Sequential Monte Carlo: An Introduction

Arnaud Doucet
Departments of Statistics \& Computer Science
University of British Columbia

Generic Problem

- Consider a sequence of probability distributions $\left\{\pi_{n}\right\}_{n \geq 1}$ defined on a sequence of (measurable) spaces $\left\{\left(E_{n}, \mathcal{F}_{n}\right)\right\}_{n \geq 1}$ where $E_{1}=E$, $\mathcal{F}_{1}=\mathcal{F}$ and $E_{n}=E_{n-1} \times E, \mathcal{F}_{n}=\mathcal{F}_{n-1} \times \mathcal{F}$.

Generic Problem

- Consider a sequence of probability distributions $\left\{\pi_{n}\right\}_{n \geq 1}$ defined on a sequence of (measurable) spaces $\left\{\left(E_{n}, \mathcal{F}_{n}\right)\right\}_{n \geq 1}$ where $E_{1}=E$, $\mathcal{F}_{1}=\mathcal{F}$ and $E_{n}=E_{n-1} \times E, \mathcal{F}_{n}=\mathcal{F}_{n-1} \times \mathcal{F}$.
- Each distribution $\pi_{n}\left(d x_{1: n}\right)=\pi_{n}\left(x_{1: n}\right) d x_{1: n}$ is known up to a normalizing constant, i.e.

$$
\pi_{n}\left(x_{1: n}\right)=\frac{\gamma_{n}\left(x_{1: n}\right)}{Z_{n}}
$$

Generic Problem

- Consider a sequence of probability distributions $\left\{\pi_{n}\right\}_{n \geq 1}$ defined on a sequence of (measurable) spaces $\left\{\left(E_{n}, \mathcal{F}_{n}\right)\right\}_{n \geq 1}$ where $E_{1}=E$, $\mathcal{F}_{1}=\mathcal{F}$ and $E_{n}=E_{n-1} \times E, \mathcal{F}_{n}=\mathcal{F}_{n-1} \times \mathcal{F}$.
- Each distribution $\pi_{n}\left(d x_{1: n}\right)=\pi_{n}\left(x_{1: n}\right) d x_{1: n}$ is known up to a normalizing constant, i.e.

$$
\pi_{n}\left(x_{1: n}\right)=\frac{\gamma_{n}\left(x_{1: n}\right)}{Z_{n}}
$$

- We want to estimate expectations of test functions $\varphi_{n}: E_{n} \rightarrow \mathbb{R}$

$$
\mathbb{E}_{\pi_{n}}\left(\varphi_{n}\right)=\int \varphi_{n}\left(x_{1: n}\right) \pi_{n}\left(d x_{1: n}\right)
$$

and/or the normalizing constants Z_{n}.

Generic Problem

- Consider a sequence of probability distributions $\left\{\pi_{n}\right\}_{n \geq 1}$ defined on a sequence of (measurable) spaces $\left\{\left(E_{n}, \mathcal{F}_{n}\right)\right\}_{n \geq 1}$ where $E_{1}=E$, $\mathcal{F}_{1}=\mathcal{F}$ and $E_{n}=E_{n-1} \times E, \mathcal{F}_{n}=\mathcal{F}_{n-1} \times \mathcal{F}$.
- Each distribution $\pi_{n}\left(d x_{1: n}\right)=\pi_{n}\left(x_{1: n}\right) d x_{1: n}$ is known up to a normalizing constant, i.e.

$$
\pi_{n}\left(x_{1: n}\right)=\frac{\gamma_{n}\left(x_{1: n}\right)}{Z_{n}}
$$

- We want to estimate expectations of test functions $\varphi_{n}: E_{n} \rightarrow \mathbb{R}$

$$
\mathbb{E}_{\pi_{n}}\left(\varphi_{n}\right)=\int \varphi_{n}\left(x_{1: n}\right) \pi_{n}\left(d x_{1: n}\right)
$$

and/or the normalizing constants Z_{n}.

- We want to do this sequentially; i.e. first π_{1} and/or Z_{1} at time 1 then π_{2} and/or Z_{2} at time 2 and so on.
- We could use standard MCMC to sample from $\left\{\pi_{n}\right\}_{n \geq 1}$ but it is slow \& it does not provide an estimate of $\left\{Z_{n}\right\}_{n \geq 1}$.
- We could use standard MCMC to sample from $\left\{\pi_{n}\right\}_{n \geq 1}$ but it is slow \& it does not provide an estimate of $\left\{Z_{n}\right\}_{n \geq 1}$.
- SMC is a non-iterative alternative class of algorithms to MCMC.
- We could use standard MCMC to sample from $\left\{\pi_{n}\right\}_{n \geq 1}$ but it is slow \& it does not provide an estimate of $\left\{Z_{n}\right\}_{n \geq 1}$.
- SMC is a non-iterative alternative class of algorithms to MCMC.
- Key idea: if π_{n-1} does not differ too much from π_{n} then we should be able to reuse our estimate of π_{n-1} to approximate π_{n}.

Applications

- Optimal estimation in non-linear non-Gaussian dynamic models.

Applications

- Optimal estimation in non-linear non-Gaussian dynamic models.
- Bayesian inference for complex statistical models.

Applications

- Optimal estimation in non-linear non-Gaussian dynamic models.
- Bayesian inference for complex statistical models.
- Global optimization.

Applications

- Optimal estimation in non-linear non-Gaussian dynamic models.
- Bayesian inference for complex statistical models.
- Global optimization.
- Counting problems.

Applications

- Optimal estimation in non-linear non-Gaussian dynamic models.
- Bayesian inference for complex statistical models.
- Global optimization.
- Counting problems.
- Rare events simulation.

