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Objectives

Let fπngn�1 be a sequence of probability distributions de�ned on E
such that each πn (x) is known up to a normalizing constant, i.e.

πn (x) = Z�1n|{z}
unknown

.γn (x)| {z } .
known

Estimate expectations
R

ϕ (x)πn (dx) and/or normalizing constants
Znsequentially; i.e. �rst π1 and Z1 then π2 and Z2 and so on.

Objectives: Develop e¢ cient Monte Carlo methods to perform
numerically these calculations.
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Examples

Sequential Bayesian Inference: πn (x) = p (x j y1:n) .

Global optimization: πn (x) ∝ [π (x)]ηn with fηng increasing
sequence such that ηn ! ∞.

Sampling from a �xed target π : πn (x) ∝ [µ1 (x)]
ηn [π (x)]1�ηn

where µ1 easy to sample and η1 = 1, ηn < ηn�1 and ηP = 0.

Rare event simulation π (A)� 1: πn (x) ∝ π (x) 1En (x) with Z1
known, E1 = E , En � En�1 and EP = A then ZP = π (A) .
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Run a Markov chain Monte Carlo (e.g. Metropolis-Hastings)
algorithm to sample from each target distribution πn; i.e. build a
Markov kernel Kn (x , x 0) such that

πn
�
x 0
�
=
Z
E

πn (x)Kn
�
x , x 0

�
dx

and simulate a Markov chain
n
X (i )n

o
: X (1)n � µn and

X (i )n � Kn
�
X (i�1)n , �

�
.

Under weak assumptions, namely irreducibility & aperiodicity

lim
i!∞

L �X (i )n �
� πn

! 0,

i.e. X (i )n is asymptotically distributed according to πn and

lim
k!∞

1
k

k

∑
i=1

ϕ
�
X (i )n

�
=
Z

ϕ (x)πn (x) dx .
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Limitations

Convergence to πn can be extremely slow and is di¢ cult to diagnose.

Does not give an estimate of Zn with �good�properties.

If πn�1 and πn are �close�, then it should be possible to devise a
cleverer strategy.

A non-iterative alternative to MCMC is Importance Sampling.
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Importance Sampling

Let the target distribution be πn (x) = Z�1n γn (x) and µn be a
so-called importance distribution then

πn (x) =
wn (x) µn (x)R
wn (x) µn (x) dx

where wn (x) =
γn (x)
µn (x)

,

Zn =
Z
wn (x) µn (x) dx

By sampling N i.i.d. particles X (i )n � µn thenbµn (dx) = 1
N ∑N

i=1 δ
X (i )n
(dx) and

bπn (dx) =
N

∑
i=1
W (i )
n δ

X (i )n
(dx) where W (i )

n ∝ wn
�
X (i )n

�
,

bZn =
1
N

N

∑
i=1
wn
�
X (i )n

�
.
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Limitations

Importance Sampling (IS) is a straightforward method to use if µn is
easy to sample.

Under weak assumptions, we can obtain asymptotically consistent
estimates of

R
ϕ (x) bπn (dx) and bZn... so why do people use MCMC

in 99.99% of cases???

For the estimates to have reasonable variances, we need to select very
carefully the importance distribution.

To compute
R

ϕ (x)πn (dx) by IS, the optimal distribution depends
on ϕ but in statistics we often simply want µn as �close" to πn as
possible.

For problems routinely addressed in statistics, this is very di¢ cult.

A.D. () 7 / 30



Iterative Importance Sampling

�Philosophy�: Start by doing simple things before trying to do
complex things; same idea used in simulated annealing, simulated
tempering etc.

Develop a sequential/iterative IS strategy where we start by
approximating a simple target distribution π1. Then targets evolve
over time and we build the importance distribution sequentially.

At time n, we use µn�1 to build µn.

