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Problem Statement

fXngn�1 latent/hidden Markov process with

X1 � µθ (�) and Xn j (Xn�1 = x) � fθ ( �j x) .

fYngn�1 observation process such that observations are conditionally
independent given fXngn�1 and

Yn j (Xn = x) � gθ ( �j x) .

Objectives: Assume the observations available correspond to θ = θ�,
obtain a recursive algorithm to estimate θ�.
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Examples

Linear Gaussian state-space model

X1 � N (0, 1) , Xn = αXn�1 + σvVn,

Yn = Xn + σwWn

where Vn
i.i.d.� N (0, 1) , Wn

i.i.d.� N (0, 1) . In this case, we have
θ = (α, σv , σw ) .

Stochastic volatility model

X1 � N (0, 1) , Xn = αXn�1 + σvVn,

Yn = β exp (Xn/2)Wn

where Vn
i.i.d.� N (0, 1) , Wn

i.i.d.� N (0, 1) . In this case, we have
θ = (α, σv , β) .
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Approaches to Recursive Parameter Estimation

Bayesian approaches where θ is an unknown random parameter with a
prior p (θ) . In this case, inference relies on the sequence of
distributions p ( θj y1:n) .

Point estimation based on recursive Maximum Likelihood and
pseudo-likelihood approaches.
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Bayesian Approaches

In a Bayesian framework, θ is an unknown random parameter with a
prior p (θ).

At time n, inference relies on

p ( θj y1:n) =
Z
p (x1:n, θj y1:n) dx1:n

where

p (x1:n, θj y1:n) ∝ p (y1:n j x1:n, θ) p (x1:n j θ) p (θ) .

We know the sequence of distributions p (x1:n, θj y1:n) up to a
normalizing constant so we can use SMC methods.
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Preliminary Warning

We have

p ( θj y1:n) =
p (y1:n j θ) p (θ)

p (y1:n)

We have seen previously that, even for a �xed value θ, the SMC
estimate bp (y1:n j θ) of p (y1:n j θ) is under favourable mixing
assumptions such that

V [bp (y1:n j θ)]
p (y1:n j θ)2

� C n
N
;

i.e. the performance degrade linearly with the time index n.

Intuitively, estimating the whole posterior p ( θj y1:n) is obviously more
di¢ cult that estimating p (y1:n j θ) for a speci�c value of θ. Hence the
SMC algorithms targetting p ( θj y1:n) might not enjoy very good
convergence properties... Indeed this is unfortunately the case.
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SMC Approximations

Numerous SMC schemes have been proposed to address this problem.

I will only discuss schemes providing asymptotically consistent
estimates of p (x1:n, θj y1:n), hence of p ( θj y1:n) ; i.e. for n �xed we
have convergence for N ! ∞.
Approaches introducing some arti�cial random walk dynamics on the
parameter/making �xed-lag approximations do not satisfy this
property.
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Naive SMC Scheme for Parameter Estimation
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This is just a standard SMC scheme...

We have

bp (x1:n, θj y1:n) =
N

∑
i=1
W (i )
n δ�

X (i )1:n ,θ
(i )
n

� (x1:n, θ) .

In particular, we have

bp ( θj y1:n) =
N

∑
i=1
W (i )
n δ

θ
(i )
n
(θ)

where θ
(i )
n correspond to the particles having been sampled at time 1

which have survived to the resampling steps at time 1, 2, . . . , n.
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Performance

This algorithm provides an asymptotically consistent estimate of the
targets under very weak assumptions....
... and yes it is a very bad algorithm. We only sample particles in the
Θ space at time 1; this is followed by successive resampling steps.
After a few time steps, we havebp ( θj y1:n) = δθ (θ)

where θ
(i )
n = θ for i 2 f1, . . . ,Ng. This is somewhat similar to the

problem we faced before when there was no unknown parameter but
we were interested in estimating p (x1j y1:n)... but the problem is even
worse as, because of the lack of ergodicity, this error propagate itself.
Theoretically, it means that we do not have a uniform convergence
result for bp ( θj y1:n); only the following very weak result

E

�����Z ϕ (θ) (bp (dθj y1:n)� p (dθj y1:n))

����p�1/p

� c (n)p
N

where c (n) increases over time.
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How to improve performance?