State-Space Models

- $\left\{X_{n}\right\}_{n \geq 1}$ latent/hidden Markov process with

$$
X_{1} \sim \mu(\cdot) \text { and } X_{n} \mid\left(X_{n-1}=x\right) \sim f(\cdot \mid x) .
$$

State-Space Models

- $\left\{X_{n}\right\}_{n \geq 1}$ latent/hidden Markov process with

$$
X_{1} \sim \mu(\cdot) \text { and } X_{n} \mid\left(X_{n-1}=x\right) \sim f(\cdot \mid x)
$$

- $\left\{Y_{n}\right\}_{n \geq 1}$ observation process such that observations are conditionally independent given $\left\{X_{n}\right\}_{n \geq 1}$ and

$$
Y_{n} \mid\left(X_{n}=x\right) \sim g(\cdot \mid x)
$$

State-Space Models

- $\left\{X_{n}\right\}_{n \geq 1}$ latent/hidden Markov process with

$$
X_{1} \sim \mu(\cdot) \text { and } X_{n} \mid\left(X_{n-1}=x\right) \sim f(\cdot \mid x)
$$

- $\left\{Y_{n}\right\}_{n \geq 1}$ observation process such that observations are conditionally independent given $\left\{X_{n}\right\}_{n \geq 1}$ and

$$
Y_{n} \mid\left(X_{n}=x\right) \sim g(\cdot \mid x)
$$

- Very wide class of statistical models also known as hidden Markov models with thousands of applications.

Examples

- Linear Gaussian state-space model

$$
\begin{aligned}
& X_{1} \sim \mathcal{N}\left(m_{1}, \Sigma_{1}\right), X_{n}=A X_{n-1}+B V_{n} \\
& Y_{n}=C X_{n}+D W_{n}
\end{aligned}
$$

where $V_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \Sigma_{v}\right), W_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \Sigma_{w}\right)$.

Examples

- Linear Gaussian state-space model

$$
\begin{aligned}
& X_{1} \sim \mathcal{N}\left(m_{1}, \Sigma_{1}\right), X_{n}=A X_{n-1}+B V_{n} \\
& Y_{n}=C X_{n}+D W_{n}
\end{aligned}
$$

where $V_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \Sigma_{v}\right), W_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \Sigma_{w}\right)$.

- Stochastic volatility model

$$
\begin{aligned}
& X_{1} \sim \mathcal{N}\left(0, \frac{\sigma^{2}}{1-\alpha^{2}}\right), X_{n}=\alpha X_{n-1}+V_{n} \\
& Y_{n}=\beta \exp \left(X_{n} / 2\right) W_{n}
\end{aligned}
$$

where $|\alpha|<1, V_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma^{2}\right), W_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)$.

Inference in State-Space Models

- At time n, we have access to the observations are interested in computing

$$
p\left(x_{1: n} \mid y_{1: n}\right)=\frac{p\left(x_{1: n}, y_{1: n}\right)}{p\left(y_{1: n}\right)}
$$

and the (marginal) likelihood $p\left(y_{1: n}\right)$ where

$$
\begin{aligned}
p\left(x_{1: n}, y_{1: n}\right) & =\mu\left(x_{1}\right) \prod_{k=2}^{n} f\left(x_{k} \mid x_{k-1}\right) \prod_{k=1}^{n} g\left(y_{k} \mid x_{k}\right), \\
p\left(y_{1: n}\right) & =\int \cdots \int p\left(x_{1: n}, y_{1: n}\right) d x_{1: n} .
\end{aligned}
$$

Inference in State-Space Models

- At time n, we have access to the observations are interested in computing

$$
p\left(x_{1: n} \mid y_{1: n}\right)=\frac{p\left(x_{1: n}, y_{1: n}\right)}{p\left(y_{1: n}\right)}
$$

and the (marginal) likelihood $p\left(y_{1: n}\right)$ where

$$
\begin{aligned}
p\left(x_{1: n}, y_{1: n}\right) & =\mu\left(x_{1}\right) \prod_{k=2}^{n} f\left(x_{k} \mid x_{k-1}\right) \prod_{k=1}^{n} g\left(y_{k} \mid x_{k}\right), \\
p\left(y_{1: n}\right) & =\int \cdots \int p\left(x_{1: n}, y_{1: n}\right) d x_{1: n} .
\end{aligned}
$$

- In our SMC framework,

$$
\pi_{n}\left(x_{1: n}\right)=p\left(x_{1: n} \mid y_{1: n}\right), \quad \gamma_{n}\left(x_{1: n}\right)=p\left(x_{1: n}, y_{1: n}\right), Z_{n}=p\left(y_{1: n}\right)
$$

The Kalman Filter

- For linear Gaussian models, all posteriors are Gaussian and we can compute the likelihood exactly.

The Kalman Filter

- For linear Gaussian models, all posteriors are Gaussian and we can compute the likelihood exactly.
- The marginal distributions $\left\{p\left(x_{n} \mid y_{1: n}\right)\right\}_{n \geq 1}$ and $\left\{p\left(y_{n} \mid y_{1: n-1}\right)\right\}_{n \geq 1}$ can be computed through the celebrated Kalman filter.

The Kalman Filter

- For linear Gaussian models, all posteriors are Gaussian and we can compute the likelihood exactly.
- The marginal distributions $\left\{p\left(x_{n} \mid y_{1: n}\right)\right\}_{n \geq 1}$ and $\left\{p\left(y_{n} \mid y_{1: n-1}\right)\right\}_{n \geq 1}$ can be computed through the celebrated Kalman filter.
- To obtain an estimate of the joint distribution, we have

$$
\begin{aligned}
p\left(x_{1: n} \mid y_{1: n}\right) & =p\left(x_{n} \mid y_{1: n}\right) \prod_{k=1}^{n-1} p\left(x_{k} \mid y_{1: n}, x_{k+1}\right) \\
& =p\left(x_{n} \mid y_{1: n}\right) \prod_{k=1}^{n-1} p\left(x_{k} \mid y_{1: k}, x_{k+1}\right)
\end{aligned}
$$

where

$$
p\left(x_{k} \mid y_{1: k}, x_{k+1}\right)=\frac{f\left(x_{k+1} \mid x_{k}\right) p\left(x_{k} \mid y_{1: k}\right)}{p\left(x_{k+1} \mid y_{1: k}\right)} .
$$

Nonlinear Non-Gaussian Models

- For nonlinear non-Gaussian models, there is no closed-form expression.