This approach makes sense if the sequence fπng is not arbitrary; i.e.
πn�1 somewhat close to πn.
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Initialization

At time 1, sample N (N � 1) particles X (i )1 � µ1 to obtain the
following IS estimates

bπ1 (dx) =
N

∑
i=1
W (i )
1 δ

X (i )1
(dx)

where W (i )
1 ∝ w1

�
X (i )1

�
,

N

∑
i=1
W (i )
1 = 1,

bZ1 =
1
N

N

∑
i=1
w1
�
X (i )1

�
Remark: Estimates have reasonable variance only if discrepancy
between π1 and µ1 small; hence the need to start with easy to sample
or approximate π1.
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Moving Particles Forward

At time n� 1, one has N particles
n
X (i )n�1,W

(i )
n�1

o

X (i )n�1 � µn�1 and W
(i )
n�1 ∝

πn�1
�
X (i )n�1

�
µn�1

�
X (i )n�1

� .
Move the particles according to transition kernel

X (i )n � Kn
�
X (i )n�1, �

�
) µn

�
x 0
�
=
Z

µn�1 (x)Kn
�
x , x 0

�
dx

Optimal transition kernel Kn (x , x 0) = πn (x 0) cannot be used so we
need alternatives.

A.D. () 10 / 30



Kernel Selection

Kn (x , x 0) = Kn (x 0) with

- simple parametric form (e.g. Gaussian, multinomial etc.);
- semi-parametric based on bµn�1 (dx), complexity O �N2� .
Kn (x , x 0) MCMC kernel of invariant distribution πn.

- burn-in correction by importance sampling.
- scaling of proposal can depend on

n
X (i )n�1

o
(Crisan & D., 2000

Chopin, 2002)

Kn (x , x 0) approximation of a Gibbs sampler of invariant distribution
πn.
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Iterative Importance Sampling

Initialization; n = 1.
For i = 1, ...,N, sample X (i )1 � µ1 (�) and set

w1
�
X (i )1

�
=

γ1

�
X (i )1

�
µ1

�
X (i )1

� , W (i )
1 ∝ w1

�
X (i )1

�
.

At time n; n � 1.
For i = 1, ...,N, sample X (i )n � Kn

�
X (i )n�1, �

�
and set

wn
�
X (i )n

�
=

γn

�
X (i )n

�
µn

�
X (i )n

� , W (i )
n ∝ wn

�
X (i )n

�
where µn (xn) =

Z
µn�1 (dxn�1)Kn (xn�1, xn) .
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Limitations

In most cases, we cannot compute the marginal importance
distribution

µn (xn) =
Z

µn�1 (xn�1)Kn (xn�1, xn) dxn�1

=
Z

µ1 (x1)
n

∏
k=2

Kk (xk�1, xk ) dx1:n�1.

Hence we cannot use Importance Sampling.
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A Potential Solution?

Monte Carlo approximation

eµn (xn) = Z bµn�1 (dxn�1)Kn (xn�1, xn) = 1
N

N

∑
i=1
Kn
�
X (i )n�1, xn

�
.

 Computationally intensive O
�
N2
�
.

 Impossible if Kn (x , x 0) cannot be evaluated pointwise;
e.g. Metropolis-Hastings kernel where

Kn
�
x , x 0

�
= α

�
x , x 0

�
q
�
x , x 0

�
+

�
1�

Z
α (x , u) q (x , u) du

�
| {z }

unknown

δx
�
x 0
�

A.D. () 14 / 30



Importance Sampling on an Extended Space

Problem summary: It is impossible to compute pointwise µn (xn)
hence γn (xn) /µn (xn) except when n = 1.
Solution: Perform importance sampling on extended space.
At time 2,

π2 (x2)
µ2 (x2)

=
π2 (x2)R

µ1 (dx1)K2 (x1, x2)
cannot be evaluated

but alternative weights can be de�ned

new joint target distribution
joint importance distribution

=
π2 (x2) L1 (x2, x1)
µ1 (x1)K2 (x1, x2)

where L1 (x2, x1) is an arbitrary (backward) Markov kernel.
�Proof" of validity:Z

π2 (x2) L1 (x2, x1) dx1 = π2 (x2)
Z
L1 (x2, x1) dx1| {z } = π2 (x2)

=1! whatever being L1
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Similarly at time n,

Z�1n wn (xn) =
πn (xn)
µn (xn)

IMPOSSIBLE so USE Z�1n wn (x1:n) =
eπn (x1:n)

µn (x1:n)

where feπng is de�ned using an sequence of arbitrary backwards
Markov kernels fLng

Arti�cial target: eπn (x1:n) = πn (xn)
n�1
∏
k=1

Lk (xk+1, xk ) ,

Importance distribution: µn (x1:n) = µ1 (x1)
n

∏
k=2

Kk (xk�1, xk ) .

�Proof�of validityZ eπn (x1:n) dx1:n�1 = πn (xn)
Z n�1

∏
k=1

Lk (xk+1, xk ) dx1:n�1| {z }
=1! whatever being fLk g

= πn (xn) .
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No free lunch: By extending the integration space, the variance of
the importance weights can only increase.