We can use all the advanced methods discussed previously: auxiliary
method, resample-move, block sampling.

Resample move is especially attractive in this context: it consists in
adding at time n an MCMC move Kn

�
x 01:n, θ

0�� x1:n, θ
�
of invariant

distribution p (x1:n, θj y1:n). To keep the algorithm on-line, we can
only update a �xed number of variables; say here θ only.

For example, we could use a Gibbs step

Kn
�
x 01:n, θ

0�� x1:n, θ
�
= δx1:n

�
x 01:n
�
p
�

θ0
�� y1:n, x1:n

�
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Resample Move SMC for Parameter Estimation
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Implementation Issues

At �rst glance, this algorithm seems di¢ cult to implement as it
requires storing the paths

n
X (i )1:n

o
so memory requirements increase.

However, in many practical applications, we have

p ( θj y1:n, x1:n) = p ( θj sn (x1:n, y1:n))

i.e. it depends only on a set of su¢ cient statistics sn (x1:n, y1:n) of
�xed dimension.
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Example: Linear Gaussian state-space model

We have

X1 � N (0, 1) , Xn = αXn�1 + σvVn,

Yn = Xn + σwWn

where Vn
i.i.d.� N (0, 1) , Wn

i.i.d.� N (0, 1) .
Assume for sake of simplicity that only α is unknown with
p (α) = U[�1,1] (α) .
It is easy to check that

p (αj y1:n, x1:n) ∝ N
�
α;mn, σ2n

�
1[�1,1] (α)

where

σ2n =

 
n�1
∑
k=1

x2k

!�1
, mn = σ2n

 
n

∑
k=2

xk�1xk

!
.

In practice, we only need to store ∑n
k=2 xk�1xk and ∑n�1

k=1 x
2
k instead

of x1:n.
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Resample Move SMC with Su¢ cient Statistics for
Parameter Estimation
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Comments

This algorithm appears elegant.

This algorithm and some variations have already appeared several
times in the literature (Andrieu, De Freitas & D., 1999), (Fearnhead,
2002), (Storvik, 2002), (Johannes & Polson, 2007).

This algorithm su¤ers from very severe limitations and is not robust
as, once more, it relies implicitly on the SMC approximation of a
sequence of distributions p (x1:n j y1:n) of increasing dimension; the
pitfalls of this approach were �rst discussed in (Andrieu, De Freitas &
D., 1999), see also (Andrieu, D. & Tadic, 2005).
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Illustration of the degeneracy phenomenon
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Figure: Su¢ cient statistics computed exactly through the Kalman smoother
(blue) and the SMC method (red).
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Figure: SMC approximation of E [ θj y1:n ] for N = 1000 particles (red) as a
function of n versus true value (blue). The algorithm converges towards a wrong
value.
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Additional Comments

These algorithms provide asymptotically consistent approximations;
i.e. for �xed n, the SMC approximation converges towards the true
target as N increases...

Still, it does not mean that such algorithms perform well in practice.
For a �xed N and an increasing n, the error will increase; i.e. it is not
possible to obtain uniform convergence results.

You can use any advanced method you want but, as long as you rely
on an SMC approximation of p (x1:n j y1:n) (or p ( sn (x1:n, y1:n)j y1:n)),
then you will face the same problem eventually for n large enough.

For a �xed time horizon, and N large enough, such methods might
perform reasonably well and cannot be completely ruled out. However
you have to be extremely careful: determining a large enough N is
di¢ cult (see SMC project for more information and quantitative
results).
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The credible intervals estimates computed via such approaches are
much tighter than they should be (because of the degeneracy
phenomenon) so you cannot trust them.