Nonlinear Non-Gaussian Models

- For nonlinear non-Gaussian models, there is no closed-form expression.
- Standard approximations relie on functional approximations: EKF, UKF, Gaussian quadrature, mixture of Gaussians.

Nonlinear Non-Gaussian Models

- For nonlinear non-Gaussian models, there is no closed-form expression.
- Standard approximations relie on functional approximations: EKF, UKF, Gaussian quadrature, mixture of Gaussians.
- These functional approximations can be seriously unreliable and are not widely applicable.

Quantum Monte Carlo

- Finding the largest eigenvalue and eigenmeasure of a positive operator

Quantum Monte Carlo

- Finding the largest eigenvalue and eigenmeasure of a positive operator
- Let $K: E \times E \rightarrow \mathbb{R}^{+}$be a positive kernel.

Quantum Monte Carlo

- Finding the largest eigenvalue and eigenmeasure of a positive operator
- Let $K: E \times E \rightarrow \mathbb{R}^{+}$be a positive kernel.
- Find the largest eigenvalue $\lambda(\lambda>0)$ and associated eigenmeasure μ $\left(\int \mu(d x)=1\right)$ of K

$$
\int \mu(x) K(y \mid x) d x=\lambda \mu(y)
$$

Quantum Monte Carlo

- Finding the largest eigenvalue and eigenmeasure of a positive operator
- Let $K: E \times E \rightarrow \mathbb{R}^{+}$be a positive kernel.
- Find the largest eigenvalue $\lambda(\lambda>0)$ and associated eigenmeasure μ $\left(\int \mu(d x)=1\right)$ of K

$$
\int \mu(x) K(y \mid x) d x=\lambda \mu(y)
$$

- Basic Idea: the good old power method.
- Power method: $A p \times p$ matrix with p linearly independent eigenvectors $\left\{V_{i}\right\}$ associated to eigenvalues $\left\{\lambda_{i}\right\}$ such that $\left|\lambda_{1}\right|>$ $\left|\lambda_{2}\right|>\ldots>\left|\lambda_{p}\right|$

$$
\begin{aligned}
U_{1}= & \sum_{i=1}^{p} \alpha_{i} V_{i} \\
& \vdots \\
U_{n}= & A^{n-1} U_{1}=\sum_{i=1}^{p} \alpha_{i} \lambda_{i}^{n-1} V_{i}
\end{aligned}
$$

- Power method: $A p \times p$ matrix with p linearly independent eigenvectors $\left\{V_{i}\right\}$ associated to eigenvalues $\left\{\lambda_{i}\right\}$ such that $\left|\lambda_{1}\right|>$ $\left|\lambda_{2}\right|>\ldots>\left|\lambda_{p}\right|$

$$
\begin{aligned}
U_{1}= & \sum_{i=1}^{p} \alpha_{i} V_{i} \\
& \vdots \\
U_{n}= & A^{n-1} U_{1}=\sum_{i=1}^{p} \alpha_{i} \lambda_{i}^{n-1} V_{i}
\end{aligned}
$$

- We have

$$
\frac{U_{n}}{\lambda_{1}^{n-1}}=\alpha_{1} V_{1}+\sum_{i=2}^{p} \alpha_{i}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{n-1} V_{i} \rightarrow \alpha_{1} V_{1} \text { and } \frac{U_{n}^{\top} Y}{U_{n-1}^{\top} Y} \rightarrow \lambda_{1}
$$

- Consider the following artificial sequence of distributions defined through

$$
\gamma_{n}\left(x_{1: n}\right)=v\left(x_{1}\right) \prod_{k=2}^{n} K\left(x_{k} \mid x_{k-1}\right)
$$

- Consider the following artificial sequence of distributions defined through

$$
\gamma_{n}\left(x_{1: n}\right)=v\left(x_{1}\right) \prod_{k=2}^{n} K\left(x_{k} \mid x_{k-1}\right)
$$

- As n increases, we have

$$
\gamma_{n}\left(x_{n}\right)=\int \gamma_{n}\left(x_{1: n}\right) d x_{1: n-1} \propto \lambda^{n-1} \mu\left(x_{n}\right)
$$

and

$$
\pi_{n}\left(x_{n}\right) \rightarrow \mu\left(x_{n}\right) \text { and } \frac{Z_{n+1}}{Z_{n}} \rightarrow \lambda
$$

- Consider the following artificial sequence of distributions defined through

$$
\gamma_{n}\left(x_{1: n}\right)=v\left(x_{1}\right) \prod_{k=2}^{n} K\left(x_{k} \mid x_{k-1}\right)
$$

- As n increases, we have

$$
\gamma_{n}\left(x_{n}\right)=\int \gamma_{n}\left(x_{1: n}\right) d x_{1: n-1} \propto \lambda^{n-1} \mu\left(x_{n}\right)
$$

and

$$
\pi_{n}\left(x_{n}\right) \rightarrow \mu\left(x_{n}\right) \text { and } \frac{Z_{n+1}}{Z_{n}} \rightarrow \lambda
$$

- SMC methods are widely used to solve this problem.

Self-Avoiding Random Walk (SAW)

- A 2D Self Avoiding Random Walk (SAW). Polymer of size n is characterized by a sequence $x_{1: n}$ on a finite lattice such that $x_{i} \neq x_{j}$ for $i \neq j$.

