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Generic Problem

Consider a sequence of probability distributions fπngn�1 de�ned on a
sequence of (measurable) spaces f(En,Fn)gn�1 where E1 = E ,
F1 = F and En = En�1 � E , Fn = Fn�1 �F .

Each distribution πn (dx1:n) = πn (x1:n) dx1:n is known up to a
normalizing constant, i.e.

πn (x1:n) =
γn (x1:n)

Zn

We want to estimate expectations of test functions ϕn : En ! R

Eπn (ϕn) =
Z

ϕn (x1:n)πn (dx1:n)

and/or the normalizing constants Zn.

We want to do this sequentially; i.e. �rst π1 and/or Z1 at time 1
then π2 and/or Z2 at time 2 and so on.
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We could use standard MCMC to sample from fπngn�1 but it is slow
& it does not provide an estimate of fZngn�1.

SMC is a non-iterative alternative class of algorithms to MCMC.

Key idea: if πn�1 does not di¤er too much from πn then we should
be able to reuse our estimate of πn�1 to approximate πn.
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Applications

Optimal estimation in non-linear non-Gaussian dynamic models.

Bayesian inference for complex statistical models.

Global optimization.

Counting problems.

Rare events simulation.
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State-Space Models

fXngn�1 latent/hidden Markov process with

X1 � µ (�) and Xn j (Xn�1 = x) � f ( �j x) .

fYngn�1 observation process such that observations are conditionally
independent given fXngn�1 and

Yn j (Xn = x) � g ( �j x) .

Very wide class of statistical models also known as hidden Markov
models with thousands of applications.
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Examples

Linear Gaussian state-space model

X1 � N (m1,Σ1) , Xn = AXn�1 + BVn,
Yn = CXn +DWn

where Vn
i.i.d.� N (0,Σv ) , Wn

i.i.d.� N (0,Σw ) .

Stochastic volatility model

X1 � N
�
0,

σ2

1� α2

�
, Xn = αXn�1 + Vn,

Yn = β exp (Xn/2)Wn

where jαj < 1, Vn i.i.d.� N
�
0, σ2

�
, Wn

i.i.d.� N (0, 1) .
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Inference in State-Space Models

At time n, we have access to the observations are interested in
computing

p (x1:n j y1:n) =
p (x1:n, y1:n)

p (y1:n)

and the (marginal) likelihood p (y1:n) where

p (x1:n, y1:n) = µ (x1)
n

∏
k=2

f (xk j xk�1)
n

∏
k=1

g (yk j xk ) ,

p (y1:n) =
Z
� � �

Z
p (x1:n, y1:n) dx1:n.

In our SMC framework,

πn (x1:n) = p (x1:n j y1:n) , γn (x1:n) = p (x1:n, y1:n) , Zn = p (y1:n) .
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The Kalman Filter

For linear Gaussian models, all posteriors are Gaussian and we can
compute the likelihood exactly.

The marginal distributions fp (xn j y1:n)gn�1 and
fp (yn j y1:n�1)gn�1can be computed through the celebrated Kalman
�lter.

To obtain an estimate of the joint distribution, we have

p (x1:n j y1:n) = p (xn j y1:n)
n�1
∏
k=1

p (xk j y1:n, xk+1)

= p (xn j y1:n)
n�1
∏
k=1

p (xk j y1:k , xk+1)

where

p (xk j y1:k , xk+1) =
f (xk+1j xk ) p (xk j y1:k )

p (xk+1j y1:k )
.
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Nonlinear Non-Gaussian Models

For nonlinear non-Gaussian models, there is no closed-form expression.

Standard approximations relie on functional approximations: EKF,
UKF, Gaussian quadrature, mixture of Gaussians.

These functional approximations can be seriously unreliable and are
not widely applicable.
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Quantum Monte Carlo

Finding the largest eigenvalue and eigenmeasure of a positive operator

Let K : E � E ! R+ be a positive kernel.

Find the largest eigenvalue λ (λ > 0) and associated eigenmeasure µ
(
R

µ (dx) = 1) of KZ
µ (x)K (y j x) dx = λµ (y) .

