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Generic Problem

e Consider a sequence of probability distributions {77, },>1 defined on a
sequence of (measurable) spaces {(E,, Fy)}n>1 Where E; = E,
Fi=Fand E,=E,_1 xXE, F,=F,_1 x F.
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Generic Problem

e Consider a sequence of probability distributions {77, },>1 defined on a
sequence of (measurable) spaces {(E,, Fy)}n>1 Where E; = E,
Fi=Fand E,=E,_1 xXE, F,=F,_1 x F.

e Each distribution 7, (dxi1.n) = 7 (X1:n) dx1:p is known up to a
normalizing constant, i.e.

TTh (Xlzn) = ')’n(ZXln)

@ We want to estimate expectations of test functions ¢, : E, — R

Ex, (9,) = [ @, (xt:0) 700 (dh)

and/or the normalizing constants Z,.

e We want to do this sequentially; i.e. first 777 and/or Z; at time 1
then 715 and/or Z, at time 2 and so on.




Using Monte Carlo Methods

@ Problem 1: For most problems of interest, we cannot sample from
Tty (Xl:n)-
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Using Monte Carlo Methods

@ Problem 1: For most problems of interest, we cannot sample from
Tty (Xlsn)-
e A standard approach to sample from high dimensional distribution

consists of using iterative Markov chain Monte Carlo algorithms, this is
not appropriate in our context.

@ Problem 2: Even if we could sample exactly from 77, (x1.), then the
computational complexity of the algorithm would most likely increase
with n but we typically want an algorithm of fixed computational
complexity at each time step.

e Summary: We cannot use standard MC sampling in our case and,
even if we could, this would not solve our problem.
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@ Review of Importance Sampling.
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Plan of the Lectures

@ Review of Importance Sampling.
@ Sequential Importance Sampling.

@ Applications.
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Importance Sampling

e Importance Sampling (IS) identity. For any distribution g such
that 1 (x) >0=q(x) >0

7 (%)
q(x)

w (x) g (x)

~ Tw(x)q(x)dx

7T (x) where w (x) =

where g is called importance distribution and w importance weight.




Importance Sampling

e Importance Sampling (IS) identity. For any distribution g such
that 1 (x) >0=q(x) >0

w(x) q(x) where w (x) =

Jw(x)q(x)dx q(x)

where g is called importance distribution and w importance weight.

T (x) =

@ g can be chosen arbitrarily, in particular easy to sample from

5 iid. N y
X0 () =G (d0) = 5 ) bxo ()
i=1




o Plugging this expression in IS identity

N
7 (dx) = Z W(i)5x(i) (dx) where W) « w <X(f)> '

2 = Ly w(x0).
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o Plugging this expression in IS identity

N
7 (dx) = Z W(i)5x(i) (dx) where W) « w <X(f)> '
i=1
5 1 ¢ .
= = (i)
‘= /\/I;W (x).

@ 7T (x) now approximated by weighted sum of delta-masses = Weights
compensate for discrepancy between 7t and gq.
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Practical recommendations

@ Select g as close to 7T as possible.
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Practical recommendations

@ Select g as close to 7T as possible.

@ The varianec of the weights is bounded if and only if

L CIN
/q(x) dx < oo,

@ In practice, try to ensure

w(x) = < 0.

Note that in this case, rejection sampling could be used to sample
from 7T (x) .
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Figure: 1S approximation obtained using a Gaussian IS distribution

AD. ()

9/

40



N
S
T

Values of the weights

00, B




o We try to compute

/<1ix>27'[(x)dx

_T((v+1)/2) x\ —(v+1)/2
7T(X) - W (1 + 7>

is a t-student distribution with v > 1 (you can sample from it by
composition N/ (0,1) /Ga(v/2,v/2)) using Monte Carlo.

where
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o We try to compute

/<1ix>27'[(x)dx

I'((v+1)/2) x\ —(v+1)/2

e = LD 2) () xy
Vvl (v/2)

is a t-student distribution with v > 1 (you can sample from it by

composition N/ (0,1) /Ga(v/2,v/2)) using Monte Carlo.