The optimal kernel fLn�1g is the one bringing us back to the case
where there is no space extension; i.e.

Loptn�1 (xn, xn�1) =
µn�1 (xn�1)Kn (xn�1, xn)

µn (xn)

The result follows straightforwardly from the forward-backward
formula for Markov processes

µn (x1:n) = µ1 (x1)
n

∏
k=2

Kk (xk�1, xk ) = µn (xn)
n

∏
k=2

Loptk�1 (xk , xk�1)

Loptn�1 cannot typically be computed (though there are important
exceptions) but can be properly approximated in numerous cases (see
later). Even if an approximation is used, the estimates are still
asymptotically consistent.
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We are back to �standard�SMC methods where one is interested in
sampling from a sequence of (arti�cial) distributions feπng whose
dimension is increasing over time.

Key di¤erence: Given fKng, feπng has been constructed in a
�clever" way such thatZ eπn (x1:n) dx1:n�1 = πn (xn)

whereas usually the sequence of targets feπng is �xed and fKng is
designed accordingly.

Because we cannot use
�
Loptn

	
at each time step, the variance of the

weights typically increases over time and it is necessary to resample.
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Sequential Monte Carlo Samplers

Initialization; n = 1.
For i = 1, ...,N, sample X (i )1 � µ1 (�) and set

W (i )
1 ∝

π1
�
X (i )1

�
µ1

�
X (i )1

� .
Resample

n
W (i )
1 ,X (i )1

o
to obtain N new particles

n
N�1,X (i )1

o
.

At time n; n > 1.

For i = 1, ...,N, sample X (i )n � Kn
�
X (i )n�1, �

�
and set

W (i )
n ∝ W (i )

n�1
πn
�
X (i )n

�
Ln�1

�
X (i )n ,X

(i )
n�1

�
πn�1

�
X (i )n�1

�
Kn
�
X (i )n�1,X

(i )
n

� .
Resample

n
W (i )
n ,X (i )n

o
to obtain N new particles

n
N�1,X (i )n

o
.

A.D. () 19 / 30



Monte Carlo approximation

bπn (x) = N

∑
i=1
W (i )
n δ

X (i )n
(x) .

Ratio of normalizing constants

Zn
Zn�1

=

R
γn (xn) dxnR

γn�1 (xn�1) dxn�1

=
Z

γn (xn) Ln�1 (xn, xn�1)
γn�1 (xn�1)Kn (xn�1, xn)

πn�1 (dxn�1)Kn (xn�1, dxn)

)
dZn
Zn�1

=
N

∑
i=1
W (i )
n�1

γn

�
X (i )n

�
Ln�1

�
X (i )n ,X

(i )
n�1

�
γn�1

�
X (i )n�1

�
Kn
�
X (i )n�1,X

(i )
n

� .
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Like in MCMC, in practice one typically wants to use a mixture of
moves

Kn
�
x , x 0

�
=

M

∑
m=1

αn,m (x)Kn,m
�
x , x 0

�
where αn,m (x) > 0, ∑M

m=1 αn,m (x) = 1 and fKn,mg is a collection of
transition kernels.

Importance weight can be computed using standard formula but can
be too computationally intensive if M is large.

Loptn�1 can be di¢ cult to approximate if M is large.
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Alternative importance sampling on joint space (e.g. Auxiliary
Particle Filters by Pitt & Shephard) by introducing explicitly a
discrete latent variable Mn

Pr (Mn = m) = αn,m (x)

and performing importance sampling on the extended space.

The resulting incremental importance weight becomes

πn (x 0) βn�1,m (x
0) Ln�1,m (x 0, x)

πn�1 (x) αn,m (x)Kn,m (x , x 0)
instead of

πn (x 0) Ln�1 (x 0, x)
πn�1 (x)Kn (x , x 0)

where Ln�1 (x 0, x) is the arti�cial backward Markov kernel

Ln�1
�
x 0, x

�
=

M

∑
m=1

βn�1,m
�
x 0
�
Ln�1,m

�
x 0, x

�
Optimal choice for

�
βn�1,m , Ln�1,m

	
follows straightforwardly.
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Convergence results follow from general results on Feynman-Kac
formula (see Del Moral, 2004).