Self-Avoiding Random Walk (SAW)

- A 2D Self Avoiding Random Walk (SAW). Polymer of size n is characterized by a sequence $x_{1: n}$ on a finite lattice such that $x_{i} \neq x_{j}$ for $i \neq j$.
- One is interested in the uniform distribution

$$
\pi_{n}\left(x_{1: n}\right)=Z_{n}^{-1} \cdot 1_{D_{n}}\left(x_{1: n}\right)
$$

where

$$
\begin{aligned}
D_{n} & =\left\{x_{1: n} \in E_{n} \backslash x_{k} \sim x_{k+1} \text { and } x_{k} \neq x_{i} \text { for } k \neq i\right\} \\
Z_{n} & =\text { cardinal of } D_{n} .
\end{aligned}
$$

Self-Avoiding Random Walk (SAW)

- A 2D Self Avoiding Random Walk (SAW). Polymer of size n is characterized by a sequence $x_{1: n}$ on a finite lattice such that $x_{i} \neq x_{j}$ for $i \neq j$.
- One is interested in the uniform distribution

$$
\pi_{n}\left(x_{1: n}\right)=Z_{n}^{-1} \cdot 1_{D_{n}}\left(x_{1: n}\right)
$$

where

$$
\begin{aligned}
& D_{n}=\left\{x_{1: n} \in E_{n} \backslash x_{k} \sim x_{k+1} \text { and } x_{k} \neq x_{i} \text { for } k \neq i\right\} \\
& Z_{n}=\text { cardinal of } D_{n} .
\end{aligned}
$$

- SMC allow us to simulate from the uniform distribution of SAW of length n and to compute their number.

Particle Motion in Random Medium

- A Markovian particle $\left\{X_{n}\right\}_{n \geq 1}$ evolves in a random medium

$$
X_{1} \sim \mu(\cdot), \quad X_{n+1} \mid X_{n}=x \sim f(\cdot \mid x)
$$

Particle Motion in Random Medium

- A Markovian particle $\left\{X_{n}\right\}_{n \geq 1}$ evolves in a random medium

$$
X_{1} \sim \mu(\cdot), \quad X_{n+1} \mid X_{n}=x \sim f(\cdot \mid x)
$$

- At time n, its probability to get killed is $1-g\left(X_{n}\right)$ where $0 \leq g(x) \leq 1$ for any $x \in E$.

Particle Motion in Random Medium

- A Markovian particle $\left\{X_{n}\right\}_{n \geq 1}$ evolves in a random medium

$$
X_{1} \sim \mu(\cdot), \quad X_{n+1} \mid X_{n}=x \sim f(\cdot \mid x)
$$

- At time n, its probability to get killed is $1-g\left(X_{n}\right)$ where $0 \leq g(x) \leq 1$ for any $x \in E$.
- One wants to approximate $\operatorname{Pr}(T>n)$ where $T=$ Random time at which the particle is killed.
- One has

$$
\begin{aligned}
& \operatorname{Pr}(T>n) \\
= & \mathbb{E}_{\mu}\left[\operatorname{Proba} \text {. of not being killed at } n \text { given } X_{1: n}\right] \\
= & \int \cdots \int \mu\left(x_{1}\right) \prod_{k=2}^{n} f\left(x_{k} \mid x_{k-1}\right) \underbrace{\prod_{k=1}^{n} g\left(x_{k}\right)}_{\text {Probability to survive at } n} d x_{1: n} .
\end{aligned}
$$

- One has

$$
\begin{aligned}
& \operatorname{Pr}(T>n) \\
= & \mathbb{E}_{\mu}\left[\operatorname{Proba} \text {. of not being killed at } n \text { given } X_{1: n}\right] \\
= & \int \cdots \int \mu\left(x_{1}\right) \prod_{k=2}^{n} f\left(x_{k} \mid x_{k-1}\right) \underbrace{\prod_{k=1}^{n} g\left(x_{k}\right)}_{\text {Probability to survive at } n} d x_{1: n} .
\end{aligned}
$$

- Consider

$$
\begin{aligned}
& \gamma_{n}\left(x_{1: n}\right)=\mu\left(x_{1}\right) \prod_{k=2}^{n} f\left(x_{k} \mid x_{k-1}\right) \prod_{k=1}^{n} g\left(x_{k}\right) \\
& \pi_{n}\left(x_{1: n}\right)=\frac{\gamma_{n}\left(x_{1: n}\right)}{Z_{n}} \text { where } Z_{n}=\operatorname{Pr}(T>n) .
\end{aligned}
$$

- One has

$$
\begin{aligned}
& \operatorname{Pr}(T>n) \\
= & \mathbb{E}_{\mu}\left[\operatorname{Proba} \text {. of not being killed at } n \text { given } X_{1: n}\right] \\
= & \int \cdots \int \mu\left(x_{1}\right) \prod_{k=2}^{n} f\left(x_{k} \mid x_{k-1}\right) \underbrace{\prod_{k=1}^{n} g\left(x_{k}\right)}_{\text {Probability to survive at } n} d x_{1: n} .
\end{aligned}
$$

- Consider

$$
\begin{aligned}
& \gamma_{n}\left(x_{1: n}\right)=\mu\left(x_{1}\right) \prod_{k=2}^{n} f\left(x_{k} \mid x_{k-1}\right) \prod_{k=1}^{n} g\left(x_{k}\right) \\
& \pi_{n}\left(x_{1: n}\right)=\frac{\gamma_{n}\left(x_{1: n}\right)}{Z_{n}} \text { where } Z_{n}=\operatorname{Pr}(T>n) .
\end{aligned}
$$

- SMC methods to compute Z_{n}, the probability of not being killed at time n, and to approximate the distribution of the paths having survived at time n.

Generic Sequence of Target Distributions

- Consider the case where all the target distributions $\left\{\pi_{n}\right\}_{n \geq 1}$ are defined on $E_{n}=E$.

Generic Sequence of Target Distributions

- Consider the case where all the target distributions $\left\{\pi_{n}\right\}_{n \geq 1}$ are defined on $E_{n}=E$.
- Examples

Generic Sequence of Target Distributions

- Consider the case where all the target distributions $\left\{\pi_{n}\right\}_{n \geq 1}$ are defined on $E_{n}=E$.
- Examples
- $\pi_{n}=\pi$ (e.g. Bayesian inference, rare events etc.)

