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Abstract

A large number of time series can be described by non-
linear, non-Gaussian state-space models. While state es-
timation for these models is now routinely performed us-
ing particle filters, maximum likelihood estimation of the
model parameters is much more challenging. In this pa-
per, we present new numerical methods to approximate
the derivative of the optimal filter. We use this to perform
batch and recursive maximum likelihood parameter esti-
mation and tracking by maximizing the likelihood through
a gradient ascent method. We generalize the method to
include the second derivative of the optimal filter. This
provides estimates of the Hessian of the likelihood and can
be used to accelerate the gradient ascent method.

1. Introduction

Many time series problems arising in statistics, engineering
and applied sciences are concerned with the estimation of
the state of a dynamic model when only inaccurate obser-
vations are available. Most real-world problems are nonlin-
ear and non-Gaussian, therefore optimal state estimation
in such problems does not admit a closed form solution.
Recently, there has been a surge of interest in Sequential
Monte Carlo (SMC) methods, also known as particle fil-
tering methods, to perform sequential state estimation in
non-linear non-Gaussian models [7], [8], [9], [12], [15]. SMC
methods are a set of simulation-based techniques that re-
cursively generate and update a set of weighted samples,
which provide approximations to the posterior probability
distributions of interest. Under the assumption that the
model parameters are known, numerous SMC algorithms
have been proposed over the last decade; see [8] for a re-
view. In real-world applications however, the model para-
meters denoted θ, are often unknown and also need to be
estimated from the data. Maximum likelihood (ML) para-
meter estimation using SMC methods still remains an open
problem, despite various earlier attempts in the literature.

The majority of the proposed SMC-based parameter es-
timation methods rely on augmenting the hidden state to
include the unknown parameter and casting the problem as
a filtering one [10], [16], [20]. Static parameter estimation
with SMC is then implemented by either introducing arti-
ficial dynamics for the parameters or MCMC rejuvenation
steps. The latter method is more elegant, since the model
of interest is not artificially altered. However, the MCMC
steps rely on sufficient statistics that are based on an ap-
proximation of the path posterior density pθ (x0:n|Y0:n) of
the hidden process up to time n given the observations up
to time n 1. This density cannot be properly approximated
using SMC methods, for a fixed number of particles, and
the sufficient statistics degrade over time due to error ac-
cumulation [1].

In this paper we present an original maximum likelihood
method that is based on a direct particle approximation
of the derivative of the optimal filter. Previous attempts
to approximate the filter derivative using particle methods
- e.g. [5] [11] and [6] - were based implicitly on the se-
quence of path densities {pθ (x0:n|Y0:n)}. As in the case
of filtering-based parameter estimation, the approximation
errors they produce increase with the data length. The
methods we proposed here to approximate the filter deriv-
ative are based on the sequence of marginal distributions
{pθ (xn|Y0:n)} and hence do not suffer from the aforemen-
tioned problem. We use the filter derivative approximation
to compute the log-likelihood gradient and we combine it
with a gradient ascent algorithm to generate maximum like-
lihood estimates of the model parameters. The approach
is generalized to compute a particle approximation to the
second derivative of the filter. This leads to an estimate
of the Hessian of the likelihood that can be used to scale
the gradient components and accelerate the convergence of
the gradient algorithm. Additionally it may allow us to
compute confidence regions for the estimated parameters.

The rest of the paper is organized as follows: In Section
2 the statistical model of interest is presented and the opti-
mal filter and its first and second derivatives are described.
In Section 3 we review the particle filter algorithm and
derive particle methods for the derivatives of the filter. In

1For the rest of this paper we will adopt the following notation:
for any sequence {zk} and random process {Zk}, we define zi:j =
(zi, zi+1, . . . , zj) and Zi:j = (Zi, Zi+1, . . . , Zj), respectively.
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Section 4 we describe how the first and second filter deriva-
tive approximations can be used to perform ML parameter
estimation in a recursive and a batch manner. Section 5
presents simulation results showing the performance of the
proposed algorithm. Finally in Section 6 we discuss the
results and provide some concluding remarks.

2. Optimal Filter and its Derivatives

2.1 State-Space Models

Let {Xn}n≥0 and {Yn}n≥0 be Rnx and Rny -valued stochas-
tic processes defined on a measurable space (Ω,F). These
stochastic processes depend on a parameter θ ∈ Θ, where
Θ is an open subset of Rnθ . The process {Xn}n≥0 is an
unobserved (hidden) Markov process of initial density µ;
i.e. X0 ∼ µ, and a Markov transition density fθ (x′|x); i.e.

Xn+1|Xn = x ∼ fθ ( ·|x) . (1)

Although {Xn}n≥0 is unknown, it is partially observed
through the observation process {Yn}n≥0. It is assumed
that the observations conditioned upon {Xn}n≥0 are inde-
pendent with marginal density gθ (y|x) ; i.e.

