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o Let {7 },-, be a sequence of probability distributions defined on E
such that each 71, (x) is known up to a normalizing constant, i.e.

-1
TTn (X) = Zn '/)/n (X)
~ ——
unknown known
o Estimate expectations [ ¢ (x) 71, (dx) and/or normalizing constants
Z,sequentially; i.e. first 711 and Z; then 715 and Z» and so on.

o Objectives: Develop efficient Monte Carlo methods to perform
numerically these calculations.




e Sequential Bayesian Inference: 71, (x) = p (x| y1:n) -

e Global optimization: 7T, (x) o [t (x)]"" with {n,} increasing
sequence such that 17, — oo.

o Sampling from a fixed target 7 : 7, (x) o [py (x)]™ [77 (x)]" 7o
where u, easy to sample and 77, =1, 1, <7, ; and 7, = 0.

@ Rare event simulation 1 (A) < 1: 7, (x) o 7T (x) 1g, (x) with Z;
known, E; = E, E, C E,_1 and Ep = A then Zp = 11 (A) .




@ Run a Markov chain Monte Carlo (e.g. Metropolis-Hastings)
algorithm to sample from each target distribution 7T,; i.e. build a
Markov kernel K, (x, x") such that

TTh (X') = /E Tn (x) Ky (x, x') dx

and simulate a Markov chain {X,Ei)}: X,El) ~ u, and
x K, (X,S”l), ) .

@ Under weak assumptions, namely irreducibility & aperiodicity

lim Hﬁ (xn(")) o,

[—00

— 0,

i.e. X,Si) is asymptotically distributed according to 7t, and

im 15" (X7) = [0 () ()

koeok (=
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Convergence to 71, can be extremely slow and is difficult to diagnose.

Does not give an estimate of Z, with ‘good’ properties.

If 7t,_1 and 7t, are ‘close’, then it should be possible to devise a
cleverer strategy.

@ A non-iterative alternative to MCMC is Importance Sampling.




Importance Sampling

o Let the target distribution be 71, (x) = Z, 7, (x) and u, be a
so-called importance distribution then

_ owlx )Mn (X)
Tt (X) N fw,, dx

Z, = /Wn(x)‘un(x)dx

where w, (x) =

@ By sampling N i.i.d. particles X,gi)

~ W, then
o, (dx) = % YN, 5Xn<,-> (dx) and

Tt (dx) = W,gi)éx(,> (dx) where W o« w, (X,S”) ,




@ Importance Sampling (IS) is a straightforward method to use if y is
easy to sample.

@ Under weak assumptions, we can obtain asymptotically consistent
estimates of [ ¢ (x) 7, (dx) and Z,... so why do people use MCMC
in 99.99% of cases???

@ For the estimates to have reasonable variances, we need to select very
carefully the importance distribution.

o To compute [ ¢ (x) 7t, (dx) by IS, the optimal distribution depends
on @ but in statistics we often simply want u, as “close" to 71, as
possible.

@ For problems routinely addressed in statistics, this is very difficult.




Iterative Importance Sampling

@ "Philosophy”: Start by doing simple things before trying to do
complex things; same idea used in simulated annealing, simulated
tempering etc.

e Develop a sequential/iterative IS strategy where we start by
approximating a simple target distribution 71;. Then targets evolve
over time and we build the importance distribution sequentially.

@ At time n, we use y,_; to build .

@ This approach makes sense if the sequence {7} is not arbitrary; i.e.
7Th—1 somewhat close to 7T,.




Initialization

o At time 1, sample N (N > 1) particles Xl(i) ~ i, to obtain the
following IS estimates

N .
7 (dx) = ZW1<’)5X1<,-> (dx)

. . N .
where Wl(') < w Xl(')) , Z Wl(’) =1,

Z= L (%)

@ Remark: Estimates have reasonable variance only if discrepancy
between 711 and y; small; hence the need to start with easy to sample
or approximate 7tj.




Moving Particles Forward

@ At time n— 1, one has N particles {Xsil, W,Sil

——

TTh—1 (X,Sgl)
Hn-1 (XrSL1> |

@ Move the particles according to transition kernel

eri)1 ~ H, ;1 and Wrgi)l &

X (X000 = b () = s 51 (1)

e Optimal transition kernel K, (x,x") = 7t, (x’) cannot be used so we
need alternatives.




Kernel Selection

o K, (x,x") = K, (x") with
- simple parametric form (e.g. Gaussian, multinomial etc.);
- semi-parametric based on Ji,_; (dx), complexity O (N?) .
o K, (x,x") MCMC kernel of invariant distribution 7z,.
- burn-in correction by importance sampl?ng.
- scaling of proposal can depend on {ngl} (Crisan & D., 2000
Chopin, 2002)

e K, (x,x") approximation of a Gibbs sampler of invariant distribution
TTh.




Iterative Importance Sampling

Initialization; n = 1.