Generic Sequence of Target Distributions

- Consider the case where all the target distributions $\left\{\pi_{n}\right\}_{n \geq 1}$ are defined on $E_{n}=E$.
- Examples
- $\pi_{n}=\pi$ (e.g. Bayesian inference, rare events etc.)
- $\pi_{n}(x) \propto[\pi(x)]^{\gamma_{n}}$ where $\gamma_{n} \rightarrow \infty$ (global optimization)

Generic Sequence of Target Distributions

- Consider the case where all the target distributions $\left\{\pi_{n}\right\}_{n \geq 1}$ are defined on $E_{n}=E$.
- Examples
- $\pi_{n}=\pi$ (e.g. Bayesian inference, rare events etc.)
- $\pi_{n}(x) \propto[\pi(x)]^{\gamma_{n}}$ where $\gamma_{n} \rightarrow \infty$ (global optimization)
- $\pi_{n}(x)=p\left(x \mid y_{1: n}\right)$ (sequential Bayesian estimation)

Generic Sequence of Target Distributions

- Consider the case where all the target distributions $\left\{\pi_{n}\right\}_{n \geq 1}$ are defined on $E_{n}=E$.
- Examples
- $\pi_{n}=\pi$ (e.g. Bayesian inference, rare events etc.)
- $\pi_{n}(x) \propto[\pi(x)]^{\gamma_{n}}$ where $\gamma_{n} \rightarrow \infty$ (global optimization)
- $\pi_{n}(x)=p\left(x \mid y_{1: n}\right)$ (sequential Bayesian estimation)
- SMC do not apply to this problem as it requires $E_{n}=E^{n}$.
- Consider a new sequence of artificial distributions $\left\{\tilde{\pi}_{n}\right\}_{n \geq 1}$ defined on $E_{n}=E^{n}$ such that

$$
\int \widetilde{\pi}_{n}\left(x_{1: n-1}, x_{n}\right) d x_{1: n-1}=\pi_{n}\left(x_{n}\right)
$$

and apply standard SMC.

- Consider a new sequence of artificial distributions $\left\{\widetilde{\pi}_{n}\right\}_{n \geq 1}$ defined on $E_{n}=E^{n}$ such that

$$
\int \widetilde{\pi}_{n}\left(x_{1: n-1}, x_{n}\right) d x_{1: n-1}=\pi_{n}\left(x_{n}\right)
$$

and apply standard SMC.

- Example:

$$
\widetilde{\pi}_{n}\left(x_{1: n-1}, x_{n}\right)=\pi_{n}\left(x_{n}\right) \widetilde{\pi}_{n}\left(x_{1: n-1} \mid x_{n}\right)
$$

where $\widetilde{\pi}_{n}\left(x_{1: n-1} \mid x_{n}\right)$ is any conditional distribution on E^{n-1}.

- Consider a new sequence of artificial distributions $\left\{\widetilde{\pi}_{n}\right\}_{n \geq 1}$ defined on $E_{n}=E^{n}$ such that

$$
\int \tilde{\pi}_{n}\left(x_{1: n-1}, x_{n}\right) d x_{1: n-1}=\pi_{n}\left(x_{n}\right)
$$

and apply standard SMC.

- Example:

$$
\widetilde{\pi}_{n}\left(x_{1: n-1}, x_{n}\right)=\pi_{n}\left(x_{n}\right) \widetilde{\pi}_{n}\left(x_{1: n-1} \mid x_{n}\right)
$$

where $\widetilde{\pi}_{n}\left(x_{1: n-1} \mid x_{n}\right)$ is any conditional distribution on E^{n-1}.

- How to design $\widetilde{\pi}_{n}$ optimally will be discussed later.

The Need for Monte Carlo Methods

- Except in trivial cases, one can neither compute $\int \varphi_{n}\left(x_{1: n}\right) \pi_{n}\left(d x_{1: n}\right)$ nor Z_{n}.

The Need for Monte Carlo Methods

- Except in trivial cases, one can neither compute $\int \varphi_{n}\left(x_{1: n}\right) \pi_{n}\left(d x_{1: n}\right)$ nor Z_{n}.
- Deterministic numerical integration methods typically inefficient for high-dimensional spaces.

The Need for Monte Carlo Methods

- Except in trivial cases, one can neither compute $\int \varphi_{n}\left(x_{1: n}\right) \pi_{n}\left(d x_{1: n}\right)$ nor Z_{n}.
- Deterministic numerical integration methods typically inefficient for high-dimensional spaces.
- Monte Carlo methods: simple and flexible.

The Need for Monte Carlo Methods

- Except in trivial cases, one can neither compute $\int \varphi_{n}\left(x_{1: n}\right) \pi_{n}\left(d x_{1: n}\right)$ nor Z_{n}.
- Deterministic numerical integration methods typically inefficient for high-dimensional spaces.
- Monte Carlo methods: simple and flexible.
- Using Monte Carlo, it is very easy to make "rigourous" your intuition.

Monte Carlo Methods

- For the time being, just concentrate on estimating

$$
\mathbb{E}_{\pi}[\varphi]=\int \varphi(x) \pi(d x)
$$

where

$$
\pi(x)=\frac{\gamma(x)}{Z} \text { with } \gamma \text { known pointwise } / Z=\int \gamma(x) d x \text { unknown. }
$$

Monte Carlo Methods

- For the time being, just concentrate on estimating

$$
\mathbb{E}_{\pi}[\varphi]=\int \varphi(x) \pi(d x)
$$

where

$$
\pi(x)=\frac{\gamma(x)}{Z} \text { with } \gamma \text { known pointwise } / Z=\int \gamma(x) d x \text { unknown. }
$$

- Draw a large number samples $X^{(i)} \stackrel{\text { i.i.d. }}{\sim} \pi$ and build empirical measure

$$
\widehat{\pi}(d x)=\frac{1}{N} \sum_{i=1}^{N} \delta_{X^{(i)}}(d x)
$$

- Marginalization is straightforward. If $x=\left(x_{1}, \ldots, x_{k}\right)$

$$
\widehat{\pi}\left(d x_{p}\right)=\int \widehat{\pi}\left(d x_{1: p-1}, d x_{p+1: k}\right)=\frac{1}{N} \sum_{i=1}^{N} \delta_{x_{p}^{(i)}}(d x)
$$

