
Advanced Sequential Monte Carlo Methods

Arnaud Doucet
Departments of Statistics & Computer Science

University of British Columbia

A.D. () 1 / 35



Generic Sequential Monte Carlo Scheme

At time n = 1, sample X (i )1 � q1 (�) and set w1
�
X (i )1

�
=

γ1

�
X (i )1

�
q1
�
X (i )1

� .
Resample

n
X (i )1 ,W

(i )
1

o
to obtain new particles also denoted

n
X (i )1

o
At time n � 2

sample X (i )n � qn
�
�jX (i )1:n�1

�
compute wn

�
X (i )1:n

�
=

γn

�
X (i )1:n

�
γn�1

�
X (i )1:n�1

�
qn
�
X (i )n

���X (i )1:n�1
� .

Resample
n
X (i )1:n ,W

(i )
n

o
to obtain new particles also denoted

n
X (i )1:n

o

A.D. () 2 / 35



Sequential Monte Carlo for Hidden Markov Models
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Resampling can drastically improve the performance of SIS in models
having �good�mixing properties; e.g. state-space models: this can be
veri�ed experimentally and theoretically.

Resampling does not solve all our problems; only the SMC
approximations of the most recent marginals πn (xn�L+1:n) are
reliable; i.e. we can have uniform (in time) convergence bounds.
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A Limited Framework?

It seems that there is not much to do to improve over this SMC
scheme.

Given a sequence of distributions πn (x1:n), use your favourite
resampling scheme and the only degree of freedom is essentially
qn (xn j x1:n�1).

We know that the �best�choice is qoptn (xn j x1:n�1) = πn (xn j x1:n�1)
so how can we do any better???

Answer: Modify the sequence of target distributions and the
associated proposals in a sensible way.
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Advanced SMC Methods

Auxiliary particle �lter

Resample-move algorithm

Block sampling strategy
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Auxiliary Particle Filter

This is a very popular strategy introduced by Pitt & Shephard (1999).

It was originally introduced using auxiliary variables but presentation
here is completely di¤erent...

Initial Remark: The standard SMC algorithm appears very ine¢ cient
when

q (xn j yn, xn�1) = p (xn j yn, xn�1)) wn (x1:n) = p (yn j xn�1)
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Standard Algorithm vs Alternative Strategy

Standard Strategy

Sample X (i )n � p
�
�j yn,X (i )n�1

�
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�
X (i )1:n
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yn jX (i )n�1

�
.
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Alternative Strategy

Compute wn
�
X (i )1:n

�
= p

�
yn jX (i )n�1

�
.

Resample
n
X (i )1:n�1,W
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n
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to obtain new particles also denotedn

X (i )1:n�1

o
approx. dist. p (x1:n�1j y1:n) .

Sample X (i )n � p
�
�j yn,X (i )n�1

�
We swap the sampling and resampling steps; this yields more diverse
particles at time n; hence intuitively a better estimate.
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Auxiliary Particle Filter

We can only swap the sampling and resampling steps when
q (xn j yn, xn�1) = p (xn j yn, xn�1) as the resulting weight is
independent of xn; i.e. we have wn (x1:n) = p (yn j xn�1) .
If we cannot sample from p (xn j yn, xn�1) and/or do not know
p (yn j xn�1), we can simply propose to use approximationsbp (xn j yn, xn�1) and bp (yn j xn�1) and correct for the bias.
The APF is thus essentially a look-ahead strategy where we try to
anticipate the �quality�of our current particles

n
X (i )1:n�1

o
with respect

to yn.
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Algorithm

Assuming you have
n
W
(i )
n�1,X

(i )
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Interpretation as a standard SMC algorithm

It is easy to check that this algorithm is nothing but a standard SMC
for

πn (x1:n) ∝ p (x1:n j y1:n) bp (yn+1j xn)
We do not target p (x1:n j y1:n) directly so it is necessary to use IS to
correct for the discrepancy between this target and
πn�1 (x1:n�1) bp (xn j yn, xn�1) the distribution of the particles
obtained after the sampling step

W
(i )
n ∝

p
�
X (i )1:n

��� y1:n

�
p
�
X (i )1:n�1

��� y1:n�1
� bp �yn jX (i )n�1� bp �X (i )n ��� yn,X (i )n�1�

All the convergence results for standard SMC can thus
straightforwardly be extended to the APF.
Perhaps surprisingly, the APF does not dominate uniformly the
standard SMC scheme even if q (xn j yn, xn�1) = p (xn j yn, xn�1) .
This is because it is just a one-step optimization procedure.
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Design Issues