Yn|Xn = x ∼ gθ ( ·|x) . (2)

This class of models includes many nonlinear and non-
Gaussian time series models such as

Xn+1 = ϕθ (Xn, Vn+1) , Yn = ψθ (Xn,Wn)

where {Vn}n≥1 and {Wn}n≥0 are mutually independent se-
quences of independent random variables and ϕθ, ψθ deter-
mine the evolution of the state and observation processes.

2.2 Optimal Filter Derivatives

Assume for the time being that θ is known. In such a
case, sequential inference about the hidden process Xn is
typically based on the sequence of joint posterior distrib-
utions {pθ (x0:n|Y0:n)}. This summarizes all the relevant
information available about X0:n, up to time n. Using an
importance sampling approach with an arbitrary impor-
tant density qθ (xn|Yn, xn−1) , whose support includes the
support of gθ (Yn|xn) fθ (xn|xn−1), it can be easily shown
that the joint posterior density satisfies the recursion

pθ (x0:n|Y0:n)

=
αθ (xn−1:n, Yn)
pθ (Yn|Y0:n:−1)

qθ (xn|Yn, xn−1) pθ (x0:n−1|Y0:n−1) ,

(3)

where the importance weights are given by

αθ (xn−1:n, Yn) =
gθ (Yn|xn) fθ (xn|xn−1)

qθ (xn|Yn, xn−1)
. (4)

In most problems, we are interested in the marginal
pθ (xn|Y0:n), which is known as the filtering density. This
can be expressed as

pθ (xn|Y0:n) ∝∫
αθ (xn−1:n, Yn) qθ (xn|Yn, xn−1) pθ (xn−1|Y0:n−1) dxn−1

(5)

In applications such as parameter estimation and stochastic
control, we are often interested in optimizing different per-
formance criteria that require an approximation of the filter
derivatives. In the context of parameter estimation, we will
consider the first two derivatives of the optimal filter with
respect to θ, namely ∇pθ (xn|Y0:n) and ∇2pθ (xn|Y0:n).
To simplify the notation, let

pθ(xn|Y0:n) , ξ(xn, Y0:n)∫
ξ(xn, Y0:n) dxn

(6)

where

ξθ(xn, Y0:n) = gθ(Yn|xn)
∫

fθ(xn|xn−1) pθ(xn−1|Y0:n−1) dxn−1

(7)

= gθ(Yn|xn) pθ(xn|Y0:n−1).

Under regularity assumptions, the first and second deriva-
tive of (6) leads to the following recursions2,

∇pθ(xn|Y0:n) =
∇ξθ(xn, Y0:n)∫
ξθ(xn, Y0:n) dxn

− pθ(xn|Y0:n)
∫ ∇ξθ(xn, Y0:n) dxn∫

ξθ(xn, Y0:n) dxn
(8)

and

∇2pθ(xn|Y0:n) =
∇2ξθ(xn, Y0:n)∫
ξθ(xn, Y0:n) dxn

− 2∇pθ(xn|Y0:n)

×
∫ ∇ξθ(xn, Y0:n) dxn∫

ξθ(xn, Y0:n) dxn
− pθ(xn|Y0:n)

∫ ∇2ξθ(xn, Y0:n) dxn∫
ξθ(xn, Y0:n) dxn

,

(9)

where

∇ξθ(xn, Y0:n) = gθ(Yn|xn)
∫

fθ(xn|xn−1)pθ(xn−1|Y0:n−1)

× [∇ log gθ(Yn|xn) +∇ log fθ(xn|xn−1)] dxn−1

+ gθ(Yn|xn)
∫

fθ(xn|xn−1) ∇pθ(xn−1|Y0:n−1) dxn−1

(10)

2The 1st derivative ∇pθ(xn|Y0:n) is an nθ×1 vector, where the ith

entry is given by
∂pθ(xn|Y0:n)

∂θi
. The 2nd derivative ∇2pθ(xn|Y0:n) is

an nθ ×nθ matrix, where the (i, j)th entry is given by
∂2pθ(xn|Y0:n)

∂θi∂θj
.
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and

∇2ξθ(xn, Y0:n) = gθ(Yn|xn)
∫

fθ(xn|xn−1)

×
{

[∇ log gθ(Yn|xn) +∇ log fθ(xn|xn−1)]
2

+∇2 log gθ(Yn|xn) +∇2 log fθ(xn|xn−1)
}

× pθ(xn−1|Y0:n−1)dxn−1

+ 2gθ(Yn|xn)
∫

fθ(xn|xn−1) [∇ log gθ(Yn|xn)

+∇ log fθ(xn|xn−1)]∇pθ(xn−1|Y0:n−1) dxn−1

+ gθ(Yn|xn)
∫

fθ(xn|xn−1) ∇2pθ(xn−1|Y0:n−1) dxn−1.