e We use g1 (x) = 7 (x), g2 (x) = \/Tnl("(i/z) (1+2) ! (Cauchy
distribution) and g3 (x) = N (x;0, -%) (varlance chosen to match

the variance of 77 (x))

where
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o We try to compute

/<1ix>27'[(x)dx

I'((v+1)/2) x\ —(v+1)/2

e = LD 2) () xy
Vvl (v/2)

is a t-student distribution with v > 1 (you can sample from it by

composition N/ (0,1) /Ga(v/2,v/2)) using Monte Carlo.

e We use g1 (x) = 7 (x), g2 (x) = \/ﬁl("(i/Z) (1+2) ! (Cauchy

distribution) and g3 (x) = N (x;0, -%) (varlance chosen to match
the variance of 77 (x))

where

@ It is easy to see that

) ©0 an H(X)Z x = oo 7 (x) is unbounde
w00 < d/q3(x)d_ oy ) 1 unbounded

AD. () 11/ 40



1.20

1.18

1.16

1.14

112

1.10

o 10000 20000 30000 40000 50000

Figure: Performance for v = 12 with g; (solid line), g (dashes) and g3 (light
dots). Final values 1.14, 1.14 and 1.16 vs true value 1.13
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@ We now try to compute

/:OX57T(X) dx




e We now try to compute
oo
/ x°7t (x) dx
2.1

@ We try to use the same importance distribution but also use the fact
that using a change of variables v = 1/x, we have

o /2.
/ X7t (x) dx = /1 21u_77r(1/u)du
2

1 0
1

1/2.1
= —/ 2.1u™ " (1/u) du
2.1 Jo

which is the expectation of 2.1u~ "7t (1/u) with respect to
U[0,1/2.1].
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Figure: Performance for v = 12 with g; (solid), g» (short dashes), g3 (dots),
uniform (long dashes). Final values 6.75, 6.48, 7.06 and 6.48 vs true value 6.54
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Application to Bayesian Statistics

o Consider a Bayesian model: prior 77 (6) and likelihood f (x| ).
@ The posterior distribution is given by

7 (81%) = 75 o 7 (61%)

where 7 (8] x) = 7 (8) f (x| 6).

@ We can use the prior distribution as a candidate distribution
q(0) = (6).

@ We also get an estimate of the marginal likelihood

/(an(ﬂ)f(x](?) de.




o Example: Application to Bayesian analysis of Markov chain. Consider
a two state Markov chain with transition matrix F

( p1 1-p1 >
1—p p2
that is Pr(Xe41 =1| Xy =1) =1 —Pr(Xep1 = 2| X, =1) = p; and

Pr(Xez1 =2| Xy =2) =1—Pr(Xi11 = 1| X; = 2) = pp. Physical
constraints tell us that p; + pp < 1.
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o Example: Application to Bayesian analysis of Markov chain. Consider
a two state Markov chain with transition matrix F

(Pl 1—P1>
1—p p2

that is Pr(Xe41 =1| Xy =1) =1 —Pr(Xep1 = 2| X, =1) = p; and
Pr(Xez1 =2| Xy =2) =1—Pr(Xi11 = 1| X; = 2) = pp. Physical
constraints tell us that p; + pp < 1.

@ Assume we observe xi, ..., Xy, and the prior is

7t (p1, p2) = 2Mp 4 py<1

then the posterior is

mp1 M22

7T (pr, p2| x1:m) o py it (1= p1) ™2 (1= p2)™" py > I py 1 py<1

where
m—1

mij =Y Ty=ill, =i

t=1
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o Example: Application to Bayesian analysis of Markov chain. Consider
a two state Markov chain with transition matrix F

( p1 1-p1 >
1—p p2
that is Pr(Xe41 =1| Xy =1) =1 —Pr(Xep1 = 2| X, =1) = p; and
Pr(Xez1 =2| Xy =2) =1—Pr(Xi11 = 1| X; = 2) = pp. Physical
constraints tell us that p; + pp < 1.
@ Assume we observe xi, ..., Xy, and the prior is
7t (p1, p2) = 2Mp 4 py<1

then the posterior is

7 (p1o p2| xuim) o< py (1= p1) ™2 (1= p2)™ " py **Lpy 4pp <t
where
m—1
mij =Y D=l =
t=1