In the literature, it is often suggested to approximate

p (yn j xn�1) =
Z
g (yn j xn) f (xn j xn�1) dxn

via bp (yn j xn�1) = g (yn j µ (xn�1))
where µ (xn�1) is the mode, mean or median of f (xn j xn�1) .
Typically, people tend to build an approximation bp (xn j yn, xn�1)
independently of the approximation bp (yn j xn�1).
A simpler and better way consists of building an approximationbp (xn, yn j xn�1) = bp (xn, yn j xn�1) bp (yn j xn�1) of
p (xn, yn j xn�1) = g (yn j xn) f (xn j xn�1) such that

p (xn, yn j xn�1)bp (xn, yn j xn�1) < C < ∞
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Limitations

The algorithms described earlier su¤er from several limitations.

Even if the optimal importance distribution p (xn j yn, xn�1) can be
used, this does not guarantee that the SMC algorithms will be
e¢ cient. Indeed, if the variance of p (yn j xn�1) is high, then the
variance of the resulting approximation will be high. Hence it will be
necessary to resample very frequently and the approximationbp (x1:n j y1:n) of the joint distribution p (x1:n j y1:n) will be unreliable.

One major problem with the approaches discussed above is that only
the variables

�
X in
	
are sampled at time n but the path values�

X i1:n�1
	
remain �xed.

An obvious way to improve upon these algorithms would involve not
only sampling

�
X in
	
at time n, but also modifying the values of the

paths over a �xed lag
�
X in�L+1:n�1

	
for L > 1 in light of the new

observation yn; L being �xed or upper bounded.
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Resample-Move

The Resample-Move algorithm (Gilks & Berzuini, JRSS B, 2001) is a
standard approach to mitigate this problem.
Like MCMC, it relies upon Markov kernels with appropriate invariant
distributions. Whilst MCMC uses such kernels to generate collections
of correlated samples, the Resample-Move algorithm uses them in
within an SMC algorithm as a principled way to �jitter� the particle
locations and thus to reduce degeneracy.
A Markov kernel Kn (x 01:n j x1:n) of invariant distribution p (x1:n j y1:n)
is a Markov transition kernel with the property thatZ

p (x1:n j y1:n)Kn
�
x 01:n
�� x1:n

�
dx1:n = p

�
x 01:n
�� y1:n

�
.

For such a kernel, if X1:n � p (x1:n j y1:n) and
X 01:n jX1:n � K (x1:n jX1:n) then X 01:n � p (x1:n j y1:n). Even if X1:n is
not dist.according to p (x1:n j y1:n) then, after applying Kn, X 01:n can
only have a dist. closer to p (x1:n j y1:n) in TV than that of X1:n.
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Examples of Markov Kernels

For example, we could consider the following Gibbs sampler: set
x 01:n�L = x1:n�L then sample x 0n�L+1 from
p
�
xn�L+1j y1:n, x 01:n�L, xn�L+2:n

�
, sample x 0n�L+2 from

p
�
xn�L+2j y1:n, x 01:n�L+1, xn�L+3:n

�
and so on until we sample x 0n

from p
�
xn j y1:n, x 01:n�1

�
; that is

Kn
�
x 01:n
�� x1:n

�
= δx1:n�L

�
x 01:n�L

� n

∏
k=n�L+1

p
�
x 0k
�� y1:n, x 01:k�1, xk+1:n

�
and we write, with a slight abuse of notation, the non-degenerate
component of the MCMC kernel Kn

�
x 0n�L+1:n

�� x1:n
�
. It is

straightforward to verify that this kernel is p (x1:n j y1:n)-invariant.
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If it is not possible to sample from
p
�
x 0k j y1:n, x 01:k�1, xk+1:n

�
= p

�
x 0k j yk , x 0k�1, xk+1

�
, we can instead

employ a Metropolis-Hastings (MH) strategy and sample a candidate
according to some proposal q

�
x 0k j yk , x 0k�1, xk :k+1

�
and accept it with

the usual MH acceptance probability

min

 
1,
p (x 01:k , xk+1:n j y1:n) q

�
xk j yk , x 0k�1, x 0k , xk+1

�
p
�
x 01:k�1, xk+1:n

�� y1:n
�
q
�
x 0k j yk , x 0k�1, xk :k+1

�!