When no resampling is performed, one has

p
N (Ebπn [ϕ]� Eπn [ϕ])) N

�
0,
R eπ2n(x1:n)

µn(x1:n)
(ϕ (xn)� Eπn (ϕ))

2 dx1:n

�
When multinomial resampling is used at each iteration, one has

p
N (Ebπn [ϕ]� Eπn [ϕ])) N

�
0, σ2SMC ,n (ϕ)

�
,

σ2SMC ,n (ϕ) =
R eπ2n(x1)

µ1(x1)

�R
ϕ (xn) eπn (xn j x1) dxn � Eπn (ϕ)

�2 dx1
+∑n�1

k=2

R (eπn(xk )Lk�1(xk ,xk�1))2
πk�1(xk�1)Kk (xk�1,xk )

�R
ϕ (xn) eπn (xn j xk ) dxn � Eπn (ϕ)

�2 dxk�1:k

+
R (πn(xn)Ln�1(xn ,xn�1))

2

πn�1(xn�1)Kn(xn�1,xn)
(ϕ (xn)� Eπn (ϕ))

2 dxn�1:n.

Under mixing assumptions, σSMC ,n (ϕ) upper bounded over time.
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From MCMC to SMC Samplers

First step: Build a sequence of distributions fπng going from π1
easy to sample/approximate to πP = π; e.g.
π (x) ∝ [µ1 (x)]

ηn [π (x)]1�ηn where µ1 easy to sample and η1 = 1,
ηn < ηn�1 with ηP = 0.

Second step: Introduce a sequence of transition kernels fKng; e.g.
Kn MCMC sampler of invariant distribution πn.

Third step: Introduce a sequence of backward kernels fLng
equal/approximating Loptn ; e.g.

Ln�1 (xn, xn�1) =
πn (xn�1)Kn (xn�1, xn)

πn (xn)
,

αn (xn�1, xn) =
πn (xn�1)

πn�1 (xn�1)
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Bayesian Analysis of Finite Mixture Models

Model

Yi
i.i.d.�

4

∑
k=1

ωkN (µk ,λk ) .

Standard conjugate priors on θ = (ω1:4, µ1:4,λ1:4), no identi�ability
constraint

µk � N (ξ, κ�1),λk � Ga(ν,χ), ω1:4 � D(ρ).

The posterior is a mixture of 4! = 24 components
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T =100 data with M = 4, with µ = (�3, 0, 3, 6) ,
λ = (0.55, 0.55, 0.55, 0.55); components �far� from each other.

We build the sequence of P distributions

πn(θ) ∝ l(y1:T ; θ)
φn f (θ)

where φ1 = 0 < φ2 < ... < φP = 1.

MCMC sampler to sample from πn

Update µ1:4 via a MH kernel with additive normal random walk.
Update λ1:4 via a MH kernel with multiplicative log-normal random
walk.
Update ω1:4 via a MH kernel with additive normal random walk on the
logit scale.
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KP admits as invariant distribution πP = π. Very long runs of
MCMC get trapped in one of the 4!=24 modes of the distributions.

We select simply here for Ln�1 (θn, θn�1) the reversal kernel

Ln�1 (θn, θn�1) =
πn (θn�1)Kn (θn�1, θn)

πn (θn)
.

We ran SMC samplers with MCMC kernels for P =50, 100, 200 and
500 time steps with 1 and 10 MCMC iterations per time step.
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Sampler Details Component
1 2 3 4

SMC (100 steps, 1 iteration) 0.68 0.91 2.02 2.14
SMC (100 steps, 10 iterations) 1.34 1.44 1.44 1.54
SMC (200 steps, 1 iteration) 1.11 1.29 1.39 1.98
SMC (200 steps, 10 iterations) 1.34 1.37 1.53 1.53
SMC (500 steps, 1 iteration) 0.98 1.38 1.54 1.87
SMC (500 steps, 10 iterations) 1.40 1.44 1.42 1.50
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With reasonable number of intermediate distributions and N = 1000,
SMC manage to provide reasonable estimates of conditional
expectations

For a �xed computational complexity, it outperforms very signi�cantly
the associated homogeneous MCMC trapped in a mode.

Local MCMC kernels can be combined e¢ ciently through SMC to
explore the space in a simple way.
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Discussion

SMC methods are a �exible alternative to MCMC and can address
more general problems.

They are not a black-box and careful design is required.

Adaptive strategies can easily be implemented.

A.D. () 30 / 30