Basic Idea: the good old power method.
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Power method: A p � p matrix with p linearly independent
eigenvectors fVig associated to eigenvalues fλig such that jλ1j >
jλ2j > ... > jλp j

U1 =
p

∑
i=1

αiVi ,

...

Un = An�1U1 =
p

∑
i=1

αiλ
n�1
i Vi

We have

Un
λn�11

= α1V1 +
p

∑
i=2

αi

�
λi
λ1

�n�1
Vi ! α1V1 and

UTn Y
UTn�1Y

! λ1.
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Consider the following arti�cial sequence of distributions de�ned
through

γn (x1:n) = v (x1)
n

∏
k=2

K (xk j xk�1)

As n increases, we have

γn (xn) =
Z

γn (x1:n) dx1:n�1 ∝ λn�1µ (xn) ,

and

πn (xn)! µ (xn) and
Zn+1
Zn

! λ.

SMC methods are widely used to solve this problem.
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Self-Avoiding Random Walk (SAW)

A 2D Self Avoiding Random Walk (SAW). Polymer of size n is
characterized by a sequence x1:n on a �nite lattice such that xi 6= xj
for i 6= j .

One is interested in the uniform distribution

πn (x1:n) = Z�1n .1Dn (x1:n)

where

Dn = fx1:n 2 Enn xk � xk+1 and xk 6= xi for k 6= ig ,
Zn = cardinal of Dn.

SMC allow us to simulate from the uniform distribution of SAW of
length n and to compute their number.
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Particle Motion in Random Medium

A Markovian particle fXngn�1 evolves in a random medium

X1 � µ (�) , Xn+1jXn = x � f ( �j x) .

At time n, its probability to get killed is 1� g (Xn) where
0 � g (x) � 1 for any x 2 E .
One wants to approximate Pr (T > n) where T = Random time at
which the particle is killed.
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One has

Pr (T > n)

= Eµ [Proba. of not being killed at n given X1:n ]

=
Z
� � �

Z
µ (x1)

n

∏
k=2

f (xk j xk�1)
n

∏
k=1

g (xk )| {z }
Probability to survive at n

dx1:n.

Consider

γn (x1:n) = µ (x1)
n

∏
k=2

f (xk j xk�1)
n

∏
k=1

g (xk ) ,

πn (x1:n) =
γn (x1:n)

Zn
where Zn = Pr (T > n) .

SMC methods to compute Zn, the probability of not being killed at
time n, and to approximate the distribution of the paths having
survived at time n.
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Generic Sequence of Target Distributions

Consider the case where all the target distributions fπngn�1 are
de�ned on En = E .

Examples

πn = π (e.g. Bayesian inference, rare events etc.)
πn (x) ∝ [π (x)]γn where γn ! ∞ (global optimization)
πn (x) = p (x j y1:n) (sequential Bayesian estimation)

SMC do not apply to this problem as it requires En = E n.
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Consider a new sequence of arti�cial distributions feπngn�1 de�ned on
En = E n such thatZ eπn (x1:n�1, xn) dx1:n�1 = πn (xn)

and apply standard SMC.

Example: eπn (x1:n�1, xn) = πn (xn) eπn (x1:n�1j xn)
where eπn (x1:n�1j xn) is any conditional distribution on E n�1.
How to design eπn optimally will be discussed later.
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The Need for Monte Carlo Methods

Except in trivial cases, one can neither compute
R

ϕn (x1:n)πn (dx1:n)
nor Zn.

Deterministic numerical integration methods typically ine¢ cient for
high-dimensional spaces.

Monte Carlo methods: simple and �exible.

Using Monte Carlo, it is very easy to make �rigourous" your intuition.
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Monte Carlo Methods

For the time being, just concentrate on estimating

Eπ [ϕ] =
Z

ϕ (x)π (dx)

where

π (x) =
γ (x)
Z

with γ known pointwise/Z =
Z

γ (x) dx unknown.

Draw a large number samples X (i )
i.i.d.� π and build empirical measure

bπ (dx) = 1
N

N

∑
i=1

δX (i ) (dx) .
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Marginalization is straightforward. If x = (x1, . . . , xk )

bπ (dxp) = Z bπ (dx1:p�1, dxp+1:k ) =
1
N

N

∑
i=1

δ
X (i )p
(dx) .

