You capture some bears, mark them and release them.

e Later on, you capture more bears, mark them (some of them

might be already marked) and release them... and so on.

e You build a probabilistic model and based on these data, you
can come up with an estimate of the population size of the bears.

e Your model can include migration effects, birth/deaths of the

individuals, etc.
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3.1- Example: Capture-Recapture Experiments

e Individuals are observed once or several times.

e The repeated observations are used to infer the population size but also

its dynamics.

e Numerous applications in biology and ecology (for estimating some species
populations), in sociology and demography (for estimating the size of
populations at risk), for fraud detection (phone, credit card etc.) or

software debugging (total number of bugs).

— Applications Page 12



3.1- Example: Capture-Recapture Experiments

e A Bayesian approach to such problems is natural.
e Prior on the population size.
e Probabilistic model to describe its evolution is a prior.

e We want to propagate uncertainty of our estimates from one

stage to the next, missing data, etc.

e Bayesian MCMC approaches have become very popular for such

problems.
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3.2— Example: Regression and Classification

e y is called the response/outcome and z = (x1,... ,2,) is

a set of explanatory variables.

e Given n data {yi, xi}, we want to determine a model relating

Yy to x.

o If y € R¥: regression problem.
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3.3— Example: Regression and Classification

e Linear regression

p
y = 50+Zﬁixz‘—|—€ Wh@reE~N(0,O'2)

1=1

= flzg) +e

e Example: Predict the weights of children given the weights of its parents.
e Analysis of Bayes linear model and connections to standard approaches.

e Prior selection, prediction and all that.

— Applications Page 15



3.3— Example: Regression and Classification

e How to handle outliers?

e How to handle noisy explanatory variables?
[Most people claim they are thinner than they really are].

e How to handle missing data?

[Data are never perfect]

e How to handle censored/categorical data?

|Heterogeneous databases]
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3.3— Example: Regression and Classification

e Most data are not normal and do not depend linearly

on the explanatory variables.

e Consider a dichotomous model where the outcome

y € {0,1} (death in a medical study, unemployement in

a socioeconomic study, migration in a capture-recapture study, etc.).
= Normality assumption just does not make any sense.

e Logit regression exp (f (z;))
Py =) = e (F )

e Probit regression

u

Pr(y=1z) = & (f (1)) = %/_f”exp (—7) du.
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3.3— Example: Regression and Classification

e Assume you have access to some counting data; e.g. Gamma ray counts for
geology, network traffic inference using link count data, astronomy, panel

count data (epilepsy, number of patents etc.)

e Poisson regression might be used

ylx ~ P (exp (f (z:)))
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3.3— Example: Regression and Classification

e Assume the outcome y € {1, ..., k} but a ranking information is available;
e.g. kK =5 and the outcome corresponds to a grade level £ < D < C < B < A.

e Other applications include consumers ratings or gene ranking.

e In such case, we can have for example

Pr(ylz) = @ (ay — f (2:)) = P (ay—1 — [ (23)) -
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3.4— Example: Variable Selection
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Row = examples, Columns = features (genes).
Large p, small n.
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3.4— Example: Variable Selection

o If p is large, we might have little information to obtain precise estimator;

large number of genes p and small number of samples n (p >> n).

e In other words, we will increase the explanatory scope of the regression model

but not necessarily its explanatory “power”.

e Moreover some of the explanatory variables might be useless: e.g. the

output is the temperature and an explanatory variable is your weight.
e It is important to be able to decide which explanatory variables should

be kept in a model that balances good explanatory power with good

estimation performances.
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3.4— Example: Variable Selection

e This is a decision problem: all potential models have to be considered
in parallel against a criterion that ranks them.

e There are 2P potential models.
e Stepwise greedy methods or LASSO can be used

= Sensitive to initialization and/or Regularization parameter.

e Bayesian variable selection/model averaging but requires Monte Carlo if

2P >> 1.
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3.5— Example: Nonlinear Regression

e Wavelet regression

e Radial basis regression
y=0+> BK(|z—2|)+e
i=1

e P-splines: unknown numbler of knots, location of the knots etc.