- Marginalization is straightforward. If $x=\left(x_{1}, \ldots, x_{k}\right)$

$$
\widehat{\pi}\left(d x_{p}\right)=\int \widehat{\pi}\left(d x_{1: p-1}, d x_{p+1: k}\right)=\frac{1}{N} \sum_{i=1}^{N} \delta_{x_{p}^{(i)}}(d x)
$$

- Integration is straightforward. Monte Carlo estimates of $\mathbb{E}_{\pi}(\varphi)$

$$
\mathbb{E}_{\widehat{\pi}}(\varphi)=\int \varphi(x) \widehat{\pi}(d x)=\frac{1}{N} \sum_{i=1}^{N} \varphi\left(X^{(i)}\right)
$$

- Marginalization is straightforward. If $x=\left(x_{1}, \ldots, x_{k}\right)$

$$
\widehat{\pi}\left(d x_{p}\right)=\int \widehat{\pi}\left(d x_{1: p-1}, d x_{p+1: k}\right)=\frac{1}{N} \sum_{i=1}^{N} \delta_{x_{p}^{(i)}}(d x)
$$

- Integration is straightforward. Monte Carlo estimates of $\mathbb{E}_{\pi}(\varphi)$

$$
\mathbb{E}_{\widehat{\pi}}(\varphi)=\int \varphi(x) \widehat{\pi}(d x)=\frac{1}{N} \sum_{i=1}^{N} \varphi\left(X^{(i)}\right)
$$

- Samples concentrate themselves automatically in regions of high probability mass whatever being the dimension of the space; e.g. $E=\mathbb{R}^{10^{6}}$.
- Basic results

$$
\begin{aligned}
\mathbb{E}\left[\mathbb{E}_{\hat{\pi}}(\varphi)\right] & =\mathbb{E}_{\pi}(\varphi) \text { unbiased } \\
\mathbb{V}\left[E_{\widehat{\pi}}(\varphi)\right] & =\frac{1}{N} \mathbb{E}_{\pi}\left(\left(\varphi-\mathbb{E}_{\pi}(\varphi)\right)^{2}\right)
\end{aligned}
$$

- Basic results

$$
\begin{aligned}
\mathbb{E}\left[\mathbb{E}_{\hat{\pi}}(\varphi)\right] & =\mathbb{E}_{\pi}(\varphi) \text { unbiased } \\
\mathbb{V}\left[E_{\widehat{\pi}}(\varphi)\right] & =\frac{1}{N} \mathbb{E}_{\pi}\left(\left(\varphi-\mathbb{E}_{\pi}(\varphi)\right)^{2}\right)
\end{aligned}
$$

- Rate of convergence to zero INDEPENDENT of space E! It breaks the curse of dimensionality... sometimes.
- Basic results

$$
\begin{aligned}
\mathbb{E}\left[\mathbb{E}_{\hat{\pi}}(\varphi)\right] & =\mathbb{E}_{\pi}(\varphi) \text { unbiased } \\
\mathbb{V}\left[E_{\widehat{\pi}}(\varphi)\right] & =\frac{1}{N} \mathbb{E}_{\pi}\left(\left(\varphi-\mathbb{E}_{\pi}(\varphi)\right)^{2}\right)
\end{aligned}
$$

- Rate of convergence to zero INDEPENDENT of space E! It breaks the curse of dimensionality... sometimes.
- Central limit theorem

$$
\sqrt{N}\left(\mathbb{E}_{\hat{\pi}}(\varphi)-\mathbb{E}_{\pi}(\varphi)\right) \Rightarrow \mathcal{N}\left(0, \mathbb{E}_{\pi}\left(\left(\varphi-\mathbb{E}_{\pi}(\varphi)\right)^{2}\right)\right)
$$

- Basic results

$$
\begin{aligned}
\mathbb{E}\left[\mathbb{E}_{\hat{\pi}}(\varphi)\right] & =\mathbb{E}_{\pi}(\varphi) \text { unbiased } \\
\mathbb{V}\left[E_{\widehat{\pi}}(\varphi)\right] & =\frac{1}{N} \mathbb{E}_{\pi}\left(\left(\varphi-\mathbb{E}_{\pi}(\varphi)\right)^{2}\right)
\end{aligned}
$$

- Rate of convergence to zero INDEPENDENT of space E! It breaks the curse of dimensionality... sometimes.
- Central limit theorem

$$
\sqrt{N}\left(\mathbb{E}_{\hat{\pi}}(\varphi)-\mathbb{E}_{\pi}(\varphi)\right) \Rightarrow \mathcal{N}\left(0, \mathbb{E}_{\pi}\left(\left(\varphi-\mathbb{E}_{\pi}(\varphi)\right)^{2}\right)\right)
$$

- Problem: how do you obtain samples from an arbitary high dimensional distribution???
- Basic results

$$
\begin{aligned}
\mathbb{E}\left[\mathbb{E}_{\hat{\pi}}(\varphi)\right] & =\mathbb{E}_{\pi}(\varphi) \text { unbiased } \\
\mathbb{V}\left[E_{\widehat{\pi}}(\varphi)\right] & =\frac{1}{N} \mathbb{E}_{\pi}\left(\left(\varphi-\mathbb{E}_{\pi}(\varphi)\right)^{2}\right)
\end{aligned}
$$

- Rate of convergence to zero INDEPENDENT of space E! It breaks the curse of dimensionality... sometimes.
- Central limit theorem

$$
\sqrt{N}\left(\mathbb{E}_{\hat{\pi}}(\varphi)-\mathbb{E}_{\pi}(\varphi)\right) \Rightarrow \mathcal{N}\left(0, \mathbb{E}_{\pi}\left(\left(\varphi-\mathbb{E}_{\pi}(\varphi)\right)^{2}\right)\right)
$$

- Problem: how do you obtain samples from an arbitary high dimensional distribution???
- Answer: No general answer, typically approximation required.

Standard Monte Carlo Methods

- Sampling from standard distributions (Gaussian, Gamma, Poisson...) can be done exactly (see articles by germans) using inverse method, accept/reject etc.

