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Generic Problem

Consider a sequence of probability distributions fπngn�1 de�ned on a
sequence of (measurable) spaces f(En,Fn)gn�1 where E1 = E ,
F1 = F and En = En�1 � E , Fn = Fn�1 �F .

Each distribution πn (dx1:n) = πn (x1:n) dx1:n is known up to a
normalizing constant, i.e.

πn (x1:n) =
γn (x1:n)

Zn

We want to estimate expectations of test functions ϕn : En ! R

Eπn (ϕn) =
Z

ϕn (x1:n)πn (dx1:n)

and/or the normalizing constants Zn.

We want to do this sequentially; i.e. �rst π1 and/or Z1 at time 1
then π2 and/or Z2 at time 2 and so on.
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Using Monte Carlo Methods

Problem 1: For most problems of interest, we cannot sample from
πn (x1:n).

A standard approach to sample from high dimensional distribution
consists of using iterative Markov chain Monte Carlo algorithms, this is
not appropriate in our context.

Problem 2: Even if we could sample exactly from πn (x1:n), then the
computational complexity of the algorithm would most likely increase
with n but we typically want an algorithm of �xed computational
complexity at each time step.

Summary: We cannot use standard MC sampling in our case and,
even if we could, this would not solve our problem.
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Plan of the Lectures

Review of Importance Sampling.

Sequential Importance Sampling.

Applications.
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Importance Sampling

Importance Sampling (IS) identity. For any distribution q such
that π (x) > 0) q (x) > 0

π (x) =
w (x) q (x)R
w (x) q (x) dx

where w (x) =
γ (x)
q (x)

.

where q is called importance distribution and w importance weight.

q can be chosen arbitrarily, in particular easy to sample from

X (i )
i.i.d.� q (�)) bq (dx) = 1

N

N

∑
i=1

δX (i ) (dx)
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Plugging this expression in IS identity

bπ (dx) =
N

∑
i=1
W (i )δX (i ) (dx) where W

(i ) ∝ w
�
X (i )

�
,

bZ =
1
N

N

∑
i=1
w
�
X (i )

�
.

π (x) now approximated by weighted sum of delta-masses ) Weights
compensate for discrepancy between π and q.
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Practical recommendations

Select q as close to π as possible.

The varianec of the weights is bounded if and only ifZ
γ2 (x)
q (x)

dx < ∞.

In practice, try to ensure

w (x) =
γ (x)
q (x)

< ∞.

Note that in this case, rejection sampling could be used to sample
from π (x) .
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Example
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Figure: Target double exponential distributions and two IS distributions
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We try to compute Z � x
1� x

�2
π (x) dx

where

π (x) =
Γ ((ν+ 1) /2)p

νπΓ (ν/2)

�
1+

x
ν

��(ν+1)/2
is a t-student distribution with ν > 1 (you can sample from it by
composition N (0, 1) /Ga (ν/2, ν/2)) using Monte Carlo.

We use q1 (x) = π (x), q2 (x) =
Γ(1)p

νπΓ(1/2)

�
1+ x

νσ

��1 (Cauchy
distribution) and q3 (x) = N

�
x ; 0, ν

ν�2
�
(variance chosen to match

the variance of π (x))

It is easy to see that

π (x)
q1 (x)

< ∞ and
Z

π (x)2

q3 (x)
dx = ∞,

π (x)
q3 (x)

is unbounded
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Figure: Performance for ν = 12 with q1 (solid line), q2 (dashes) and q3 (light
dots). Final values 1.14, 1.14 and 1.16 vs true value 1.13
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We now try to compute Z ∞

2.1
x5π (x) dx

We try to use the same importance distribution but also use the fact
that using a change of variables u = 1/x , we haveZ ∞

2.1
x5π (x) dx =

Z 1/2.1

0
u�7π (1/u) du

=
1
2.1

Z 1/2.1

0
2.1u�7π (1/u) du

which is the expectation of 2.1u�7π (1/u) with respect to
U [0, 1/2.1] .
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Figure: Performance for ν = 12 with q1 (solid), q2 (short dashes), q3 (dots),
uniform (long dashes). Final values 6.75, 6.48, 7.06 and 6.48 vs true value 6.54
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Application to Bayesian Statistics

Consider a Bayesian model: prior π (θ) and likelihood f (x j θ) .