(11)

Except in some simple cases, no closed-form expression can
be obtained for either of the above recursions and one typ-
ically resorts to numerical approximations. Our main ob-
jective in this paper is to derive particle methods to ap-
proximate ∇pθ (xn|Y0:n) and ∇2pθ(xn|Y0:n).

3. Particle Methods for the Filter
Derivatives

3.1 Particle Filters

Particle methods are widely used to numerically approxi-
mate the filtering recursion in (3) by means of a weighted
empirical distribution of a set of N À 1 samples, termed
as particles. This empirical distribution is propagated se-
quentially as follows. Assume that at time n − 1 a set of
particles X

(1:N)
0:n−1 ,

[
X

(1)
0:n−1, . . . , X

(N)
0:n−1

]
with correspond-

ing weights ã
(1:N)
n−1 ,

[
ã
(1)
n−1, . . . , ã

(N)
n−1

]
are available, with

∑N
j=1 ã

(j)
n−1 = 1. We further assume that this weighted par-

ticle set is distributed approximately according to the joint
density pθ (x0:n−1|Y0:n−1). A standard way to approxi-
mate the joint density at the next time step is to extend
the path using

X(i)
n ∼ qθ (xn|Y0:n) =

N∑

i=1

ã
(i)
n−1qθ

(
·| Yn, X

(i)
n−1

)
. (12)

Sampling from (12) is achieved by first sampling the dis-
crete index i using a standard resampling algorithm, such
as stratified or multinomial resampling. Then, the new
particle X

(i)
n is generated according to

X(i)
n ∼ qθ

(
·| Yn, X

ϕ(i)
n−1

)
, (13)

where ϕ (i) is the discrete index obtained from the re-
sampling mechanism. Note that the new set of equally
weighted particles X

(1:N)
0:n =

[
X

(1)
0:n, . . . , X

(N)
0:n

]
, with X

(i)
0:n =

(
X

ϕ(i)
0:n−1, X

(i)
n

)
will be approximately distributed according

to the joint density qθ (xn|Yn, xn−1) pθ (x0:n−1|Y0:n−1).
Substitution of this approximation into (3) leads to the
updated empirical distribution

p̂θ (x0:n|Y0:n) =
N∑

i=1

ã(i)
n δ

(
x0:n −X

(i)
0:n

)
, (14)

where

a(i)
n = αθ

(
X

ϕ(i)
n−1, X

(i)
n , Yn

)
and ã(i)

n =
a
(i)
n∑N

j=1 a
(j)
n

. (15)

In practice, a particle approximation of the filtering density
pθ (xn|Y0:n) in (5) is obtained by marginalization of (14).

3.2 Filter derivative approximations

The filter derivatives ∇pθ (xn|Y0:n) and ∇2pθ (xn|Y0:n)
are signed measures; i.e. they can take positive and nega-
tive values and integrate to zero. Empirical approximations
of these measures using particle methods are still possi-
ble, provided that one uses the same set of particles as in
the filter approximation, but with different weights. This
idea that was first introduced in [5], computes the parti-
cle approximations ∇̂pθ (xn|Y0:n) and ∇̂2pθ (xn|Y0:n) by
propagating the weighted particles on the path space and
marginalizing the expressions

∇̂pθ (x0:n|Y0:n) =
N∑

i=1

ã(i)
n β(i)

n δ
(
x0:n −X

(i)
0:n

)
, (16)

∇̂2pθ (x0:n|Y0:n) =
N∑

i=1

ã(i)
n λ(i)

n δ
(
x0:n −X

(i)
0:n

)
, (17)

where β
(i)
n , λ

(i)
n can be positive or negative.

As already mentioned, the drawback of this approach
stems from the fact that it relies on the path, which is a
space of growing dimensions. Consequently, as the length
n of the path increases, the variance of ∇̂pθ (x0:n|Y0:n),
∇̂2pθ (xn|Y0:n) will increase and the approximations of
their marginals will degrade severely. Another effect that
deteriorates the performance of a path-based particle algo-
rithm results from the arrangement of the particle mass on
the state space. The derivative of a probability measure is a
signed measure ν that can be expressed as ν = c (π1 − π2),
where π1, π2 are two probability measures and c is a non-
negative constant. This approach, known as weak deriva-
tive decomposition, allows an arbitrary number of possible
decompositions for a given signed measure. The path-based
particle method discussed in the previous section decom-
poses the derivative signed measures by approximating the
two probability measures π1 and π2 by a set of positively
and negatively weighted particles on overlapping regions
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of the state space. To see this, consider a point x′ and a
neighborhood of it, Bx′ , for which the sign measure satis-
fies ν > 0. If we use the particle representation of (16) to
approximate ν, an estimate of