@ The posterior does not admit a standard expression and its
normalizing constant is unknown. We can sample from it using

rejection sampling.
AD. () 16 / 40



o We are interested in estimating [E [¢; (p1, p2)| x1:m] for

@1 (P1.p2) = p1, @y (p1, p2) = P2, @3 (p1.p2) = p1/ (1 —p1),

94 (P1.p2) = P2/ (1= p2) and @ (p1, po) = log 221 using

Importance Sampling.
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o We are interested in estimating [E [¢; (p1, p2)| x1:m] for

@1 (P1.p2) = p1, @y (p1, p2) = P2, @3 (p1.p2) = p1/ (1 —p1),

94 (P1.p2) = P2/ (1= p2) and @ (p1, po) = log 221 using

Importance Sampling.

o If there was no on p; + p» < 1 and 7t (p1, p2) was uniform on
[0,1] x [0,1], then the posterior would be

o (p1, p2| x1:m) = Be(piymii+1,m»+1)
Be (p2;map+1,mag +1)

but this is inefficient as for the given data (my,1, mi2, Mmoo, ma1)
have g (pl +p < 1| Xl;m) =0.21.

AD. ()

we

17 / 40



o We are interested in estimating [E [¢; (p1, p2)| x1:m] for

@1 (P1.p2) = p1, @y (p1, p2) = P2, @3 (p1.p2) = p1/ (1 —p1),

@, (P1,p2) = p2/ (1 — p2) and @5 (p1, p2) = log p251 223 using

Importance Sampling.

o If there was no on p; + p» < 1 and 7t (p1, p2) was uniform on
[0,1] x [0,1], then the posterior would be

o (p1, p2| x1:m) = Be(piymii+1,m»+1)
Be (p2;map+1,mag +1)

but this is inefficient as for the given data (my,1, m12, Mmoo, ma1) we
have g (pl +p < 1| Xl;m) =0.21.

@ The form of the posterior suggests using a Dirichlet distribution with
density

)m1,2+m2,1

71 (p1, 2| Xm) o< py oy 22 (1= p1— p2

but 7T (p1, p2| x1:m) /701 (p1, P2| X1:m) is unbounded.
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o (Geweke, 1989) proposed using the normal approximation to the
binomial distribution

o (p1, p2| X1:m) < exp <— (m114+mio) (p1 _/,51)2 / (2py (1 _/151)))
xexp (= (o1 +m2) (2~ B2) / (22 (1= P2))

where py = my,1/ (m11+mi2), P = mop/ (Mmoo + mp1). Then to
simulate from this distribution, we simulate first 772 (p1| x1:m) and
then 775 ( p2| X1:m, p1) which are univariate truncated Gaussian
distribution which can be sampled using the inverse cdf method. The

ratio 77 ( p1, p2| x1:m) /702 (p1, p2| X1:m) is upper bounded.
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o (Geweke, 1989) proposed using the normal approximation to the
binomial distribution

o (p1, p2| X1:m) < exp <— (m114+mio) (p1 _/,51)2 / (2py (1 _/151)))
xexp (= (o1 +m2) (2~ B2) / (22 (1= P2))

where py = my,1/ (m11+mi2), P = mop/ (Mmoo + mp1). Then to
simulate from this distribution, we simulate first 772 (p1| x1:m) and
then 775 ( p2| X1:m, p1) which are univariate truncated Gaussian
distribution which can be sampled using the inverse cdf method. The
ratio 77 ( p1, p2| x1:m) /702 (p1, p2| X1:m) is upper bounded.

A final one consists of using

73 (PLPz\ X1:m) = Be (Pl; m1+1,mo+ 1) 73 (P2| X1:m.P1)

where 70 ( po| x1:m, p1) & (1 — p2)™* py?1p,<1—p, is badly
approximated through 713 (p2| x1:m, p1) = QEWP2HP2S1—P1' It is
straightforward to check that 77 (p1, p2| X1:m) /703 (1, P2| X1:m )
(1=p2)™" py 22/ P2 < 0.
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@ Performance for N = 10, 000

AD.

Distribution | ¢, ¢y ¢3 o Ps
T 0.748 | 0.139 | 3.184 | 0.163 | 2.957
TTo 0.689 | 0.210 | 2.319 | 0.283 | 2.211
73 0.697 | 0.189 | 2.379 | 0.241 | 2.358
T 0.697 | 0.189 | 2.373 | 0.240 | 2.358

()
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@ Performance for N = 10, 000

Distribution | ¢, ¢y ¢3 o Ps
T 0.748 | 0.139 | 3.184 | 0.163 | 2.957
TTo 0.689 | 0.210 | 2.319 | 0.283 | 2.211
73 0.697 | 0.189 | 2.379 | 0.241 | 2.358
T 0.697 | 0.189 | 2.373 | 0.240 | 2.358

@ Sampling from 7T using rejection sampling works well but is

computationally expensive. 713 is computationally much cheaper
whereas 711 does extremely poorly as expected.