The posterior distribution is given by

π ( θj x) = π(θ)f ( x jθ)R
Θ π(θ)f ( x jθ)d θ

∝ γ ( θj x)
where γ ( θj x) = π (θ) f (x j θ) .

We can use the prior distribution as a candidate distribution
q (θ) = π (θ).

We also get an estimate of the marginal likelihoodZ
Θ

π (θ) f (x j θ) dθ.
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Example: Application to Bayesian analysis of Markov chain. Consider
a two state Markov chain with transition matrix F�

p1 1� p1
1� p2 p2

�
that is Pr (Xt+1 = 1jXt = 1) = 1� Pr (Xt+1 = 2jXt = 1) = p1 and
Pr (Xt+1 = 2jXt = 2) = 1� Pr (Xt+1 = 1jXt = 2) = p2. Physical
constraints tell us that p1 + p2 < 1.

Assume we observe x1, ..., xm and the prior is

π (p1, p2) = 2Ip1+p2�1

then the posterior is

π (p1, p2j x1:m) ∝ pm1,11 (1� p1)m1,2 (1� p2)m2,1 pm2,22 Ip1+p2�1

where

mi ,j =
m�1
∑
t=1

Ixt=iIxt+1=i

The posterior does not admit a standard expression and its
normalizing constant is unknown. We can sample from it using
rejection sampling.
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We are interested in estimating E [ ϕi (p1, p2)j x1:m ] for
ϕ1 (p1, p2) = p1, ϕ2 (p1, p2) = p2, ϕ3 (p1, p2) = p1/ (1� p1),
ϕ4 (p1, p2) = p2/ (1� p2) and ϕ5 (p1, p2) = log

p1(1�p2)
p2(1�p1) using

Importance Sampling.

If there was no on p1 + p2 < 1 and π (p1, p2) was uniform on
[0, 1]� [0, 1] , then the posterior would be

π0 (p1, p2j x1:m) = Be (p1;m1,1 + 1,m1,2 + 1)
Be (p2;m2,2 + 1,m2,1 + 1)

but this is ine¢ cient as for the given data (m1,1,m1,2,m2,2,m2,1) we
have π0 (p1 + p2 < 1j x1:m) = 0.21.

The form of the posterior suggests using a Dirichlet distribution with
density

π1 (p1, p2j x1:m) ∝ pm1,11 pm2,22 (1� p1 � p2)m1,2+m2,1

but π (p1, p2j x1:m) /π1 (p1, p2j x1:m) is unbounded.
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(Geweke, 1989) proposed using the normal approximation to the
binomial distribution

π2 (p1, p2j x1:m) ∝ exp
�
� (m1,1 +m1,2) (p1 � bp1)2 / (2bp1 (1� bp1))�

� exp
�
� (m2,1 +m2,2) (p2 � bp2)2 / (2bp2 (1� bp2))� Ip1+p2�1

where bp1 = m1,1/ (m1,1 +m1,2) , bp1 = m2,2/ (m2,2 +m2,1). Then to
simulate from this distribution, we simulate �rst π2 (p1j x1:m) and
then π2 (p2j x1:m , p1) which are univariate truncated Gaussian
distribution which can be sampled using the inverse cdf method. The
ratio π (p1, p2j x1:m) /π2 (p1, p2j x1:m) is upper bounded.

A �nal one consists of using

π3 (p1, p2j x1:m) = Be (p1;m1,1 + 1,m1,2 + 1)π3 (p2j x1:m , p1)

where π (p2j x1:m , p1) ∝ (1� p2)m2,1 pm2,22 Ip2�1�p1 is badly
approximated through π3 (p2j x1:m , p1) = 2

(1�p1)2
p2Ip2�1�p1 . It is

straightforward to check that π (p1, p2j x1:m) /π3 (p1, p2j x1:m) ∝
(1� p2)m2,1 pm2,22 / 2

(1�p1)2
p2 < ∞.
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Performance for N = 10, 000

Distribution ϕ1 ϕ2 ϕ3 ϕ4 ϕ5
π1 0.748 0.139 3.184 0.163 2.957
π2 0.689 0.210 2.319 0.283 2.211
π3 0.697 0.189 2.379 0.241 2.358
π 0.697 0.189 2.373 0.240 2.358

Sampling from π using rejection sampling works well but is
computationally expensive. π3 is computationally much cheaper
whereas π1 does extremely poorly as expected.
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E¤ective Sample Size

In statistics, we are usually not interested in a speci�c ϕ but in several
functions and we prefer having q (x) as close as possible to π (x) .