∫
IBx′ (x) ν (x) dx becomes

equal to
∑N

i=1 ã(i)β(i)IBx′ (X
(i)). While this is a valid ap-

proximation, we may have that for two particles k and l
belonging to Bx′ , the weights are not of the same sign, i.e.,
ã
(k)
n β(k) < 0 while ã

(l)
n β(l) > 0. In such a case we say that

the particles mix, as illustrated in the top plot of Figure
1 for the case where Rnx = Rnθ = R. This implies that
many particles with opposite signs can end up approximat-
ing regions of the state space that have low total mass (see
for example low mass region around the value x = 1 in
the top plot of Figure 1). This effect builds up due to the
sequential nature of the algorithm and the implementation
becomes less accurate and inefficient as the data length n
increases.

We propose here an original method to approximate the
optimal filter derivatives that is based on a direct point-
wise approximation of (8) and (9) and hence does not suffer
from the limitations discussed in the previous paragraphs.
This method essentially integrates analytically a discrete
approximation of the latent variable and will therefore have
a lower variance. From a weak derivatives point of view,
this is equivalent to a a particle implementation of a Hahn-
Jordan decomposition, which ensures that the probability
measures of the decomposition are concentrated on disjoint
regions of the state. As a result, the algorithm does not
suffer from mixing of the positively and negatively weighted
particles, as illustrated in the bottom plot of Figure (1).

−5 −4 −3 −2 −1 0 1 2 3 4 5
−300

−200

−100

0

100

200
Path−based particle approximation of signed measure

−5 −4 −3 −2 −1 0 1 2 3 4 5
−300

−200

−100

0

100

200
Pointwise particle approximation of signed measure (Hahn−Jordan decomposition)

True signed measure
Particle Approx.(+ve)
Particle Approx.(−ve)

Figure 1: Top plot: Histogram representation of a path-

based particle approximation of ∇̂pθ (xn|Y0:n) w.r.t. a one-

dimensional parameter θ. Bottom plot: Point-wise particle

approximation of the same signed measure that maintains the

positive and negative weights on separate regions of the state

support (Hahn-Jordan decomposition).

3.3 Particle algorithm

In this section we describe the proposed sequential method
to approximate the first two derivatives of the optimal
filter. Assume that at time n − 1, we have particle ap-
proximations of pθ (xn−1|Y0:n−1), ∇pθ (xn−1|Y0:n−1) and
∇2pθ (xn−1|Y0:n−1) of the form

p̂θ (xn−1|Y0:n−1) =
N∑

i=1

ã
(i)
n−1δ

(
xn−1 −X

(i)
n−1

)
, (18)

∇̂pθ (xn−1|Y0:n−1) =
N∑

i=1

ã
(i)
n−1β

(i)
n δ

(
xn−1 −X

(i)
n−1

)
,

(19)

∇̂2pθ (xn−1|Y0:n−1) =
N∑

i=1

ã
(i)
n−1λ

(i)
n−1δ

(
xn−1 −X

(i)
n−1

)
.

(20)

Substitution of these into (7), (10) and (11) leads to the
following point-wise approximations

ξ̃θ(xn, Y0:n) =
N∑

k=1

ã
(k)
n−1 gθ(Yn|xn)fθ

(
xn|X(k)

n−1

)
, (21)

∇̃ξθ(xn, Y0:n) =
N∑

k=1

ã
(k)
n−1gθ(Yn|xn) fθ

(
xn|X(k)

n−1

)

×
[
∇ log gθ(Yn|xn) +∇ log fθ

(
xn|X(k)

n−1

)
+ β

(k)
n−1

]
,

(22)

and

∇̃2ξθ(xn, Y0:n) =
N∑

k=1

ã
(k)
n−1gθ(Yn|xn) fθ

(
xn|X(k)

n−1

)

×
{[
∇ log gθ(Yn|xn) +∇ log fθ

(
xn|X(k)

n−1

)]2

+∇2 log gθ(Yn|xn) +∇2 log fθ

(
xn|X(k)

n−1

)

+2β
(k)
n−1

[
∇ log gθ(Yn|xn) +∇ log fθ

(
xn|X(k)

n−1

)]
+ λ

(k)
n−1

}

(23)

As in the standard particle filter, we generate a set of par-
ticles X

(i)
n , for i = 1, ..., N , using (12). Evaluating the

point-wise approximations in (21), (22) and (23) at points
X

(i)
n yields the following particle approximations

ξ̂θ(xn, Y0:n) =
1
N

N∑

i=1

a(i)
n δ

X
(i)
n

(xn), (24)