Standard Monte Carlo Methods

- Sampling from standard distributions (Gaussian, Gamma, Poisson...) can be done exactly (see articles by germans) using inverse method, accept/reject etc.
- Sampling approximately from non standard high dimensional distributions typically done by Markov chain Monte Carlo (e.g. Metropolis-Hastings).

Standard Monte Carlo Methods

- Sampling from standard distributions (Gaussian, Gamma, Poisson...) can be done exactly (see articles by germans) using inverse method, accept/reject etc.
- Sampling approximately from non standard high dimensional distributions typically done by Markov chain Monte Carlo (e.g. Metropolis-Hastings).
- Basic (bright) idea: Build an ergodic Markov chain whose stationary distribution is the distribution of interest; i.e.

$$
\int \pi(x) K(y \mid x) d x=\pi(y)
$$

Standard Monte Carlo Methods

- Sampling from standard distributions (Gaussian, Gamma, Poisson...) can be done exactly (see articles by germans) using inverse method, accept/reject etc.
- Sampling approximately from non standard high dimensional distributions typically done by Markov chain Monte Carlo (e.g. Metropolis-Hastings).
- Basic (bright) idea: Build an ergodic Markov chain whose stationary distribution is the distribution of interest; i.e.

$$
\int \pi(x) K(y \mid x) d x=\pi(y)
$$

- Iterative algorithm to sample from one distribution, not adapted to our problems.

Standard Monte Carlo Methods

- Sampling from standard distributions (Gaussian, Gamma, Poisson...) can be done exactly (see articles by germans) using inverse method, accept/reject etc.
- Sampling approximately from non standard high dimensional distributions typically done by Markov chain Monte Carlo (e.g. Metropolis-Hastings).
- Basic (bright) idea: Build an ergodic Markov chain whose stationary distribution is the distribution of interest; i.e.

$$
\int \pi(x) K(y \mid x) d x=\pi(y)
$$

- Iterative algorithm to sample from one distribution, not adapted to our problems.
- Alternative (not that bright) idea: Importance sampling \Rightarrow Non iterative, can be understood in one minute.

Importance Sampling

- Importance Sampling (IS) identity. For any distribution q such that $\pi(x)>0 \Rightarrow q(x)>0$

$$
\pi(x)=\frac{w(x) q(x)}{\int w(x) q(x) d x} \text { where } w(x)=\frac{\gamma(x)}{q(x)}
$$

q is called importance distribution and w importance weight.

Importance Sampling

- Importance Sampling (IS) identity. For any distribution q such that $\pi(x)>0 \Rightarrow q(x)>0$

$$
\pi(x)=\frac{w(x) q(x)}{\int w(x) q(x) d x} \text { where } w(x)=\frac{\gamma(x)}{q(x)}
$$

q is called importance distribution and w importance weight.

- q can be chosen arbitrarily, in particular easy to sample from

$$
x^{(i)} \stackrel{\text { i.i.d. }}{\sim} q(\cdot) \Rightarrow \widehat{q}(d x)=\frac{1}{N} \sum_{i=1}^{N} \delta_{X^{(i)}}(d x)
$$

- Plugging this expression in IS identity

$$
\begin{aligned}
\hat{\pi}(d x) & =\frac{w(x) \hat{q}(d x)}{\int w(x) \widehat{q}(d x)}=\frac{N^{-1} \sum_{i=1}^{N} w\left(X^{(i)}\right) \delta_{X^{(i)}}(d x)}{N^{-1} \sum_{i=1}^{N} w\left(X^{(i)}\right)} \\
& =\sum_{i=1}^{N} W^{(i)} \delta_{X^{(i)}}(d x)
\end{aligned}
$$

where

$$
W^{(i)} \propto w\left(X^{(i)}\right) \text { and } \sum_{i=1}^{N} W^{(i)}=1
$$

- Plugging this expression in IS identity

$$
\begin{aligned}
\hat{\pi}(d x) & =\frac{w(x) \widehat{q}(d x)}{\int w(x) \widehat{q}(d x)}=\frac{N^{-1} \sum_{i=1}^{N} w\left(X^{(i)}\right) \delta_{X^{(i)}}(d x)}{N^{-1} \sum_{i=1}^{N} w\left(X^{(i)}\right)} \\
& =\sum_{i=1}^{N} w^{(i)} \delta_{X^{(i)}}(d x)
\end{aligned}
$$

where

$$
W^{(i)} \propto w\left(X^{(i)}\right) \text { and } \sum_{i=1}^{N} W^{(i)}=1
$$

- $\pi(x)$ now approximated by weighted sum of delta-masses \Rightarrow Weights compensate for discrepancy between π and q.
- Now we can approximate $\mathbb{E}_{\pi}[\varphi]$ by

$$
\mathbb{E}_{\hat{\pi}}[\varphi]=\int \varphi(x) \widehat{\pi}(d x)=\sum_{i=1}^{N} W^{(i)} \varphi\left(X^{(i)}\right)
$$

- Now we can approximate $\mathbb{E}_{\pi}[\varphi]$ by

$$
\mathbb{E}_{\hat{\pi}}[\varphi]=\int \varphi(x) \widehat{\pi}(d x)=\sum_{i=1}^{N} W^{(i)} \varphi\left(X^{(i)}\right)
$$

- Statistics for $N \gg 1$

$$
\begin{aligned}
\mathbb{E}\left[\mathbb{E}_{\hat{\pi}}[\varphi]\right] & =\mathbb{E}_{\pi}[\varphi]-\underbrace{N_{\pi}^{-1} \mathbb{E}\left[W(X)\left(\varphi(X)-\mathbb{E}_{\pi}[\varphi]\right)\right]}_{\text {negligible bias }}, \\
\mathbb{V}\left[\mathbb{E}_{\hat{\pi}}[\varphi]\right] & =N_{\pi}^{-1} \mathbb{E}\left[W(X)\left(\varphi(X)-\mathbb{E}_{\pi}[\varphi]\right)^{2}\right] .
\end{aligned}
$$