For �at functions, one can approximate the variance by

V
�
EbπN (ϕ (X ))� � (1+Vq (w (X )))

Vπ (ϕ (X ))
N

.

Simple interpretation: The N weighted samples are approximately
equivalent to M unweighted samples from π where

M =
N

1+Vq (w (X ))
� N.
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Limitations of Importance Sampling

Consider the case where the target is de�ned on Rn and

π (x1:n) =
n

∏
k=1

N (xk ; 0, 1) ,

γ (x1:n) =
n

∏
k=1

exp
�
�x

2
k

2

�
,

Z = (2π)n/2 .

We select an importance distribution

q (x1:n) =
n

∏
k=1

N
�
xk ; 0, σ

2� .
In this case, we have VIS

hbZi < ∞ only for σ2 > 1
2 and

VIS

hbZi
Z 2

=
1
N

"�
σ4

2σ2 � 1

�n/2

� 1
#
.

It can easily be checked that σ4

2σ2�1 > 1 for any
1
2 < σ2 6= 1.
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The variance increases exponentially with n even in this simple case.

For example, if we select σ2 = 1.2 then we have a reasonably good

importance distribution as q (xk ) � π (xk ) but N
VIS[bZ ]
Z 2 � (1.103)n/2

which is approximately equal to 1.9� 1021 for n = 1000!
We would need to use N � 2� 1023 particles to obtain a relative
variance

VIS[bZ ]
Z 2 = 0.01.
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Importance Sampling versus Rejection Sampling

Given N samples from q, we estimate Eπ (ϕ (X )) through IS

EISbπN (ϕ (X )) =
∑N
i=1 w

�
X (i )

�
ϕ
�
X (i )

�
∑N
i=1 w

�
X (i )

�
or we ��lter� the samples through rejection and propose instead

ERSbπN (ϕ (X )) = 1
K

K

∑
k=1

ϕ
�
X (ik )

�
where K � N is a random variable corresponding to the number of
samples accepted.

We want to know which strategy performs the best.
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De�ne the arti�cial target π (x , y) on E � [0, 1] as

π (x , y) =

(
Cq(x )
Z , for

n
(x , y) : x 2 E and y 2

h
0, γ(x )
Cq(x )

io
0 otherwise

then Z
π (x , y) dy =

Z γ(x )
Cq(x )

0

Cq (x)
Z

dy = π (x) .

Now let us consider the proposal distribution

q (x , y) = q (x)U[0,1] (y) for (x , y) 2 E � [0, 1] .
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Then rejection sampling is nothing but IS on X � [0, 1] where

w (x , y) ∝
π (x , y)

q (x)U[0,1] (y)
=

(
C
R
q(x )dx
Z for y 2

h
0, γ(x )
Cq(x )

i
0, otherwise.

We have

ERSbπN (ϕ (X )) = 1
K

K

∑
k=1

ϕ
�
X (ik )

�
=

∑N
i=1 w

�
X (i ),Y (i )

�
ϕ
�
X (i )

�
∑N
i=1 w

�
X (i ),Y (i )

� .

Compared to standard IS, RS performs IS on an enlarged space.
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The variance of the importance weights from RS is higher than for
standard IS:

V [w (X ,Y )] � V [w (X )] .

More precisely, we have

V [w (X ,Y )] = V [E [w (X ,Y )jX ]] +E [V [w (X ,Y )jX ]]
= V [w (X )] +E [V [w (X ,Y )jX ]] .

To compute integrals, RS is ine¢ cient and you should simply use IS.
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Introduction to Sequential Importance Sampling

Aim: Design an IS method to approximate sequentially fπngn�1 and
to compute fZngn�1.

At time 1, assume we have approximate π1 (x1) and Z1 using an IS
density q1 (x1); that is

bπ1 (dx1) =
N

∑
i=1
W (i )
1 δ

X (i )1
(dx) where W (i )

1 ∝ w1
�
X (i )1

�
,

bZ1 =
1
N

N

∑
i=1
w1
�
X (i )1

�
with

w1 (x1) =
γ1 (x1)
q1 (x1)

.
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At time 2, we want to approximate π2 (x1:2) and Z2 using an IS
density q2 (x1:2) .