∇̂ξθ(xn, Y0:n) =
1
N

N∑

i=1

ρ(i)
n δ

X
(i)
n

(xn) and (25)
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∇̂2ξθ(xn, Y0:n) =
1
N

N∑

i=1

π(i)
n δ

X
(i)
n

(xn), (26)

where a
(i)
n =

eξθ(X(i)
n ,Y0:n)

qθ

�
X

(i)
n |Y0:n

� , ρ
(i)
n =

f∇ξθ(X(i)
n ,Y0:n)

qθ

�
X

(i)
n |Y0:n

� and π
(i)
n =

g∇2ξθ(X(i)
n ,Y0:n)

qθ

�
X

(i)
n |Y0:n

� . Substitution of the last three approxima-

tions into (6), (8) and (9) gives

p̂θ(xn|Y0:n) =
N∑

i=1

ã(i)
n δ

X
(i)
n

(xn), (27)

∇̂pθ(xn|Y0:n) =
N∑

i=1

ã(i)
n β(i)

n δ
X

(i)
n

(xn) and (28)

∇̂2pθ(xn|Y0:n) =
N∑

i=1

ã(i)
n λ(i)

n δ
X

(i)
n

(xn), (29)

where

ã(i)
n =

a
(i)
n∑N

j=1 a
(j)
n

, ã(i)
n β(i)

n =
ρ
(i)
n∑N

j=1 a
(j)
n

− ã(i)
n

∑N
j=1 ρ

(j)
n

∑N
j=1 a

(j)
n

,

ã(i)
n λ(i)

n =
π

(i)
n∑N

j=1 a
(j)
n

− 2ã(i)
n β(i)

n

∑N
j=1 ρ

(j)
n

∑N
j=1 a

(j)
n

− ã(i)
n

∑N
j=1 π

(j)
n

∑N
j=1 a

(j)
n

.

Note that (27) gives a filtering byproduct of the algo-
rithm. Compared to standard path-based particle filters,
the point-wise particle filter p̂θ(xn|Y0:n) requires O

(
N2

)
operations instead of O (N). However, for a fixed number
of particles N, it will outperform path-based methods due
to the analytical integration involved.

4. ML Parameter Estimation

Let us now consider the general state space model of sec-
tion 2.1, where the model parameter θ is unknown. We
will assume that the model that generates the observation
sequence {Yn}n≥0 evolves according to a true but unknown
static parameter θ∗, i.e.

Xn|Xn−1 = xn−1 ∼ fθ∗( . |xn−1) (30)
Yn|Xn = xn ∼ gθ∗( . |xn). (31)

Our objective is to identify θ∗ based on {Yn}n≥0. We pro-
pose here two gradient algorithms to perform maximum
likelihood estimation. These are based on a gradient ascent
method that utilizes the estimates of the derivatives of the
filter that were presented in the previous section. The first
method is a recursive algorithm that updates the parame-
ter estimate as soon as a new observation is received. This
is based on the maximization of an average log-likelihood
criterion and requires a large number of observations to
be available. A batch version of the algorithm is also pre-
sented. This directly maximizes the log-likelihood of some
available set of observations Y0:n.

4.1 Recursive ML

A standard approach to Recursive ML (RML)
estimation considers a series of log-likelihood
functions {log pθ(Y0:k)}k≥0, where log pθ(Y0:k) =∑k

n=0 log pθ(Yn |Y0:n−1 ) [17]. The expression
pθ(Yn |Y0:n−1 ) is known as the predictive likelihood
and can be written as

pθ(Yn |Y0:n−1 )

=
∫ ∫

gθ(Yn|xn)fθ(xn|xn−1) pθ(xn−1|Y0:n−1) dxn−1:n

(32)

Under suitable regularity conditions described in [21] it can
be shown that the average log-likelihood converges to the
following limit

lim
k→∞

1
k + 1

k∑
n=0

log pθ(Yn |Y0:n−1 ) = l (θ) , (33)

where l (θ) is given by

l (θ) =
∫ ∫

Rny×P(Rnx )

log
(∫

gθ (y|x)µ (x) dx

)
λθ,θ∗ (dy, dµ) .

Here P (Rnx) is the space of probability distributions on
Rnx and λθ,θ∗ (dy, dµ) is the joint invariant distribution
of the couple (Yn, pθ (xn|Y0:n−1)). Note that λθ,θ∗ (·) is a
function of both θ∗ and θ, since the observation compo-
nent evolves according to the true parameter θ∗, while the
prediction filter component evolves according to θ.