AD.

()
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Effective Sample Size

@ In statistics, we are usually not interested in a specific ¢ but in several
functions and we prefer having g (x) as close as possible to 77 (x) .

@ For flat functions, one can approximate the variance by

V (B, (9 (X)) = (14 Vg (w (X)) Y2 21)

o Simple interpretation: The N weighted samples are approximately

equivalent to M unweighted samples from 7t where

N < N.

M= v, wixy =




Limitations of Importance Sampling

@ Consider the case where the target is defined on IR” and

X1,~, HN Xk01)




Limitations of Importance Sampling

@ Consider the case where the target is defined on IR” and

X1,~, HN Xk01)

Z = (2m)"?.

@ We select an importance distribution

q (x1:n) = ﬁN(Xk;O,U'z) :
k=1




Limitations of Importance Sampling

@ Consider the case where the target is defined on IR” and

X1,~, HN Xk01)

Z = (2m)"?.

@ We select an importance distribution
n
q(Xlzn) = HN (Xk;O,U'z) .
k=1

@ In this case, we have Vg [2] < oo only for o? > % and

Vis [2] 1 o n/2
B (202—1) _1]'

zZ2 N




@ The variance increases exponentially with n even in this simple case.




@ The variance increases exponentially with n even in this simple case.
o For example, if we select 0> = 1.2 then we have a reasonably good

importance distribution as q (xx) ~ 7t (xx) but NVIS 2]~ ~ (1. 103)”/2

which is approximately equal to 1.9 x 10%! for n = 1000!

AD. () 22 / 40



@ The variance increases exponentially with n even in this simple case.
o For example, if we select 0> = 1.2 then we have a reasonably good
Vis[Z
importance distribution as q (xx) ~ 7 (xx) but N—%— 'S[ | ~ ~ (1. 103)”/2
which is approximately equal to 1.9 x 10%! for n = 1000!

@ We would need to use N =2 2 x 10?3 particles to obtain a relative

variance WZ[Z ] = 0.01.
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Importance Sampling versus Rejection Sampling

e Given N samples from g, we estimate Ex (¢ (X)) through IS

N_l w (X0 (i)
EE, (9 (X)) = = N_(le (>Xq?")<)x |

or we “filter” the samples through rejection and propose instead

1 & i
ER, (p(00) = 5 Lo (x)

where K < N is a random variable corresponding to the number of
samples accepted.




Importance Sampling versus Rejection Sampling

e Given N samples from g, we estimate Ex (¢ (X)) through IS

N_l w (X0 (i)
EE, (9 (X)) = = N_(le (>Xq?")<)x |

or we “filter” the samples through rejection and propose instead

1 & i
ER, (p(00) = 5 Lo (x)

where K < N is a random variable corresponding to the number of
samples accepted.

@ We want to know which strategy performs the best.




o Define the artificial target 77 (x,y) on E x [0,1] as

Cq(x) . 7(x)
7 (x,y) = >, for {(x,y).xEEandye [0, Cq(x):|}
0 otherwise

then

7(x)
/ﬁ(x,y) dy = /Oo;(x) Cq () dy = (x).
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o Define the artificial target 77 (x,y) on E x [0,1] as

Cq(x) ) 7(x)
7 (xy) = >, for {(x,y).xEEandye [0, Cq(x):|}
0 otherwise

then

7(x)
/ﬁ(x,y) dy = /Oo;(x) Cq () dy = 1t (x).

@ Now let us consider the proposal distribution

q(x,y) =q(x)Upa (y) for (x,y) € Ex[0,1].
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@ Then rejection sampling is nothing but IS on X' x [0, 1] where

men [ S e )

w(x,y) X —————— =
< ) 0, otherwise.