We want to reuse the samples
n
X (i )1

o
from q1 (x1) use to build the IS

approximation of π1 (x1) . This only makes sense if π2 (x1) � π1 (x1).

We select
q2 (x1:2) = q1 (x1) q2 (x2j x1)

so that to obtain X (i )1:2 � q2 (x1:2) we only need to sample

X (i )2

���X (i )1 � q2
�
x2jX (i )1

�
.
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Updating the IS approximation

We have to compute the weights

w2 (x1:2) =
γ2 (x1:2)

q2 (x1:2)
=

γ2 (x1:2)

q1 (x1) q2 (x2j x1)

=
γ1 (x1)
q1 (x1)

γ2 (x1:2)

γ1 (x1) q2 (x2j x1)

= w1 (x1)| {z }
previous weight

γ2 (x1:2)

γ1 (x1) q2 (x2j x1)| {z }
incremental weigh

For the normalized weights

W (i )
2 ∝ W (i )

1

γ2

�
X (i )1:2

�
γ1

�
X (i )1

�
q2
�
X (i )2

���X (i )1 �
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Generally speaking, we use at time n

qn (x1:n) = qn�1 (x1:n�1) qn (xn j x1:n�1)

= q1 (x1) q2 (x2j x1) � � � qn (xn j x1:n�1)

so if X (i )1:n�1 � qn�1 (x1:n�1) then we only need to sample

X (i )n
���X (i )n�1 � qn �xn jX (i )1:n�1

�
.

The importance weights are updated according to

wn (x1:n) =
γn (x1:n)

qn (x1:n)
= wn�1 (x1:n�1)

γn (x1:n)

γn�1 (x1:n�1) qn (xn j x1:n�1)
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Sequential Importance Sampling

At time n = 1, sample X (i )1 � q1 (�) and set w1
�
X (i )1

�
=

γ1

�
X (i )1

�
q1
�
X (i )1

� .

At time n � 2

sample X (i )n � qn
�
�jX (i )1:n�1

�
compute wn

�
X (i )1:n

�
= wn�1

�
X (i )1:n�1

� γn

�
X (i )1:n

�
γn�1

�
X (i )1:n�1

�
qn
�
X (i )n

���X (i )1:n�1
� .

At any time n, we have

X (i )1:n � qn (x1:n) , wn
�
X (i )1:n

�
=

γn

�
X (i )1:n

�
qn
�
X (i )1:n

�
thus we can obtain easily an IS approximation of πn (x1:n) and of Zn.
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Sequential Importance Sampling for State-Space Models

State-space models

Hidden Markov process: X1 � µ, Xk j (Xk�1 = xk�1) � f ( �j xk�1)

Observation process: Yk j (Xk = xk ) � g ( �j xk )

Assume we receive y1:n, we are interested in sampling from

πn (x1:n) = p (x1:n j y1:n) =
p (x1:n, y1:n)

p (y1:n)

and estimating p (y1:n) where

γn (x1:n) = p (x1:n, y1:n) = µ (x1)
n

∏
k=2

f (xk j xk�1)
n

∏
k=1

g (yk j xk ) ,

Zn = p (y1:n) =
Z
� � �

Z
µ (x1)

n

∏
k=2

f (xk j xk�1)
n

∏
k=1

g (yk j xk ) dx1:n.
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f (xk j xk�1)
n

∏
k=1

g (yk j xk ) ,

Zn = p (y1:n) =
Z
� � �

Z
µ (x1)

n

∏
k=2

f (xk j xk�1)
n

∏
k=1

g (yk j xk ) dx1:n.
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We can select q1 (x1) = µ (x1) and
qn (xn j x1:n�1) = qn (xn j xn�1) = f (xn j xn�1) .

At time n = 1, sample X (i )1 � µ (�) and set
w1
�
X (i )1

�
= g

�
y1jX (i )1

�
.

At time n � 2

sample X (i )n � f
�
�jX (i )1:n�1

�
compute wn

�
X (i )1:n

�
= wn�1

�
X (i )1:n�1

�
g
�
yn jX (i )n

�
.