Following the approach used in [14] for finite state space
models, it can be shown that l (θ) admits θ∗ as a global
maximum. The function l (θ) does not have an analytical
expression and we do not have access to it. Nevertheless,
identification of θ∗ can still be achieved based on the ergod-
icity property in (33), which provides us with a set of ac-
cessible functions log pθ(Yn |Y0:n−1 ) that converge to l (θ) .
One way to exploit this in order to maximize l (θ) , is to
use a Stochastic Approximation (SA) algorithm to update
the parameter estimate at time n using the recursion

θn = θn−1 + γn∇ log pθ0:n−1(Yn|Y0:n−1), (34)

where θn−1 is the parameter estimate at time n −
1 and ∇ log pθ(Yn|Y0:n−1) denotes the gradient of
log pθ(Yn|Y0:n−1)3. Provided that the step size θn is a pos-
itive non-increasing sequence, such that

∑
γn = ∞ and∑

γ2
n < ∞, it can be shown that θn will converge to the

set of (global or local) maxima of l (θ) .

3The SA requires an estimate of ∇ log pθ(Yn|Y0:n−1) with θ held
fixed. In our problem, θ cannot be fixed, since we are estimating it
recursively. However, since θ changes slowly, a standard approach
[18] is to reuse the previous particle calculations that were based on
θ0:n−2 and use the parameter estimate θn−1 at time n− 1.
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The remaining step in the development of the al-
gorithm is to obtain a numerical approximation to
∇ log pθ(Yn|Y0:n−1). This follows directly from the the ex-
pressions for pθ(xn|Y0:n) and ∇pθ(xn|Y0:n) in Section 3.3,
since comparison of (7) and (32) gives pθ(Yn |Y0:n−1 ) =∫

ξθ(xn, Y0:n)dxn. Using the particle approximations of
ξθ(xn, Y0:n) and ∇ξθ(xn, Y0:n) in (24) and (25) we obtain

∇ log p̂θ (Yn|Y0:n−1) =
∇̂pθ (Yn|Y0:n−1)
p̂θ (Yn|Y0:n−1)

=
∫ ∇̂ξθ(xn, Y0:n)dxn∫

ξ̂θ(xn, Y0:n)dxn

=

∑N
j=1 ρ

(j)
n

∑N
j=1 a

(j)
n

.

4.1.1 Adaptive SA

Adaptive steps The SA of (34) can be thought of as a
stochastic generalization of the steepest descent method.
Faster convergence can be achieved if one employs a New-
tonian method that is based on an estimate of the Hessian
of the objective function and leads to an asymptotically
optimal search direction [3]. In general, estimation of the
Hessian is non-trivial and finite difference approximations
are typically used to approximate it [19].

In our framework, the Hessian of the log-likelihood can
be straightforwardly estimated using the particle approxi-
mations of the optimal filter and its first and second deriv-
atives in (27), (28) and (29). More specifically, the nθ×nθ

Hessian matrix estimate at time n will be given by

∇2 log p̂θ (Yn|Y0:n−1) =
∇̂2pθ(Yn|Y0:n−1)
p̂θ(Yn|Y0:n−1)

−
(
∇̂pθ(Yn|Y0:n−1)
p̂θ(Yn|Y0:n−1)

)2

=

∑N
j=1 π

(i)
n

∑N
j=1 a

(j)
n

−
(∑N

j=1 ρ
(j)
n

∑N
j=1 a

(j)
n

)2

.

This allows one to compute the asymptotic value of the
Hessian using, for example, a recursion of the form

Hn = Hn−1 +
1

n + 1

(
Ĥn −Hn−1

)
, (35)

where Ĥn = ∇2 log p̂θ (Yn|Y0:n−1) . This is simply a recur-
sive calculation of the sample mean Hn up to time n. By
construction, the true Hessian is a negative definite, sym-
metric matrix whose inverse can provide an adaptive step
in (34). Direct inversion of the estimated value Hn will be
possible only if this matrix is negative definite. In practice
this is usually ensured by projecting Hn onto the set of
negative definite matrices - see [4] and [19] for details.

The Newton-type SA recursion that can replace (34) will
take the form

θn = θn−1 + γnH
−1

n ∇ log p̂θ0:n−1(Yn|Y0:n−1). (36)

This adaptive SA is particularly attractive, in terms of con-
vergence acceleration, in the terminal phase of the algo-
rithm, where the steepest descent-type method slows down.

Confidence Regions From a practical point of view, it
is often desirable to assess the accuracy of the parameter
estimate by means of confidence intervals or more generally
confidence regions. In principle, central limit theorems that
have been established for a number of standard SA algo-
rithms allow the computation of confidence regions for the
estimates - see [3] for detailed results. One of the difficulties
is that the covariance matrix of the limiting multivariate
normal distribution depends on the inverse of the Hessian
of the objective function. The proposed method provides
estimates for these quantity through (35).

