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Characterizing Joint Distributions/Densities: Covariance

Consider two r.v. X and Y (either discrete or continuous), then the
covariance of (X ,Y ) is defined as

Cov (X ,Y ) = E ((X − E (X )) (Y − E (Y )))
= E (XY )− E (X )E (Y )

The covariance measures the degree to which X and Y vary together.
If the covariance is positive, X tends to be larger than its mean when
Y is larger than its mean. The covariance of a variable with itself is
the variance of that variable.
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Independent Variables and Covariance

If X and Y are two independent r.v. then

Cov (X ,Y ) = 0

Proof. We are going to show that E (XY ) = E (X )E (Y ) if X and
Y are independent

E (XY ) =
∫ ∫

xy · f (x , y) dxdy

=
∫ ∫

xy · fX (x) fY (y) dxdy (independence)

=

[∫
x · fX (x) dx

] [∫
y · fY (y) dy

]
= E (X )E (Y )
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Example: Two Stocks

Let X and Y denote the values of two stocks at the end of a five-year
period. X is uniformly distributed on (0, 12). Given X = x , Y is
uniformly distributed on the interval (0, x). Determine Cov (X ,Y ).
We have for 0 < x < 12 and 0 < y < x

f (x , y) = fX (x) fY |X (y |x) =
1
12
1
x

so

E (X ) =
∫ 12

0
x · 1
12
dx = 6,

E (Y ) =
∫ 12

0

∫ x

0
y · 1
12
1
x
dydx = 3,

E (XY ) =
∫ 12

0

∫ x

0
xy · 1

12
1
x
dydx = 24.

Hence we have

Cov (X ,Y ) = 24− 3× 6 = 6.
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Sum of Random Variables

Consider two random variables X and Y with variances σ2x and σ2y
respectively. Let Z = X + Y then

Var (Z ) = Var (X ) + Var (Y ) + 2Cov (X ,Y ) .

Proof. We have Var (Z ) = E
(
Z 2
)
− E (Z )2 where

E
(
Z 2
)
= E

(
(X + Y )2

)
= E

(
X 2
)
+ E

(
Y 2
)
+ 2E (XY )

and

E (Z )2 = (E (X ) + E (Y ))2

= E
(
X 2
)
+ E

(
Y 2
)
+ 2E (X )E (Y )

and the result follows directly.
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Example: Spreading your risk optimally

You have 2 financial products whose returns can be modelled by the
r.v. X and Y such that E (X ) = E (Y ) = µ, Var (X ) = σ2x ,
Var (Y ) = σ2y and Cov (X ,Y ) = σxy . (These two products are
equally priced). You want to buy a proportion λ of product 1 and
(1− λ) of product 2 where λ ∈ [0, 1] to spread the risk.
(a) What is the expectation of the total return Z = λX + (1− λ)Y ?

(b) What is the variance of the total return?

(c) How should you select λ to minimize this variance?

(d) What is the minimum variance of the return if X and Y are
independent?
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Example: Minimizing the Variance of Your Return

(a) The total return is given by Z = λX + (1− λ)Y so

E (Z ) = λE (X ) + (1− λ)E (Y ) = µ.

(b) We have

Var (Z ) = λ2σ2x + (1− λ)2 σ2y + 2λ (1− λ) σxy

= λ2
(
σ2x + σ2y − 2σxy

)
+ 2λ

(
σxy − σ2y

)
+ σ2y

(c) We just differentiate Var (Z ) w.r.t. λ and obtain

λopt =
σ2y − σxy

σ2x + σ2y − 2σxy

(d) For X ,Y independent, we have σxy = 0 so λopt = σ2y/
(
σ2x + σ2y

)
Var (Z ) =

σ4y

(σ2x+σ2y )
2 σ2x +

σ4x

(σ2x+σ2y )
2 σ2y

=
σ2xσ2y (σ2x+σ2y )

(σ2x+σ2y )
2 =

σ2xσ2y
σ2x+σ2y
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Example: Surgical Claim

Let X denote the size of a surgical claim and let Y denote the size of
the associated hospital claim. An actuary is using a model in which
E (X ) = 5, E

(
X 2
)
= 27.4, E (Y ) = 7, E

(
Y 2
)
= 51.4 and

Var (X + Y ) = 8. Let C1 = X + Y denote the size of the combined
claims before the application of a 20% surcharge on the hospital
portion of the claim, and let C2 the size of the combined claims after
the application of that surcharge. Calculate Cov (C1,C2) .

We have C1 = X + Y and C2 = X + 1.2Y so

Cov (C1,C2) = E [(X + Y ) (X + 1.2Y )]− E [(X + Y )]E [(X + 1.2Y )]
= E

(
X 2
)
+ 1.2E

(
Y 2
)
+ 2.2E (XY )− E (X )2 − 1.2E (Y )2 − 2.2E (X )E (Y )

= Var (X ) + 1.2Var (Y ) + 2.2Cov (X ,Y )

and Var (X + Y ) = Var (X ) + Var (Y ) + 2Cov (X ,Y ) so

Cov (X ,Y ) = 1
2

{
E
(
X 2
)
− E (X )2 + E

(
Y 2
)
− E (Y )2

}
= 1.6 and

Cov (C1,C2) = 8.8.
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Characterizing Joint Distributions/Densities: Correlation

The correlation of (X ,Y ) is defined as

ρ (X ,Y ) =
Cov (X ,Y )√

Var (X )
√
Var (Y )

The correlation is a measure of “dependence”between X and Y . It is
a uniteless measure which takes values in [−1, 1]. Proof can be
established using Cauchy-Schwartz inequality
(
(∫

α (u) β (u) du
)2 ≤ (∫ α2 (u) du

) (∫
β2 (u) du

)
).

If X and Y are two independent r.v. then ρ (X ,Y ) = 0 as
Cov (X ,Y ) = 0.
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Example: Two Stocks

We want to compute the correlation

ρ (X ,Y ) =
Cov (X ,Y )√

Var (X )
√
Var (Y )

We have computed Cov (X ,Y ) = 6 so we need to compute Var (X )
and Var (Y ). We have

E
(
X 2
)
=

∫ 12

0
x2 · 1

12
dx =

1
12

[
x3

3

]12
0
=
144
3
= 48,

E
(
Y 2
)
=

∫ 12

0

1
12
1
x

(∫ x

0
y2 · dy

)
dx =

1
36

∫ 12

0
x2dx =

144
9
= 16.

Hence
ρ (X ,Y ) =

6√
48− 62

√
16− 32

= 0.3631
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Uncorrelated Variables Are Not Necessarily Independent

Independence does imply uncorrelation but the reverse is NOT true.
Counter example for discrete r.v.: let X be such that

P (X = −1) = P (X = 0) = P (X = 1) = 1
3

and Y = X 2 then X and Y are dependent but X and Y are
uncorrelated as

Cov (X ,Y ) = E (XY )− E (X )E (Y )
= E

(
X 3
)︸ ︷︷ ︸

=0

− E (X )︸ ︷︷ ︸
=0

E
(
X 2
)
= 0

Counter example for continuous r.v.: let X be a standard normal and
Y = X 2 then clearly X and Y are dependent but X and Y are
uncorrelated as

Cov (X ,Y ) = E (XY )− E (X )E (Y )
= E

(
X 3
)︸ ︷︷ ︸

=0

− E (X )︸ ︷︷ ︸
=0

E
(
X 2
)
= 0
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