You can expect these methods to perform very poorly when the
dimension of the parameter space is high; say superior to 5-10.
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Discussion and Future Work

It is impossible to obtain an asymptotically convergent SMC algorithm
to estimate p ( θj y1:n) which enjoys uniform convergence properties.

At the price of a non-vanishing bias, it should be possible to obtain
much better approximations of p ( θj y1:n) based on �xed-lag
approximations. The main problem is that it is di¢ cult to quantify
the bias in practical situations.
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Recursive Maximum Likelihood

Recursive Maximum Likelihood is a fairly old and popular approach in
the system identi�cation/control community.
We show here how to implement an SMC version of it for general
state-space models.
Under stationary assumptions (e.g. Tadic & D., 2005), we have

1
n
log pθ (Y1:n) =

1
n

n

∑
k=1

log pθ (Yk jY1:k�1)! l (θ)

with

l (θ) =
Z Z

Y�P(X )
log
�Z

gθ (y j x) µ (x) dx
�

λθ,θ� (dy , dµ) ,

where P (X ) is the space of probability distributions on X and

λθ,θ� (dy , dµ) =
Z

λθ,θ� (dx , dy , dµ); λθ,θ� (dx , dy , dµ) being the

invariant distribution of the Markov chain
fXn,Yn, pθ (xn jY1:n�1)gn�1.
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Stochastic Approximation

The set of global maxima of the averaged log-likelihood l (θ) includes
θ�.
The function l (θ) is unknown but can be maximized using a
stochatic approximation algorithm

θn = θn�1 + γnr log pθ1:n�1 (Yn jY1:n�1) (1)

where the stepsize sequence fγngn�1 is a positive non-increasing
sequence.
pθ1:n (xn jY1:n) denotes the �lter computed using θt�1 at time t and
similarly for r log pθ1:n�1 (Yn jY1:n�1) .
We typically need ∑ γn = ∞ and ∑ γ2n < ∞; i.e. one selects
γn = γ0.n

�α where γ0 > 0 and 0.5 < α � 1.
This algorithm is a stochastic gradient algorithm and is not
guaranteed to converge towards θ�; only to a local maximum of l (θ) .
For �nite-state space hidden Markov models, this algorithm was
proposed and studied by (Le Gland & Mevel, 1997).
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SMC Approximation

We need to approximate r log pθ (Yn jY1:n�1).

The �rst approach consists of using

r log pθ (Yn jY1:n�1) = r log pθ (Y1:n)�r log pθ (Y1:n�1)

where Fisher�s identity yields

r log pθ (Y1:n) =
Z
r log pθ (x1:n,Y1:n) .pθ (x1:n jY1:n) dx1:n

with

r log pθ (x1:n,Y1:n) = r log µθ (x1) +r log gθ (Y1j x1)

+
n

∑
k=2

r log fθ (xk j xk�1) +r log gθ (Yk j xk ) .
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SMC Implementation of Fisher�s identity

Given you favourite SMC approximation bpθ (x1:n jY1:n) of
pθ (x1:n jY1:n); say

bpθ (x1:n jY1:n) =
N

∑
i=1
W (i )
n δ

X (i )1:n
(x1:n)

then we can compute an estimate

\r log pθ (Y1:n) =
N

∑
i=1
W (i )
n r log pθ

�
X (i )1:n ,Y1:n

�
.

This estimate can be easily computed recursively using

r log pθ (x1:n,Y1:n) = r log pθ (x1:n�1,Y1:n�1)
+r log fθ (xn j xn�1) +r log gθ (Yn j xn) .