4.1.2 RML Parameter Estimation Algorithm

The Recursive ML estimation is summarized as follows:

1. Sampling Step
For i = 1, . . . , N , sample4

X
(i)
n ∼ qθ0:n−1 (· |Y0:n) =

∑N
i=1 ã

(i)
n−1qθn−1

(
· | Yn, X

(i)
n−1

)

2. Weight Calculation

• Compute a
(i)
n =

eξθ0:n−1(X(i)
n ,Y0:n)

qθ0:n−1

�
X

(i)
n |Y0:n

� ,

ρ
(i)
n =

f∇ξθ0:n−1(X(i)
n ,Y0:n)

qθ0:n−1

�
X

(i)
n |Y0:n

� and

π
(i)
n =

g∇2ξθ0:n−1(X(i)
n ,Y0:n)

qθ0:n−1

�
X

(i)
n |Y0:n

� using (21), (22) and (23).

• Compute the weights ã
(i)
n = a(i)

nPN
j=1 a

(j)
n

,

ã
(i)
n β

(i)
n = ρ(i)

nPN
j=1 a

(j)
n

− ã
(i)
n

PN
j=1 ρ(j)

nPN
j=1 a

(j)
n

and

ã
(i)
n λ

(i)
n = π(i)

nPN
j=1 a

(j)
n

− 2ã
(i)
n β

(i)
n

PN
j=1 ρ(j)

nPN
j=1 a

(j)
n

− ã
(i)
n

PN
j=1 π(j)

nPN
j=1 a

(j)
n

3. Parameter Update Step

• Ĥn =
PN

j=1 π(i)
nPN

j=1 a
(j)
n

−
(PN

j=1 ρ(j)
nPN

j=1 a
(j)
n

)2

• Hn = Hn−1 + 1
n+1

(
Ĥn −Hn−1

)
, H̃n = Ψ

(
Hn

)

• θn = θn−1 + γnH̃−1
n

PN
j=1 ρ(j)

nPN
j=1 a

(j)
n

Remark 1: The function Ψ
(
Hn

)
is a mapping to the set

of negative definite matrices, based on diagonal modifica-
tions to the Hessian.

Remark 2: This algorithm guarantees that∑N
i=1 α

(i)
n β

(i)
n =

∑N
i=1 α

(i)
n λ

(i)
n = 0.

Remark 3: Even if θn−1 ∈ Θ, it is possible that for the
updated value we have θn /∈ Θ. A standard approach to

4Note that in this approach the resampling step is included when
we sample from qθ (xn |Y0:n) .
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prevent such divergence is to reproject the parameter value
inside Θ =

∏nθ

µ=1

[
θmin

µ , θmax
µ

]
.

4.2 Batch ML

In cases where a set of observations Y0:n is available, we
describe here a batch (off-line) version (BML) of the previ-
ous algorithm. This algorithm maximizes the log-likelihood
log pθ(Y0:n) using a SA recursion at iteration m given by

θm = θm−1 + γm∇ log p̂θm−1(Y0:n), (37)

where ∇ log p̂θm−1(Y0:n) is an estimate of the derivative
of the log-likelihood evaluated at point θm−1. This esti-
mate can be obtained using a modified version of the RML
method as follows: At iteration m − 1, we run the RML
algorithm from time 0 to time n by omitting the parame-
ter update step and keeping the parameter value fixed at
the current estimated value θm−1. At the end of the run, a
Monte Carlo estimate of the derivative of the log-likelihood
can be computed as

∇ log p̂θm−1(Y0:n) =
n∑

k=0

∇̂pθm−1
(Yk|Y0:k−1)

p̂θm−1 (Yk|Y0:k−1)
=

n∑

k=0

∑N
j=1 ρ

(j)
k∑N

j=1 a
(j)
k

where Y0:−1 = ∅. This is used to update the parameter to
θm, as given by (37).

5. Numerical Study

The RML and BML algorithms were tested, based on arti-
ficial and real observations.

5.1 Linear Gaussian State Space Model

We first consider the following scalar linear Gaussian state
space model

Xn+1 = φXn + σV Vn+1, X0 ∼ N
(

0,
σ2

V

1− φ2

)

Yn = Xn + σW Wn

where Vn
i.i.d.∼ N (0, 1) and Wn

i.i.d.∼ N (0, 1) . We are in-
terested in estimating the parameter θ , (φ, σV , σW ). In
such a model, the optimal filter is given by the Kalman
filter and exact expressions for the first and second deriv-
ative of the filter can be obtained. This allows us to com-
pare our numerical methods with the ground truth. The
RML algorithm was implemented using the optimal impor-
tance density qθ (xn|Yn, xn−1) ∝ gθ (Yn|xn) fθ (xn|xn−1)
and N = 1000 particles. Figure 2 displays the ana-
lytical posterior density and its derivatives with respect
to φ and compares them with the particle approxima-
tions we obtained. The analytical and numerical values