Integration is straightforward. Monte Carlo estimates of Eπ (ϕ)

Ebπ (ϕ) =
Z

ϕ (x) bπ (dx) = 1
N

N

∑
i=1

ϕ
�
X (i )

�
.

Samples concentrate themselves automatically in regions of high
probability mass whatever being the dimension of the space; e.g.
E = R106 .
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Basic results

E [Ebπ (ϕ)] = Eπ (ϕ) unbiased,

V [Ebπ (ϕ)] =
1
N

Eπ

�
(ϕ�Eπ (ϕ))

2
�

Rate of convergence to zero INDEPENDENT of space E ! It breaks
the curse of dimensionality... sometimes.

Central limit theorem
p
N (Ebπ (ϕ)�Eπ (ϕ))) N

�
0,Eπ

�
(ϕ�Eπ (ϕ))

2
��

Problem: how do you obtain samples from an arbitary high
dimensional distribution???

Answer: No general answer, typically approximation required.
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Standard Monte Carlo Methods

Sampling from standard distributions (Gaussian, Gamma, Poisson...)
can be done exactly (see articles by germans) using inverse method,
accept/reject etc.

Sampling approximately from non standard high dimensional
distributions typically done by Markov chain Monte Carlo (e.g.
Metropolis-Hastings).

Basic (bright) idea: Build an ergodic Markov chain whose stationary
distribution is the distribution of interest; i.e.Z

π (x)K (y j x) dx = π (y) .

Iterative algorithm to sample from one distribution, not adapted to
our problems.

Alternative (not that bright) idea: Importance sampling ) Non
iterative, can be understood in one minute.
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Importance Sampling

Importance Sampling (IS) identity. For any distribution q such
that π (x) > 0) q (x) > 0

π (x) =
w (x) q (x)R
w (x) q (x) dx

where w (x) =
γ (x)
q (x)

.

q is called importance distribution and w importance weight.

q can be chosen arbitrarily, in particular easy to sample from

X (i )
i.i.d.� q (�)) bq (dx) = 1

N

N

∑
i=1

δX (i ) (dx)
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Plugging this expression in IS identity

bπ (dx) =
w (x) bq (dx)R
w (x) bq (dx) = N�1 ∑N

i=1 w
�
X (i )

�
δX (i ) (dx)

N�1 ∑N
i=1 w

�
X (i )

�
=

N

∑
i=1
W (i )δX (i ) (dx)

where

W (i ) ∝ w
�
X (i )

�
and

N

∑
i=1
W (i ) = 1.

π (x) now approximated by weighted sum of delta-masses ) Weights
compensate for discrepancy between π and q.
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Now we can approximate Eπ [ϕ] by

Ebπ [ϕ] =
Z

ϕ (x) bπ (dx) = N

∑
i=1
W (i )ϕ

�
X (i )

�
.

Statistics for N � 1

E [Ebπ [ϕ]] = Eπ [ϕ]�N�1π E [W (X ) (ϕ (X )�Eπ [ϕ])]| {z }
negligible bias

,

V [Ebπ [ϕ]] = N�1π E
h
W (X ) (ϕ (X )�Eπ [ϕ])

2
i
.

Estimate of normalizing constant

bZ = Z
γ (x)
q (x)

bq (dx) = 1
N

N

∑
i=1

γ
�
X (i )

�
q
�
X (i )

�
and E

hbZi = Z , V
hbZi = N�1 �Eq

��
γ(X )
q(X ) � Z

�2��
.
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For a given ϕ, importance distribution minimizing V [Ebπ [ϕ]] is
qopt (x) =

jϕ (x)�Eπ [ϕ]jπ (x)R
jϕ (x)�Eπ [ϕ]jπ (x) dx

.

Useless as sampling from qopt as complex as solving the original
problem.

In applications we are interested in, there is typically no speci�c ϕ of
interest.

Practical recommendations

Select q as close to π as possible.
Ensure

w (x) =
π (x)
q (x)

< ∞.

IS methods typically used for problems of limited dimension; say
E = R25 ) For more complex problems, MCMC are favoured.
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