We obtain
\r log pθ (Yn jY1:n�1) = \r log pθ (Y1:n)� \r log pθ (Y1:n�1) but this
estimate has poor properties as, once more, it relies implicitly on an
approximation of the joint distribution pθ (x1:n jY1:n)...
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SMC Approximation of the Sensitivity Equations

There is an alternative way to compute r log pθ (Yn jY1:n�1) based
on sensitivity equations.

We have

r log pθ (Yn+1jY1:n) =
R
r log pθ (xn+1,Yn+1jY1:n) p (xn+1jY1:n+1) dxn+1

with

rpθ (xn+1,Yn+1jY1:n) = gθ (Yn+1j xn+1)
R
fθ (xn+1j xn) pθ (xn jY1:n)

� (r log gθ (Yn+1j xn+1) +r log fθ (xn+1j xn) +r log pθ (xn jY1:n)) dxn.

By di¤erentiating r log pθ (xn+1jY1:n+1), we obtain

rpθ (xn+1jY1:n+1) =
rpθ( xn+1,Yn+1 jY1:n)

pθ(Yn+1 jY1:n)

�pθ (xn+1jY1:n+1)r log pθ (Yn+1jY1:n)
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SMC Approximation of Filter Sensitivity

To implement this recursion, we need to approximate rpθ (xn jY1:n) .
This is a signed measure such thatZ

rpθ (xn jY1:n) dxn = 0.

A �rst idea to approximate rpθ (xn jY1:n) consists of using the
identity

rpθ (xn jY1:n) =
Z
r log pθ (x1:n jY1:n) .pθ (x1:n jY1:n) dx ;

this would rely once more on an SMC approximation of
pθ (x1:n jY1:n)... and it is just a convoluted way to rewrite the
previous algorithm.
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An alternative consists of using (Poyadjis, D. & Singh, 2005)

rpθ (xn jY1:n) =
rpθ (xn jY1:n)

pθ (xn jY1:n)
.pθ (xn jY1:n) ;

that is if bpθ (xn jY1:n) = ∑N
i=1W

(i )
n δ

X (i )n
(xn) then

crpθ (xn jY1:n) =
N

∑
i=1
W (i )
n

frpθ

�
X (i )n

���Y1:n

�
epθ

�
X (i )n

���Y1:n

� δ
X (i )n
(xn)

This only relies on approximation of the marginals; the price to pay is
that we now need a pointwise estimate of epθ

�
X (i )n

���Y1:n

�
andfrpθ

�
X (i )n

���Y1:n

�
. The algorithm is thus in O

�
N2
�
.
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SMC Approximation

At time n� 1, assume approximations of the �ltering distribution and
its derivatives of the form

bpθ (xn�1j y1:n�1) =
N

∑
i=1
W (i )
n�1δX (i )n�1

(xn�1) ,

crpθ (xn�1j y1:n�1) =
N

∑
i=1
W (i )
n�1A

(i )
n�1δX (i )n�1

(xn�1) ,

are available where A(i )n�1 is an approximation of

rpθ

�
X (i )n�1

��� y1:n�1
�

/pθ

�
X (i )n�1

��� y1:n�1
�
.

We obtain the pointwise approximations of pθ (xn, yn j y1:n�1),
rpθ (xn, yn j y1:n�1)epθ (xn, yn j y1:n�1) = ∑N

i=1W
(i )
n�1g (yn j xn) f

�
xn j yn,X (i )n�1

�
,frpθ (xn, yn j y1:n�1) = gθ (yn j xn)∑N

i=1W
(i )
n�1fθ

�
xn jX (i )n�1

�
�
�
r log gθ (yn j xn) +r log fθ

�
xn jX (i )n�1

�
+ A(i )n�1

�
.
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We use a marginalized version of the APF which relies on a joint
probability density

qθ (xn, yn j xn�1) = qθ (xn j yn, xn�1) qθ (yn j xn�1)

which is an approximation of

pθ (xn, yn j xn�1) = gθ (yn j xn) fθ (xn j xn�1)

We construct the marginal importance distribution

qθ (xn j yn) =
N

∑
i=1

fW (i )
n qn

�
xn j yn,X (i )n�1

�
,

fW (i )
n ∝ W (i )

n�1qθ

�
yn jX (i )n�1

�
.