At any time n, we have

X (i )1:n � µ (x1)
n

∏
k=2

f (xk j xk�1) , wn
�
X (i )1:n

�
=

n

∏
k=1

g
�
yk jX (i )k

�
thus we can obtain easily an IS approximation of p (x1:n j y1:n) and of
p (y1:n) .
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Application to Stochastic Volatility Model
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Importance Weights (base 10 logarithm)

Figure: Histograms of the base 10 logarithm of W (i )
n for n = 1 (top), n = 50

(middle) and n = 100 (bottom).

The algorithm performance collapse as n increases... After a few time
steps, only a very small number of particles have non negligible
weights.A.D. () 34 / 40



Structure of the Optimal Distribution

The optimal zero-variance density at time n is simply given by

qn (x1:n) = πn (x1:n) .

As we have

πn (x1:n) = πn (x1)πn (x2j x1) � � �πn (xn j x1:n�1) ,

where πn (xk j x1:k�1) ∝ γn (xk j x1:k�1) it means that we have

qoptk (xk j x1:k�1) = πn (xk j x1:k�1) .

Obviously this result does depend on n so it is only useful if we are
only interested in a speci�c target πn (x1:n) and in such scenarios we
need to typically approximate πn (xk j x1:k�1) .
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Locally Optimal Importance Distribution

One sensible strategy consists of selecting qn (xn j x1:n�1) at time n so
as to minimize the variance of the importance weights.

We have for the importance weight

wn (x1:n) =
γn (x1:n)

qn�1 (x1:n�1) qn (xn j x1:n�1)

=
Znπn (x1:n�1)

qn�1 (x1:n�1)

πn (xn j x1:n�1)

qn (xn j x1:n�1)

It follows directly that we have

qoptn (xn j x1:n�1) = πn (xn j x1:n�1)

and

wn (x1:n) = wn�1 (x1:n�1)
γn (x1:n)

γn�1 (x1:n�1)πn (xn j x1:n�1)

= wn�1 (x1:n�1)
γn (x1:n�1)

γn�1 (x1:n�1)
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This locally optimal importance density will be used again and again.

It is often impossible to sample from πn (xn j x1:n�1) and/or
computing γn (x1:n�1) =

R
γn (x1:n) dxn.

In such cases, it is necessary to approximate πn (xn j x1:n�1) and
γn (x1:n�1).
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Application to State-Space Models

In the case of state-space models, we have

qoptn (xn j x1:n�1) = p (xn j y1:n, x1:n�1) = p (xn j yn, xn�1)

=
g (yn j xn) f (xn j xn�1)

p (yn j xn�1)

In this case,

wn (x1:n) = wn�1 (x1:n�1)
p (x1:n, y1:n)

p (x1:n�1, y1:n�1) p (xn j yn, xn�1)
= wn�1 (x1:n�1) p (yn j xn�1) .

Example: Consider f (xn j xn�1) = N (xn; α (xn�1) , β (xn�1)) and
g (yn j xn) = N

�
xn; σ2w

�
then

p (xn j yn, xn�1) = N
�
xn;m (xn�1) , σ2 (xn�1)

�
with

σ2 (xn�1) =
β (xn�1) σ2w

β (xn�1) + σ2w
, m (xn�1) = σ2 (xn�1)

�
α (xn�1)
β (xn�1)

+
yn
σ2w

�
.
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Application to Linear Gaussian State-Space Models

Consider the simple model

Xn = αXn�1 + Vn,

Yn = Xn + σWn

where X1 � N (0, 1), Vn
i.i.d.� N (0, 1) , Wn

i.i.d.� N (0, 1) .

We use qn (xn j x1:n�1) = f (xn j xn�1) = N (xn; αxn�1, 1) ,

qn (xn j x1:n�1) = f (xn j xn�1) = N (xn; αxn�1, 1) ,

qoptn (xn j x1:n�1) = p (xn j yn, xn�1)

= N
�
xn;

σ2w
σ2w + 1

�
αxn�1 +

yn
σ2w

�
,

σ2w
σ2w + 1

�
.
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Summary

Sequential Importance Sampling is an attractive idea: sequential and
parallelizable, only requires designing low-dimensional proposal
distributions.

Sequential Importance Sampling can only work for moderate size
problems.

Is there a way to partially �x this problem?
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