−3 −2 −1 0 1 2 3
0

0.02

0.04

p(x
n
|Y

0:n
)

−3 −2 −1 0 1 2 3

−0.02

0

0.02

∇ φ p(x
n
|Y

0:n
)

−3 −2 −1 0 1 2 3

−0.05

0

0.05

∇ 2
φ p(x

n
|Y

0:n
)

Particle Approx. (− ve)
Particle Approx. (− ve)
True measure

Figure 2: Linear Gaussian state space example: Analytical

optimal filter and its first and second derivative w.r.t. φ and the

particle approximations obtained using the proposed method.

of the score vector ∇ log pθ (Yn|Y0:n−1) and the Hessian
matrix ∇2 log pθ (Yn|Y0:n−1) were compared up to n =
10000. These were almost indistinguishable. An exam-
ple of the comparison results obtained for the component
∂2 log pθ(Yn|Y0:n−1)

∂φ2 is shown in Figure 3.

9800 9820 9840 9860 9880 9900 9920 9940 9960 9980 10000

−100

−80

−60

−40

−20

0

∇ 2 log pφ(Y
n
 | Y

0:n−1
) 

Analytical Results

Particle Approxim.

Figure 3: Analytical and numerical results for

∂2 log pθ (Yn|Y0:n−1) /∂φ2 for the linear Gaussian state

space model using N = 1000.
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5.2 Stochastic Volatility Model

The RML algorithm was implemented using the following
Stochastic Volatility model

Xn+1 = φXn + σVn+1, X0 ∼ N
(

0,
σ2

1− φ2

)

Yn = β exp (Xn/2) Wn

where Vn
i.i.d.∼ N (0, 1) and Wn

i.i.d.∼ N (0, 1). We are inter-
ested in estimating the true parameter θ∗ , (σ∗, φ∗, β∗) =
(0.35, 0.85, 0.65) from simulated data, where Θ = (0, Ξ) ×
(−1, 1) × (0,Ξ) with Ξ = 100. We use qθ (xn|Yn, xn−1) =
fθ (xn|xn−1) and N = 1000 particles. As it can be seen for
the results in Figure 4, the estimate converged to a value
θ̂ in the neighborhood of the true parameter.

We then applied our BML method to the pound/dollar
daily exchange rates; see [9]. This time series consists of
945 data points. The parameter estimates for M = 1000
iterations using N = 1000 particles are shown in Figure 5.
Our results are consistent with results obtained in [9].

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time steps

Figure 4: Sequence of RML parameter estimates for θn =
(σn, φn, βn) and N = 1000. From top to bottom: φn, βn and

σn. The true values were θ∗ = (0.35, 0.85, 0.65) .

5.3 Parameter tracking

A unique advantage of the RML algorithm of section 4.1,
is its ability to track variations in θ. A standard approach
to track a time-varying parameter is to set the step-size
to a small positive number γ, instead of a decreasing se-
quence γn [17]. The choice of value for γ will be a trade-off
between tracking capability (large γ) and low estimation
noise around the parameter (small γ). An example of the
tracking performance of the RML algorithm based on the
linear Gaussian state space model, having a time-varying
drift parameter φ, is shown in Figure 6.

0 100 200 300 400 500 600 700 800 900 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iterations

Figure 5: Sequence of BML parameter estimates for θm =
(σm, φm, βm) and N = 1000. From top to bottom: φm, βm

and σm.
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4

0
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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True φ
Estimate

Figure 6: RML algorithm tracking performance for time-

varying φ∗using N = 1000 particles.

6. Discussion

This paper has presented original particle methods to esti-
mate the first and second derivative of the optimal filter in
general state-space models. The methods use non-standard
particle methods to approximate the Hahn-Jordan decom-
position of the resultant signed measures. This allows the
calculation of accurate approximations to the score vector
and the Hessian matrix of the log-likelihood with respect
to the model parameters. Based on this, we propose a re-
cursive and a batch algorithm to perform ML parameter
estimation using a gradient ascent method. The Hessian
estimate can be used as an adaptive step-size in the gra-
dient ascent recursion to provide faster convergence of the
algorithm.
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The computational cost of the proposed particle meth-
ods for the filter derivatives is quadratic in the number of
particles. Fast computation methods can however be em-
ployed to address this issue [13]. The proposed methods
can also be extended to the case where it is possible to in-
tegrate analytically a subset of the state variables, such as
the class of partially observed linear Gaussian state-space
models and conditionally linear Gaussian state-space mod-
els [2], [8]. Such extensions can provide efficient particle
methods that reduce the variance of the Monte Carlo esti-
mates.
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