= min

 
1,
g (yk j x 0k ) f (xk+1j x 0k ) f

�
x 0k j x 0k�1

�
q
�
xk j yk , x 0k�1, x 0k , xk+1

�
g (yk j xk ) f (xk+1j xk ) f

�
xk j x 0k�1

�
q
�
x 0k j yk , x 0k�1, xk :k+1

� ! .
These kernels can be ergodic only if L = n so that all of the
components of x1:n are updated. However, in our context we will use
non-ergodic kernels as we restrict ourselves to updating the variables
Xn�L+1:n for some �xed or bounded L.
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Resample Move

Assuming we have access to
�
X 0i1:n�1

	
approx. dist. p (x1:n�1j y1:n�1)

then at times n � L
Sample X in � q(xn j yn,X 0in�1) and set X i1:n  

�
X 0i1:n�1,X

i
n

�
.

Compute the weights W i
n ∝

g( yn jX in)f (X injX in�1)
q(X in jyn ,X in�1)

.

Resample
�
W i
n ,X

i
1:n
	
to obtain N new equally-weighted particlesn

1
N ,X

i
1:n

o
.

Sample X 0in�L+1:n � Kn(xn�L+1:n jX
i
1:n) and set

X 0i1:n  
�
X
i
1:n�L,X

0i
n�L+1:n

�
.
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Interpretation as a standard SMC algorithm

We can justify inserting MCMC transitions within an SMC algorithm
as follows. Given a target distribution π, an instrumental distribution
µ and a π-invariant Markov kernel K , the following generalization of
the IS identity is trivially true:Z

π(y)ϕ(y)dy

=
ZZ

µ(x)K (y j x)π(y)L(x j y)
µ(x)K (y j x) ϕ(y)dxdy

for any Markov kernel L.

This approach corresponds to IS on an enlarged space using
µ(x)K (y j x) as the proposal distribution for a target π(y)L(x j y)
and then estimating a function ϕ0(x , y) = ϕ(y).
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In particular, for the time-reversal kernel associated with K

L(x j y) = π(x)K (y j x)
π (y)

,

we have the importance weight

π(y)L(x j y)
µ(x)K (y j x) =

π (x)
µ(x)

.

This interpretation of such an approach illustrates its de�ciency: the
importance weights depend only upon the location before the MCMC
move while the sample depends upon the location after the move.

Even if the kernel was perfectly mixing, leading to a collection of iid
samples from the target distribution, some of these samples would be
eliminated and some replicated in the resampling step.

Resampling after an MCMC step will always lead to greater sample
diversity than performing the steps in the other order (and this
algorithm can be justi�ed directly by the invariance property).
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It is possible to reformulate this algorithm as a speci�c application of
the generic SMC algorithm.

To simplify notation we write qn (xn j xn�1) for q (xn j yn, xn�1) and to
clarify our argument, it is necessary to add a superscript to the
variables; e.g. X pk corresponds to the p

th time the random variable Xk
is sampled; in this and the following section, this superscript does not
denote the particle index.

Resample move is a generic SMC algorithm associated to

πn
�
x1:L+1
1 , . . . , x1:L+1

n�L+1, x
1:L
n�L, ..., x

1:2
n

�
= p

�
xL+11 , . . . ., xL+1n�L+1, x

L
n�L, ..., x

2
n

��� y1:n

�
� Ln

�
x1n , x

2
n�1, ..., x

L
n�L+1

��� x2n , x3n�1, ..., xL+1n�L+1

�
� � � � �K2

�
x21 , x

1
2

�� x31 , x22 � L1 �x11 �� x21 �
where Ln is the time-reversal kernel associated with Kn.
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If no resampling is used then we have

qn
�
x1:L+1
1 , . . . , x1:L+1

n�L+1, x
1:L
n�L, ..., x

1:2
n

�
= q1

�
x11
�
K1
�
x21
�� x11 � q2 �x12 �� x21 �K2 �x31 , x22 �� x21 , x12 �

� � � � � qn
�
x1n
�� x2n�1�

�Kn
�
xL+1n�L+1, . . . , x3n�1, x

2
n

��� xL+11:n�L, x
L
n�L+1, . . . , x2n�1, x

1
n

�
.

This sequence of target distributions admits the �ltering distributions
of interest as marginals.

The clear theoretical advantage of using MCMC moves is that the use
of even non-ergodic MCMC kernels fKng can only improve the
mixing properties of fπng compared to the �natural� sequence of
�ltering distributions; this explains why these algorithms outperform a
standard particle �lter for a given number of particles.
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Block Sampling

Resample-Move su¤ers from a major drawback: it does allows us to
reintroduce some diversity among the set of particles after the
resampling step over a lag of length L > 1, the importance weights
have the same expression as for the standard particle �lter.