e Neural nets.
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3.5— Example: Nonlinear Regression

e Harmonic regression
k
Yn = Y Bicos (2mfin+ ¢;) + by
i=1

Signal represented as a sum of sinusoidal components (Fourier basis).
e Widely used in NMR, music signal processing, radar etc.

e In this case, {/43, B1:5, f1:k, 02} are unknown.
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3.6— The need for computational methods

e For the simplest Bayesian linear model, inference can be performed
in closed-form.

e For all the other problems, advanced Monte Carlo methods will
be required.

e It can be argue that models should be developed independently of
the algorithms fitting them.

e Pragmatically, this is not really true. What’s the point of having a
super model which is impossible to fit?

e Monte Carlo methods allow users to define much more flexible
models but they have limitations too.
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3.7— Example: Mixture Models and Hidden Markov Models

e Finite Mixture Models

k
f(z)= sz-fi ()

e Finite mixture models appear everywhere and are used for
modelling multimodal distributions.
allows to model populations as mixture of several subpopulations.

data clustering.
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3.7— Example: Mixture Models and Hidden Markov Models

e Example: Finite Mixture of Gaussians
f(x]0) Z piN (5 s, 07)

where 0 = {,ui, a?,pi}izl . 18 estimated from some data (X1 ey Tn) -

.....

e A standard approach consists of finding a local maximum of the log-likelihood

> log f (] 6)
i=1

e Problem: The likelihood is unbounded and k£ might be unknown.
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3.7— Example: Mixture Models and Hidden Markov Models
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velocities

Velocity (km/sc) of galaxies in the Corona Borealis Region
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3.7— Example: Mixture Models and Hidden Markov Models

Galaxy dataset

Predictive distribution for the galaxy dataset.
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3.7— Example: Mixture Models and Hidden Markov Models

e Finite mixture models cannot model dependent data.

e Hidden Markov Models (HMM) are very useful in such cases.

e HMM are used for example to model DNA sequences.
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3.7— Example: Mixture Models and Hidden Markov Models

e A hidden/unbserved Markov process is defined, call it {x;}.

It can take values in a finite space or a continuous space.

e We only have access to an observation process {y;}.

The observations are conditionally independent given {x;}.

e Examples: HMM are used for example to model DNA sequences,

speech processing, econometrics, etc..
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3.7— Example: Mixture Models and Hidden Markov Models

A A

Graphical model representation of HMM
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3.8— Example: Seismic Time Series

e Example: Seismic Data Modelling (Kitagawa, 1996)

where the process (y;) is observed but (x;) is unknown.
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3.9— Example: Financial Time Series
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Four stock data
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3.9— Example: Financial Time Series
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3.9— Example: Financial Time Series

e Example: Consider the log-return sequence of a stock then a popular model

in financial econometrics is the stochastic volatility model

Ty = awi_1 + ovy where v, ~ N (0,1)

y, = [exp(x:/2)wy where wy ~ N (0,1)

where the process (y;) is observed but (x;, «, o, 3) are unknown.
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3.10— Example: Target tracking

Bearings-only-tracking data

— Applications Page 37



3.10— Example: Target tracking

e Example: Consider the coordinates of a target observed through a radar.

(g;g\ (1 1 OO\(x%_l\
1 1
Ty 0O 1 0 O Tp_1q
= A + noise
az? 0O 0 1 1 513%—1
2 2
\ T, ) \ 0O 0 0 1 ) \ T, 4 )
Y = tan ! (x—’i) + wy
L

where the process (x;) is observed but (6;) is unknown.
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3.10— Example: Target tracking
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SMC for state estimation using bearings-only-tracking data
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4.1— Possible other topics

e Survival analysis.

e Curve clustering

e Source separation.

e Nonparametric Bayesian estimation.

e Suggestions are welcome.
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4.2— For next week

e Please read handouts 1 & 2 by Vidakovic: available on the web.

(alternatively chapter 1 of The Bayesian Choice by C.P. Robert)

e You can also read Handouts 1 & 2 by Kevin Murphy.

— Other Topics Page 41