Sampling from qθ (xn j yn) includes implicitly the resampling step.
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SMC for Sensitivity

Sample X (i )n � qθ ( �j yn).
Evaluate

w (i )n =
epθ

�
X (i )n , yn

��� y1:n�1
�

qθ

�
X (i )n

��� yn� , a(i )n =
frpθ

�
X (i )n , yn

��� y1:n�1
�

qθ

�
X (i )n

��� yn�

W (i )
n ∝ w (i )n with

N

∑
i=1
W (i )
n = 1,

W (i )
n A(i )n =

a(i )n

∑N
j=1 w

(i )
n

�W (i )
n

∑N
j=1 a

(j)
n

∑N
j=1 w

(j)
n

,

We have

\r log pθ (Yn jY1:n�1) =
∑N
i=1 a

(i )
n

∑N
i=1 w

(i )
n

.
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SMC for Recursive Maximum Likelihood

Sample X (i )n � qθn�1 ( �j yn).
Evaluate
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,

Update the parameter

θn = θn�1 + γn
∑N
i=1 a

(i )
n

∑N
i=1 w

(i )
n

.

A.D. () 32 / 42



Comments

This algorithm is perhaps not very elegant but simple.

This algorithm only relies on the SMC approximation of the marginals
p (xn j y1:n) .

Under standard mixing assumptions, we can establish uniform
convergence results for crpθ (xn j y1:n) .

There is no accumulation of errors over time contrary to the SMC
approaches discussed earlier.

It has been used successfully for high-dimensional parameter
estimation problems arising in robotics and bioinformatics.

The observed information matrix can be computed similalry.
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Limitations of this approach

It is in O
�
N2
�
although fast methods can be used to speed it up.

It requires scaling the step-size sequence appropriately for
multidimensional parameters.

It is only useful for large datasets.
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Alternative to Stochastic Gradient

In a batch context, the EM algorithm is a very popular alternative to
gradient-type approaches.

It is possible to derive an online version of the EM.

However, once more, this algorithm would rely on an SMC
approximation of pθ (x1:n j y1:n) .

A simple �xed-lag approximation can be used to mitigate this problem
but not asymptotically consistent (good course project though).
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Pseudo-likelihood Approaches

Instead of trying to maximize the likelihood, we introduce a
pseudo-likelihood.

Assuming a stationary state-space model, we have

pθ (xk , yk ) = πθ(xkL+1)gθ(ykL+1jxkL+1)
(k+1)L

∏
i=kL+2

fθ(xi jxi�1)gθ(yi jxi ) .

The log pseudo-likelihood for m blocks of observations is given by

lL(θ,Y0:m�1) :=
m�1
∑
k=0

log pθ (Yk ) , (2)

Compared to the true likelihood, essentially ignores the dependence
between data blocks.
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Under ergodicity assumptions, we have

lim
m!∞

1
m
lL(θ,Y0:m�1) =: lL (θ) ,

where
lL (θ) :=

Z
YL
log (pθ (y)) pθ�(y)dy.

It can be shown that the set of parameters maximizing lL (θ) includes
the true parameter. This follows from the fact that maximizing lL (θ)
is equivalent to minimizing the following Kullback-Leibler divergence

KL (θ, θ
�) = lL (θ

�)� lL (θ) � 0 .
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On-line EM algorithm

To introduce the on-line EM, we �rst present an �ideal�batch EM
algorithm to minimize KL (θ, θ

�) with respect to θ or equivalently to
maximize lL (θ) .
At iteration k + 1, given an estimate θk of θ�, we update our
estimate via

θk+1 = argmax
θ2Θ

Q (θ, θk ) ,

where

Q (θ, θk ) =
Z
XL�YL

log (pθ (x, y)) pθk (xjy) pθ�(y)dxdy .