Fori=1,...,N, sample Xl(i) ~ iy (-) and set

M = m(58) o 0
At time n; n ZW;(XI ) Mq (Xl(i)> , Wi ecwg (X1 ) )
Fori=1,...N, sample X3 ~ K, (X,Ql' ) and set

Wh <X,$i)) = —x W,,(i) X W <X,$i))

where 11 (xn) = / 1 (dxo1) Kn (X1, %) -




@ In most cases, we cannot compute the marginal importance
distribution

() = [ oy (502) K (5, ) i

= /;ul (Xl) H Kk (Xk—I- Xk) dxi:n—1-
k=2

@ Hence we cannot use Importance Sampling.




A Potential Solution?

@ Monte Carlo approximation

. ()
:ﬁn (X”) = /ﬁn—l (anfl) Kn (anlyxn) - N Z Kn (Xn—1'Xn> .

~ Computationally intensive O (NZ).
~> Impossible if K, (x,x") cannot be evaluated pointwise;
e.g. Metropolis-Hastings kernel where

Ko (x,x") = o (x,x') q (x,x') + (1—/0¢(x, u)q(x,u) du>5x (x')

NV
unknown




Importance Sampling on an Extended Space

@ Problem summary: It is impossible to compute pointwise 1, (x,)
hence 7, (xn) /1, (xn) except when n = 1.
@ Solution: Perform importance sampling on extended space.
o At time 2,
T2 (Xz) . TTo (XQ)
po 02) [y (dia) Kz (x1, %)

but alternative weights can be defined

cannot be evaluated

new joint target distribution 712 (x2) L1 (x2, 1)
joint importance distribution iy (x1) K2 (x1, x2)

where L (x2, x1) is an arbitrary (backward) Markov kernel.
@ "“Proof" of validity:

/712 (x2) L1 (x2,x1) dx1 = 712 (x2) / Ly (x2, x1) dx1 = 712 (x2)

=1! whatever being L;




@ Similarly at time n,

T (Xn)

H, (Xn)

where {7T,} is defined using an sequence of arbitrary backwards
Markov kernels {L,}

Z,le,, (xn) =

IMPOSSIBLE so USE Z, *w, (x1.,) = yi

n—1
Artificial target: Ttn (X1:0) = 70 (Xn) H Ly (Xk+1, Xk )
k=1
Importance distribution: my () = py Oa) TT Kie (=1, %) -
k=2
@ “Proof” of validity
_ n—1
/nn (Xlzn) dX1:p—1 = Tp (Xn) / H Ly (Xk—i-lyxk) dxi:n—1 = TTp (Xn) .
k=1

=1! whatever being {L;}
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@ No free lunch: By extending the integration space, the variance of
the importance weights can only increase.

@ The optimal kernel {L,_1} is the one bringing us back to the case
where there is no space extension; i.e.

Mg (Xa—1) Kn (Xn—1,Xn)
:un (X”)

Lz‘it (an Xn 1)

@ The result follows straightforwardly from the forward-backward
formula for Markov processes

p, (xun) = py () T T Kk k=1, %) = 1, (% H L% (Xieo Xk—1)

k=2

° L°ptl cannot typically be computed (though there are important
exceptions) but can be properly approximated in numerous cases (see
later). Even if an approximation is used, the estimates are still
asymptotically consistent.

AD. () 17 / 30



@ We are back to “standard” SMC methods where one is interested in
sampling from a sequence of (artificial) distributions {7,} whose
dimension is increasing over time.

o Key difference: Given {K,}, {7t,} has been constructed in a
“clever" way such that

/%n (Xl:n) Xm:n—l = Tln (Xn)

whereas usually the sequence of targets {71,} is fixed and {K,} is
designed accordingly.

Because we cannot use {L;’"} at each time step, the variance of the
weights typically increases over time and it is necessary to resample.
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Sequential Monte Carlo Samplers

Initialization; n = 1.

For i =1,..., N, sample Xl(i) ~ py (+) and set

Wl(i) & Ll (Xl(l)> .
Hq (Xl(l))
Resample {Wl(i),Xl(i)} to obtain N new particles {Nfl,Xl(i)}.

At time n; n > 1.
Fori=1,...,N, sample X,S) ~ K, (Xlg )1 ) and set

o 7 (07) Lo (67 5000)

Wn(n x W

" (X0) K (X0 A7)

Resample {Wrsi).X,Si)} to obtain N new particles {N*l,X,S")}_




@ Monte Carlo approximation

i=1
@ Ratio of normalizing constants
Z, _ [ vn (xn) dxn
Zn1 fr)/nfl (anl) dxp—1

Tn (Xn) L (Xann 1)
Yn-1 (Xn—l) (Xn 1+ Xn

B g 0 (00

i=1 Yn-1 (X ’ 1) n (erl)lvx(i))'

)7Tn l(an 1) (Xn 1, an)

:
I
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@ Like in MCMC, in practice one typically wants to use a mixture of
moves

M
K, (X,XI) = Z_:l &nm (x) Knm (x, x’)

where &, m (x) > 0, Z,A,Ll &nm (x) =1and {K,m} is a collection of
transition kernels.