@ Then rejection sampling is nothing but IS on X' x [0, 1] where

Tloy) [ SR qory e [o, 4]
0, otherwise.

w(x,y) o«

@ We have

Zﬁlw(xm,ym>¢(xm>

ES (9(X) = & Lo (X)) =

= YV w (X0, y ()

=




@ Then rejection sampling is nothing but IS on X' x [0, 1] where

wiy) o 0 [ SR ory e o 2]
y) = q
q (X)U[o,l] (v) 0, otherwise.
@ We have
K N X)) y(i) x ()
ERS (p(X)) = = Y.¢ (xUk)) _ b W( : ) q).( )
g Kk:l ,I'V:1W(X(’),Y’))

@ Compared to standard IS, RS performs IS on an enlarged space.
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@ The variance of the importance weights from RS is higher than for
standard IS:
Viw(X,Y)] >Vw(X)].

More precisely, we have

Viw (X, Y)] = VI[E[w (X Y)[X]]+E[V[w(X,Y)|X]]
= Vw(X)+E[V[w(X,Y)| X]].
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@ The variance of the importance weights from RS is higher than for
standard IS:
Viw(X,Y)] >Vw(X)].

More precisely, we have

Viw (X, Y)] = VI[E[w (X Y)[X]]+E[V[w(X,Y)|X]]
= Vw(X)+E[V[w(X,Y)| X]].

@ To compute integrals, RS is inefficient and you should simply use IS.
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Introduction to Sequential Importance Sampling

@ Aim: Design an IS method to approximate sequentially {7t,},>1 and
to compute {Z,}p>1.




Introduction to Sequential Importance Sampling

@ Aim: Design an IS method to approximate sequentially {7t,},>1 and
to compute {Z,}p>1.

o At time 1, assume we have approximate 711 (x1) and Z; using an IS
density g1 (x1); that is

N . . .
My (da) = ), Wl(')5xl<,-> (dx) where Wl(') x Wy <X1(')> ,

Z = k()

with




e At time 2, we want to approximate 7T (x1:2) and Z» using an IS
density ¢ (x1:2) .




e At time 2, we want to approximate 7T (x1:2) and Z» using an IS
density ¢ (x1:2) .

e We want to reuse the samples {Xl(i)} from g1 (x1) use to build the IS

approximation of 711 (x1) . This only makes sense if 712 (x1) ~ 711 (x1).
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e At time 2, we want to approximate 7T (x1:2) and Z» using an IS
density ¢ (x1:2) .
e We want to reuse the samples {Xl(i)} from g1 (x1) use to build the IS
approximation of 711 (x1) . This only makes sense if 712 (x1) ~ 711 (x1).
o We select
@ (x12) = q1 (x1) q2 (x| x1)

so that to obtain Xl(iz) ~ @2 (x1:2) we only need to sample

x| X ~ g (X2|:x1<")) .
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Updating the IS approximation

@ We have to compute the weights

(X122 7 (x12)
aQ (X1:2) a1 (X1) p) (X2| X1)
710a) 7 (xa)
a1 ( )

wo (x12) =

72 (x1:2)
71 (x1) @2 (x| x1)

= w1 (Xl)

previous weight

incremental weigh




Updating the IS approximation

@ We have to compute the weights

(X122 7 (x12)
qz (X1:2) q1 (X1) a2 (X2| X1)
710a) 7 (xa)
a1 ( )

wo (x12) =

72 (x1:2)
71 (x1) @2 (x| x1)

incremental weigh

= w1 (Xl)

previous weight

@ For the normalized weights




@ Generally speaking, we use at time n

An (Xlzn) = ({n-1 (Xlznfl) dn <Xn‘ Xl:nfl)
= q (Xl) 1)) (X2\ X1) *qn (Xn’ X1:n71)

1~ Gqn—1 (Xx1:n—1) then we only need to sample

so if Xl(:i)

n—

Xrggl ™~ Gn (Xn’ Xl(:i3—1> -

X\




@ Generally speaking, we use at time n

An (Xlzn) = ({n-1 (Xlznfl) dn <Xn‘ Xl:nfl)
= q (Xl) 1)) (X2\ X1) *qn (Xn’ Xl:nfl)

so if Xl(:i,),f1 ~ gn—1 (X1:n—1) then we only need to sample
X0~ a0 (i X0).