This strategy does not signi�cantly decrease the number of
resampling steps compared to a standard approach. It can partially
mitigate the problem associated with resampling, but it does not
prevent these resampling steps in the �rst place.

An alternative approach block sampling approach consists of directly
sampling the components xn�L+1:n at time n; the previously-sampled
values of the components xn�L+1:n�1 sampled are simply discarded.
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Why it is not trivial...

The basic idea is trivial but not applicable....

Consider you have X1:n�1 � p (x1:n�1j y1:n�1) and at time n you
sample X 0n�L+1:n � q ( �jXn�L, yn�L+1:n) then the joint distribution of�
X1:n�1,X 0n�L+1:n

�
p (x1:n�1j y1:n�1) q

�
x 0n�L+1:n

�� xn�L, yn�L+1:n
�

If we discard Xn�L+1:n�1, then the distribution of
�
X1:n�L,X 0n�L+1:n

�
is Z

p (x1:n�1j y1:n�1) q
�
x 0n�L+1:n

�� xn�L, yn�L+1:n
�
dxn�L+1:n�1

= p (x1:n�Lj y1:n�1) q
�
x 0n�L+1:n

�� xn�L, yn�L+1:n
�
.

We typically do not know p (x1:n�Lj y1:n�1) up to a normalizing
constant so we cannot use IS!
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Extended Importance Sampling

The idea consists of using an extended target distribution

p
�
x1:n�L, x

0
n�L+1:n

�� y1:n
�
q(xn�L+1:n�1jyn�L+1:n�1, xn�L)

whose marginal is by construction p
�
x1:n�L, x 0n�L+1:n

�� y1:n
�
.

We then use IS on this extended state-space and compute the weights

p
�
x1:n�L, x 0n�L+1:n

�� y1:n
�
q(xn�L+1:n�1jyn�L+1:n�1, xn�L)

p (x1:n�1j y1:n�1) q
�
x 0n�L+1:n

�� xn�L, yn�L+1:n
�
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Algorithm Settings

If we knew how to compute p (x1:n�Lj y1:n�1) then the IS distribution
minimizing the variance of the importance weight is

qopt (xn�L+1:n j xn�L, yn�L+1:n) = p (xn�L+1:n j yn�L+1:n, xn�L)

and the importance weight is

p (yn�L+1:n j xn�L) =
Z n

∏
k=n�L+1

f (xk j xk�1) � g (yk j xk ) dxn�L+1:n.

This optimal weight has a variance which typically decreases
exponentially fast with L (under mixing assumptions).

As this distribution is typically not available and/or p (yn�L+1:n j xn�L)
cannot be computed, we need to use an approximation.
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The distribution q(xn�L+1:n�1jyn�L+1:n�1, xn�L) minimizing the
variance of the weights is simply

qopt(xn�L+1:n�1jyn�L+1:n�1, xn�L)

=
p (x1:n�1j y1:n�1) q

�
x 0n�L+1:n

�� xn�L, yn�L+1:n
�R

p (x1:n�1j y1:n�1) q
�
x 0n�L+1:n

�� xn�L, yn�L+1:n
�
dxn�L+1:n�1

So if we pick
qopt (xn�L+1:n j xn�L, yn�L+1:n) = p (xn�L+1:n j yn�L+1:n, xn�L) then

qopt(xn�L+1:n�1jyn�L+1:n�1, xn�L) = p(xn�L+1:n�1jyn�L+1:n�1, xn�L)

This suggests once more using an approximation of this density
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Block Sampling SMC

Assuming we have access to
n
X
i
1:n�1

o
approx. dist. p (x1:n�1j y1:n�1)

then at time n � L

Sample X in�L+1:n � q(xn�L+1:n jyn�L+1:n,X
i
1:n�1).

Compute the weights

W i
n ∝

p
�
X
i
1:n�L,X

i
n�L+1:n, y1:n

� bp(X in�L+1:n�1jyn�L+1:n�1,X
i
n�L)

p
�
X
i
1:n�1, y1:n�1

� bp(X in�L+1:n jyn�L+1:n,X
i
n�L)

.