@ Importance weight can be computed using standard formula but can
be too computationally intensive if M is large.

o L° can be difficult to approximate if M is large.
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@ Alternative importance sampling on joint space (e.g. Auxiliary
Particle Filters by Pitt & Shephard) by introducing explicitly a
discrete latent variable M,

Pr(M, =m) =apm(x)

and performing importance sampling on the extended space.

@ The resulting incremental importance weight becomes

TTn (X/)an—l,m (X>L” 1m(X/’X) instead o 7Tn (X,) Ln 1( /X)
TTp—1 (X) Xn,m X) (X X/) tead of Th— 1(X)K ( /)

where L,_1 (X, x) is the art|f|C|a| backward Markov kernel

Ln- Zﬁn 1m () Lo—1m (X %)

@ Optimal choice for {[3 L, 1,,7,} follows straightforwardly.

n—1,m’
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@ Convergence results follow from general results on Feynman-Kac
formula (see Del Moral, 2004).

@ When no resampling is performed, one has
~2
VN (Ex, [9] = Ex, [9]) = A (0. 22 (9 () — Ex, (9))° )
@ When multinomial resampling is used at each iteration, one has

VN (Ez, [¢] = Ex, [9]) = N (0,0%uc , (9)) .

7'[2 2
U%Mcn<¢>=fm(fgo () 7en (3 1) bin = Er, ()
4yl Fbba Caxe)) (0o (0 7 (x| xi) dién — Ery (@) déi1k

7Tk 1 (k- I)Kk(Xk 1Xk)

] SR (0 () — Ex, (9))° v

TTh—1 Xn 1 Xn lxn)

@ Under mixing assumptions, ospc.» (¢) upper bounded over time.
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From MCMC to SMC Samplers

o First step: Build a sequence of distributions {7, } going from 71y
easy to sample/approximate to mp = 71; e.g.
7 (x) o [py ()] [t (x)]* 7" where u, easy t leand 7, =1

1 J, easy to sample and 77, ,

Ny <1,_q With17p =0.

e Second step: Introduce a sequence of transition kernels {K,}; e.g.
K, MCMC sampler of invariant distribution 7t,,.

@ Third step: Introduce a sequence of backward kernels {L,}
equal /approximating L5"; e.g.

TTh (Xn71> Kn (anlu Xn)

Ly1 (X,,,X,,,l) = T (X) )

TTp (anl)
TTh—1 (anl)

Xn (anlv Xn) =




Bayesian Analysis of Finite Mixture Models

o Model
4

y; " Z W N (B, Akc) -

e Standard conjugate priors on 6 = (W14, Jiy.4, A1:4), no identifiability
constraint

pe ~N(@E w1, A ~Ga(v, x), wia ~ D(p).

@ The posterior is a mixture of 4! = 24 components




o T =100 data with M = 4, with y = (—3,0,3,6),
A = (0.55,0.55,0.55,0.55); components “far” from each other.

@ We build the sequence of P distributions
70 (0) o< I(y1.7;0)P7 £ (6)

where p; =0 < ¢, < ... < ¢pp = 1.
o MCMC sampler to sample from 7,

e Update yi;., via a MH kernel with additive normal random walk.
o Update Aq.4 via a MH kernel with multiplicative log-normal random

walk.
o Update wi.4 via a MH kernel with additive normal random walk on the

logit scale.
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@ Kp admits as invariant distribution 7tp = 71. Very long runs of
MCMC get trapped in one of the 4!=24 modes of the distributions.

o We select simply here for L,—1 (0,,60,-1) the reversal kernel

TTh (anl) Kn (anly 9n)
7Tn (05) '

@ We ran SMC samplers with MCMC kernels for P =50, 100, 200 and
500 time steps with 1 and 10 MCMC iterations per time step.

Lnfl (Gny 9n71) =
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Sampler Details Component
1 2 3 4
SMC (100 steps, 1 iteration) 0.68 0.91 2.02 2.14
SMC (100 steps, 10 iterations) 1.34 1.44 144 154
SMC (200 steps, 1 iteration) 1.11 129 139 1.98
SMC (200 steps, 10 iterations) 1.34 1.37 1.53 1.53
SMC (500 steps, 1 iteration) 0.98 1.38 1.54 1.87
SMC (500 steps, 10 iterations) 1.40 1.44 1.42 150

AD. ()
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@ With reasonable number of intermediate distributions and N = 1000,

SMC manage to provide reasonable estimates of conditional
expectations

o For a fixed computational complexity, it outperforms very significantly
the associated homogeneous MCMC trapped in a mode.

@ Local MCMC kernels can be combined efficiently through SMC to
explore the space in a simple way.
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Discussion

@ SMC methods are a flexible alternative to MCMC and can address
more general problems.

@ They are not a black-box and careful design is required.

o Adaptive strategies can easily be implemented.