@ The importance weights are updated according to

’)’n (Xlzn)
Yn-1 (Xl:n—l) an (Xn| Xl:n—l)

Y (X1:n)
dn (Xlzn

Whp (Xl:n) = ) = Wp-1 (Xlznfl)




Sequential Importance Sampling

n(x)
o (Xl(i)) .

e At time n =1, sample Xl(i) ~ q1 (+) and set wy (Xl(i)) =
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Sequential Importance Sampling

. ) (@)
o At time n =1, sample Xl(') ~ q1 (+) and set wy (Xl(')) = ME;Q(,);
q1 1
e At timen>2
s s X~ 0 (X0
()Y _ () 70 (X
o compute wa (Xio) = w1 (X 1) (X002 )an (TX)




Sequential Importance Sampling

e At time n =1, sample Xl(i) ~ q1 (+) and set wy (Xl(i)) =

e At timen>2
+ somple X8 v (1500
7 (X1
T (KT Jan (X7

e compute wj, (Xl(’,),) = Wp-1 (Xl(l,)kl)

o At any time n, we have




Sequential Importance Sampling for State-Space Models

@ State-space models

Hidden Markov process: X1 ~ p, Xi| (Xk—1 = xk—1) ~ f (| xk—1)

Observation process:  Yi| (Xk = xk) ~ g (| xk)




Sequential Importance Sampling for State-Space Models

@ State-space models
Hidden Markov process: X1 ~ p, Xi| (Xk—1 = xk—1) ~ f (| xk—1)
Observation process:  Yi| (Xk = xk) ~ g (| xk)
@ Assume we receive yj.,, we are interested in sampling from

P (Xlzn: }/I:n)

TTp (Xl:n) =P (Xl:”‘ y1:n) - p (y1:n)

and estimating p (y1:,) where

o (1) = p Octome i) = 1 Ga) TTF Ol ) TT e (el xe)
k=2 k=1

Zn = P(Y1:n) :/ : /V (Xl)gf(xk|xk—l)lgg()/k|xk) Xm:n-




o We can select g1 (x1) = pt (x1) and
an (Xn|X1:n—1) = dn (Xn|Xn—1) = f(Xn|Xn—1)-
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o At time n =1, sample Xl(i) ~ u(-) and set
w (X) =g (n1x").
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o We can select g1 (x1) = pt (x1) and

an (Xn|X1:n—1) = dn (Xn|Xn—l) = f(Xn|Xn—1) .
e At time n =1, sample Xl(i) ~ u(-) and set

w (X) =g (n1x").
@ At time n>2

2

o sample X,Si) f <| Xl(:ir);fl)
)
4 1

e compute wj, (Xl(' ) = w,_ (X1(127—1> g (yn| X,si)) )
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o We can select g1 (x1) = pt (x1) and
an (Xn|X1:n—1) = dn (Xn|Xn—l) = f(Xn|Xn—1) .

@ At time n =1, sample Xl(i)

 (47) s (30

@ At time n>2

~ u(-) and set

o sample X\ ~ f (| Xl(:ir);fl)
+ computs o (X) — e (5L12) & (o 07

@ At any time n, we have

Xf:’3~u<xl)kr1"2f<xk|xk1), wn (X(0) = Hg(yk]X )

thus we can obtain easily an IS approximation of p (x1:| y1:n) and of
1% (y1:n) .
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Application to Stochastic Volatility Model

500 —

.k

L L L
-025 -20 -15 -10 -5 0
100

50 —

0,
-25

-20 -15 -10 ) -5
Importance Weights (base 10 logarithm)

Figure: Histograms of the base 10 logarithm of W,Si) for n =1 (top), n =50
(middle) and n = 100 (bottom).

@ The algorithm performance collapse as n increases... After a few time
steps, only a very small number of particles have non negligible




Structure of the Optimal Distribution

@ The optimal zero-variance density at time n is simply given by

an (Xlzn) = TTn (Xlzn) .




Structure of the Optimal Distribution

@ The optimal zero-variance density at time n is simply given by
dn (X1:0) = 7o (X1:0) -
@ As we have
Ty (Xlzn) = TTp (Xl) TTp (X2| Xl) < Tlp (Xn| X1:n71) )

where 77, ( xk| x1:k—1) & ¥, (Xk| X1:k—1) it means that we have

qut (Xk| X1:k71) = Tlp (Xk| X1;k71) .