Now for any θ 2 Θ

Q (θk+1, θk )�Q (θk , θk ) = KL (θk , θ�)�KL (θk+1, θ�)
+
R
XL�YL log

�
pθk+1

(xjy)
pθk
(xjy)

�
pθk (xjy) pθ�(y)dxdy

so an iteration of this �ideal�EM algorithm decreases the value of
KL (θk , θ

�).
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In practice for the models which we will consider, it is necessary to
compute a set of su¢ cient statistics Φ (θk , θ�) at time k in order to
compute Q.

In practice, Q (θ, θk�1) cannot be computed as the expectations
appearing in the expression for Φ (θk , θ�) are with respect to a
measure dependent on the unknown parameter value θ�.

Thanks to the ergodicity and stationarity assumptions, the
observations fYkg provide us with samples from pθ�(y) which can be
used for the purpose of Monte Carlo integration

Φ̂k = (1� γk ) Φ̂k�1 + γkEθk�1(Ψ (Xk ,Yk )jYk ) , (3)

where Eθk�1 (φ(Xk )jYk ) denotes the expectation of φ with respect
to pθk�1 (xk jYk ).
We then substitute Φ̂k for Φ (θk , θ�) and obtain θk = Λ(Φ̂k ).

If θk was constant and γk = k
�1 then Φ̂k would simply compute the

arithmetic average of fEθk�1(Ψ (Xk ,Yk )jYk )g, and converge towards
Φ (θk , θ�) by ergodicity.
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To summarize, the vector of su¢ cient statistics Φ̂�1 is arbitrarily
initialized and the on-line EM algorithm proceeds as follows for the
data block indexed by k � 0.
E-step

Φ̂k = (1� γk )Φ̂k�1 + γkEθk�1 (Ψ (Xk ,Yk )jYk ) .

M-step
θk = Λ(Φ̂k ) .

In scenarios where Eθk (Ψ (Xk ,Yk )jYk ) does not admit an analytical
expression, a further Monte Carlo approximation can be used.
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Assume that a good approximation qθk�1 (xk jYk ) of pθk�1 (xk jYk ) is
available, and that it is easy to sample from qθk�1 (xk jYk ).
E-step

X(i )k � qθk�1 (�jYk ) for i = 1, . . . ,N ,

Φ̂k = (1� γk )Φ̂k�1 + γk

N

∑
i=1
W (i )
k Ψ(X(i )k ,Yk ) ,

where

W (i )
k ∝

pθk�1(X
(i )
k ,Yk )

qθk�1(X
(i )
k jYk )

,
N

∑
i=1
W (i )
k = 1 .

M-step
θk = Λ(Φ̂k ) .

If it is possible to sample from pθk�1 (xk jYk ) exactly then it is not
necessary to have a large N, N = 1 is su¢ cient. Indeed it is only
necessary to produce estimates of Eθk�1 (Ψ (Xk ,Yk )jYk ) .
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Note that as such the algorithm above leads to asymptotically biased
estimates, but that this can be easily corrected by considering instead
the following recursion for the estimation of the conditional
expectation

F̂k = (1� γk )F̂k�1 + γk
1
N

N

∑
i=1

pθk�1(X
(i )
k ,Yk )

qθk�1(X
(i )
k jYk )

Ψ(X(i )k ,Yk ) ,

N̂k = (1� γk )N̂k�1 + γk
1
N

N

∑
i=1

pθk�1(X
(i )
k ,Yk )

qθk�1(X
(i )
k jYk )

,

and let Φ̂k = F̂k/N̂k .
SMC techniques can also be used to approximate this expectation.
We stress here on the fact that in the situation where SMC methods
are used in this context, the path degeneracy issue is easily dealt with
since L is �xed, and very often of small dimension.
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