Resample
n
W i
n ,X

i
1:n�L,X

i
n�L+1:n

o
to obtain N new equally weighted

particles
n
X
i
1:n

o
.
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Interpretation as a standard SMC algorithm

Once more this is just a special case of the generic SMC algorithm.
To simply notation we write qn (xn�L+1:n j xn�L) for
q (xn�L+1:n j yn�L+1:n, xn�L) and to clarify our argument we add a
superscript to the variables; e.g. X pk corresponds to the p

th time the
random variable Xk is sampled.
The block sampling algoritmh corresponds to

πn
�
x1:L
1 , . . . , x1:L

n�L+1, x
1:L�1
n�L+2, . . . , x1n

�
= p

�
xL1:n�L+1, x

L�1
n�L+2, . . . , x1n

��� y1:n

�
qn�1

�
xL�1n�L+1, . . . , x1n�1

��� xLn�L�
� � � � q2

�
x21 , x

1
2

�
q1
�
x11
�
.

If no resampling is used, a path is sampled according to

qn
�
x1:L
1 , . . . , x1:L

n�L+1, x
1:L�1
n�L+2, ..., x

1
n

�
= q1

�
x11
�
q2
�
x21 , x

1
2

�
� � � � � qn

�
xLn�L+1, ..., x

1
n

��� xLn�L� .
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Application to Bearing-only Tracking

Target model

Xn =

0BB@
1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

1CCAXn�1 + Vn
where Vn

i.i.d.� N (0,Σ).
The state vector Xn =

�
X 1n X 2n X 3n X 4n

�T
is such that X 1n

(resp. X 3n ) corresponds to the horizontal (resp. vertical) position of
the target whereas X 2n (resp. X

4
n ) corresponds to the horizontal (resp.

vertical) velocity. One only receives observations of the bearings of
the target from a sensor located at the origin

Yn = tan�1
�
X 3n
X 1n

�
+Wn

where Wn
i.i.d.� N

�
0, 10�4

�
; i.e. the observations are almost noiseless.
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We build an approximation bp (xn�L+1:n j yn�L+1:n, xn�L) of the
optimal importance distribution using the EKF and the forward
�ltering/backward sampling formula.

We compare the standard bootstrap �lter, two resample-move
algorithms where the SISR algorithm for L = 1 using the EKF
proposal is used followed by: (i) one at a time Metropolis-Hastings
(MH) moves using an approximation of the full conditionals
p (xk j yk , xk�1, xk+1) as a proposal over a lag L = 10 (algorithm
RML(10)); and (ii) using the EKF proposal for L = 10 (algorithm
RMFL(10)), the block sampling algorithms for L = 1, 2, 5 and 10
which are using the EKF proposal denoted SMC-EKF(L).

Systematic resampling is performed whenever the ESS goes below
N/2.
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Comparison in terms of resampling steps

Filter Avge. # Resampling steps
Bootstrap 46.7
SMC-EKF(1) 44.6
RML(10) 45.2
RMFL(10) 43.3
SMC-EKF(2) 34.9
SMC-EKF(5) 4.6
SMC-EKF(10) 1.3

Table 1: Average number of resampling steps for 100 simulations, 100
time instances per simulation using N = 1000 particles.
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Figure: Average number of unique particles X (i )n approximating p (xn j y1:100)
plotted against time (x-axis)
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Application to Stochastic Volatility

We consider a standard SV model

Xn = φXn�1 + σVn, X1 � N
�
0,

σ2

1� φ2

�
,

Yn = β exp (Xn/2)Wn,

where Vn
i.i.d.� N (0, 1) and Wn

i.i.d.� N (0, 1).
We propose to build approximation of p (xn�L+1:n j yn�L+1:n, xn�L)
using the fact that

log
�
Y 2n
�
= log

�
β2
�
+ Xn + log

�
W 2
n

�
.

We approximate non-Gaussian noise term log
�
W 2
n

�
with a Gaussian

noise of similar mean and variance and hence obtain a linear Gaussian
model approximation. We then use the KF to build our proposal.
The performance of our algorithms are assessed through computer
simulations based on varying samples sizes to attain an approximately
equal computational cost.
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Filter # Particles Avge. # Resampling Steps
Bootstrap 50000 176.2
SMC-EKF(1) 12000 127.1
SMC-EKF(2) 4000 80.0
SMC-EKF(5) 1600 11.6
SMC-EKF(10) 1000 0.45

Table 2: Average number of resampling steps for 100 simulations using
500 time instances per simulation.
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Figure: Average number of unique particles X (i )n approximating p (xn j y1:100)
plotted against time (x-axis)
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Figure: Empirical measure approximations of p (xn j y1:945) at times
n = 100, 130, 160, 190 for Bootstrap (top left), SMC-EKF(1) (top right),
SMC-EKF(5) (bottom left), SMC-EKF(10) (bottom right)
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