Structure of the Optimal Distribution

@ The optimal zero-variance density at time n is simply given by
dn (X1:0) = 7o (X1:0) -
@ As we have
Ty (Xlzn) = TTp (Xl) TTp (X2| Xl) < Tlp (Xn| X1:n71) )
where 77, ( xk| x1:k—1) & ¥, (Xk| X1:k—1) it means that we have

qut (Xk| X1:k71) = Tlp (Xk| X1;k71) .

@ Obviously this result does depend on n so it is only useful if we are
only interested in a specific target 71, (x1.,) and in such scenarios we
need to typically approximate 7t, (xk| X1:k—1) -
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Locally Optimal Importance Distribution

@ One sensible strategy consists of selecting g, (x| x1:.n—1) at time n so
as to minimize the variance of the importance weights.
@ We have for the importance weight

Vn (X1:n)
an-1 (Xlzn—l) An (Xn| Xl:n—l)
Zy Tty (Xl:n—l) TTp (Xn| Xl:n—l)
an-1 (Xlzn—l) dn (Xn| Xl:n—l)
o It follows directly that we have

Whp (Xl:n) =

qut (Xn| X1:n—1) = 7Tn (Xn| X1:0-1)
and
_ Yn (Xlzn)
Wp (Xlzn) = Wp-1 (Xl:n—l) Yot (Xl:n—l) T (Xn| Xl:n—l)
Yo (1)

= Wp-1 (Xl:nfl)

Vo1 (X1:0-1)




@ This locally optimal importance density will be used again and again.
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@ This locally optimal importance density will be used again and again.
e It is often impossible to sample from 77, (x| x1.n—1) and/or
computing v, (x1:n—1) = [ v, (X1:n) dxp.
@ In such cases, it is necessary to approximate 77, ( Xp| x1:n—1) and
Tn (Xl:n—l)-

AD. () )



Application to State-Space Models

@ In the case of state-space models, we have

qut(anxl:nfl) = p(Xn|y1:n|X1:n71):P<Xn|}/nyxn71)
_ 8 nlxa) f (xal xo-1)
P(Yn|an1)
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@ In the case of state-space models, we have

qut(anxl:nfl) = p(Xn|y1:n|X1:n71):P<Xn|}/nyxn71)
_ 8 nlxa) f (xal xo-1)
P(Yn|an1)

@ In this case,
P (X1:n1y1:n)

Wn(Xlzn) = Wp-1 (Xl:n—l)
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Application to State-Space Models

@ In the case of state-space models, we have

qut (an Xl:nfl) = P (Xn| y1:n|X1:n71) =p (Xn| }/nyxnfl)
_ g(_)/n|xn) f(Xn’Xn71>
P(Yn|an1)

@ In this case,
P (X1:n1y1:n)
1% (Xlznfly}/l:nfl) p (Xn‘ Yn, anl)
= Wp-1 (Xlznfl) p (Yn’ anl) .
o Example: Consider f (x,|xp—1) = N (xn; & (xp—1), B (Xxo—1)) and
g (ynlxn) =N (Xn;U'a,) then
P (Xa| Yn Xn—1) = N (Xp;m (xp-1) , 0% (xp-1)) with

B (xn-1) agv

Wn(Xlzn) = Wp-1 (Xl:n—l)

& (Xo—1) gL ) .

o) = g e = o) (G




Application to Linear Gaussian State-Space Models

@ Consider the simple model

Xn - lXXn—]_ + an
Y, = Xpo+ocW,

where X; ~ N (0,1), V, "% N (0,1), W, =" N (0,1).




Application to Linear Gaussian State-Space Models

@ Consider the simple model

Xn - lXXn—]_ + an
Y, = Xpo+ocW,

where X; ~ N (0,1), V, "% N (0,1), W, =" N (0,1).
e We use g, (Xn| Xl:n71> =f (Xn| anl) = N(Xn;(Xanl, 1) )

an (Xn|X1:n—1) = f(Xn|Xn—1) = N(Xn;lxxn—l' 1)1

qut (Xn’ Xl:nfl) = P (Xn| Yn, anl)
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parallelizable, only requires designing low-dimensional proposal
distributions.
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@ Sequential Importance Sampling is an attractive idea: sequential and
parallelizable, only requires designing low-dimensional proposal
distributions.

@ Sequential Importance Sampling can only work for moderate size
problems.

@ Is there a way to partially fix this problem?