- Now we can approximate $\mathbb{E}_{\pi}[\varphi]$ by

$$
\mathbb{E}_{\hat{\pi}}[\varphi]=\int \varphi(x) \widehat{\pi}(d x)=\sum_{i=1}^{N} W^{(i)} \varphi\left(X^{(i)}\right)
$$

- Statistics for $N \gg 1$

$$
\begin{aligned}
\mathbb{E}\left[\mathbb{E}_{\hat{\pi}}[\varphi]\right] & =\mathbb{E}_{\pi}[\varphi]-\underbrace{N_{\pi}^{-1} \mathbb{E}\left[W(X)\left(\varphi(X)-\mathbb{E}_{\pi}[\varphi]\right)\right]}_{\text {negligible bias }} \\
\mathbb{V}\left[\mathbb{E}_{\hat{\pi}}[\varphi]\right] & =N_{\pi}^{-1} \mathbb{E}\left[W(X)\left(\varphi(X)-\mathbb{E}_{\pi}[\varphi]\right)^{2}\right] .
\end{aligned}
$$

- Estimate of normalizing constant

$$
\widehat{Z}=\int \frac{\gamma(x)}{q(x)} \widehat{q}(d x)=\frac{1}{N} \sum_{i=1}^{N} \frac{\gamma\left(X^{(i)}\right)}{q\left(X^{(i)}\right)}
$$

and $\mathbb{E}[\widehat{Z}]=Z, \mathbb{V}[\widehat{Z}]=N^{-1}\left(\mathbb{E}_{q}\left[\left(\frac{\gamma(X)}{q(X)}-Z\right)^{2}\right]\right)$.

- For a given φ, importance distribution minimizing $\mathbb{V}\left[\mathbb{E}_{\hat{\pi}}[\varphi]\right]$ is

$$
q^{\mathrm{opt}}(x)=\frac{\left|\varphi(x)-\mathbb{E}_{\pi}[\varphi]\right| \pi(x)}{\int\left|\varphi(x)-\mathbb{E}_{\pi}[\varphi]\right| \pi(x) d x}
$$

- For a given φ, importance distribution minimizing $\mathbb{V}\left[\mathbb{E}_{\hat{\pi}}[\varphi]\right]$ is

$$
q^{\mathrm{opt}}(x)=\frac{\left|\varphi(x)-\mathbb{E}_{\pi}[\varphi]\right| \pi(x)}{\int\left|\varphi(x)-\mathbb{E}_{\pi}[\varphi]\right| \pi(x) d x}
$$

- Useless as sampling from $q^{\text {opt }}$ as complex as solving the original problem.
- For a given φ, importance distribution minimizing $\mathbb{V}\left[\mathbb{E}_{\hat{\pi}}[\varphi]\right]$ is

$$
q^{\text {opt }}(x)=\frac{\left|\varphi(x)-\mathbb{E}_{\pi}[\varphi]\right| \pi(x)}{\int\left|\varphi(x)-\mathbb{E}_{\pi}[\varphi]\right| \pi(x) d x}
$$

- Useless as sampling from $q^{\text {opt }}$ as complex as solving the original problem.
- In applications we are interested in, there is typically no specific φ of interest.
- For a given φ, importance distribution minimizing $\mathbb{V}\left[\mathbb{E}_{\hat{\pi}}[\varphi]\right]$ is

$$
q^{\mathrm{opt}}(x)=\frac{\left|\varphi(x)-\mathbb{E}_{\pi}[\varphi]\right| \pi(x)}{\int\left|\varphi(x)-\mathbb{E}_{\pi}[\varphi]\right| \pi(x) d x}
$$

- Useless as sampling from $q^{\text {opt }}$ as complex as solving the original problem.
- In applications we are interested in, there is typically no specific φ of interest.
- Practical recommendations
- For a given φ, importance distribution minimizing $\mathbb{V}\left[\mathbb{E}_{\hat{\pi}}[\varphi]\right]$ is

$$
q^{\mathrm{opt}}(x)=\frac{\left|\varphi(x)-\mathbb{E}_{\pi}[\varphi]\right| \pi(x)}{\int\left|\varphi(x)-\mathbb{E}_{\pi}[\varphi]\right| \pi(x) d x}
$$

- Useless as sampling from $q^{\text {opt }}$ as complex as solving the original problem.
- In applications we are interested in, there is typically no specific φ of interest.
- Practical recommendations
- Select q as close to π as possible.
- For a given φ, importance distribution minimizing $\mathbb{V}\left[\mathbb{E}_{\hat{\pi}}[\varphi]\right]$ is

$$
q^{\text {opt }}(x)=\frac{\left|\varphi(x)-\mathbb{E}_{\pi}[\varphi]\right| \pi(x)}{\int\left|\varphi(x)-\mathbb{E}_{\pi}[\varphi]\right| \pi(x) d x}
$$

- Useless as sampling from $q^{\text {opt }}$ as complex as solving the original problem.
- In applications we are interested in, there is typically no specific φ of interest.
- Practical recommendations
- Select q as close to π as possible.
- Ensure

$$
w(x)=\frac{\pi(x)}{q(x)}<\infty
$$

- For a given φ, importance distribution minimizing $\mathbb{V}\left[\mathbb{E}_{\hat{\pi}}[\varphi]\right]$ is

$$
q^{\mathrm{opt}}(x)=\frac{\left|\varphi(x)-\mathbb{E}_{\pi}[\varphi]\right| \pi(x)}{\int\left|\varphi(x)-\mathbb{E}_{\pi}[\varphi]\right| \pi(x) d x}
$$

- Useless as sampling from $q^{\text {opt }}$ as complex as solving the original problem.
- In applications we are interested in, there is typically no specific φ of interest.
- Practical recommendations
- Select q as close to π as possible.
- Ensure

$$
w(x)=\frac{\pi(x)}{q(x)}<\infty
$$

- IS methods typically used for problems of limited dimension; say $E=\mathbb{R}^{25} \Rightarrow$ For more complex problems, MCMC are favoured.

