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Abstract. It is shown that it is possible to use Metropolis-Hastings (M-H) kernels in importance sampling
(IS) algorithms which are of cost O(N2), N being the number of simulated samples. It might not have been
previously realized.

1. Introduction. Throughout this note, suppose one is interested in sampling from a proba-
bility measure � on (Rn;B(Rn)), where � admits a positive density, also denoted �, w.r.t Lebesgue
measure �Leb .

Suppose IS is used to simulate from �, with the following importance distribution:

q(dy) =

Z
R
�(x)K(x; dy)�Leb(dx)

where, for q(x; y) a conditional probability density w.r.t �Leb ;

K(x; dy) = �(x; y)q(x; y)�Leb(dy) + �x(dy)r(x)

r(x) = 1�
Z
R
�(x; y)q(x; y)�Leb(dy)

�(x; y) = 1 ^ �(y)q(y; x)
�(x)q(x; y)

is a M-H kernel of invariant distribution � and �(x)�Leb(dx) is a probability measure, with
�(x) > 0 8x 2 Rn. Intuitively, this is a sensible scheme, as K should help guide samples to
�good�parts of the state-space. Unfortunately, such a scheme is not possible as the associated
importance weight:

d�

dq
(y) =

�(y)R
Rn �(x)�(x; y)q(x; y)�

Leb(dx) + r(y)�(y)
(1.1)

can not be computed: the �rst integral appearing in the denominator and the rejection proba-
bility, r(y), are not typically known.

Consider the scenario, instead where one samples from �, N�times, fX(i)g1�i�N and uses
the importance distribution:

qN (dy) =
1

N

NX
i=1

K(x(i); dy): (1.2)

In this scenario, the importance weight is exactly

d�

dqN
(y) =

�(y)
1
N

PN
i=1 �(x

(i); y)q(x(i); y)
(1.3)

for y 6= x(i) and it is zero otherwise.
A rigourous proof of this can be established along the lines of [3]. An informal proof follows

from the fact that the probability of generating a candidate from qN (dy) such that y 6= x(i) is
given by

1

N

NX
i=1

�
1� r(x(i))

�
1



2

and the distribution of such a candidate isPN
i=1 �(x

(i); y)q(x(i); y)�Leb(dy)PN
i=1

�
1� r(x(i))

� :

Hence if one has the computational power to perform an O(N2) algorithm it is possible to
use M-H kernels in an IS algorithm.

2. Implications of the Result. The main motivation of this note relates to our earlier
paper [2]. In that paper, we state correctly that qN (dy) is not known exactly as the rejection
probabilities r(x(i)) are unknown. However, it was implicitly implied that it prevents one from
using M-H kernels in proposals such as in (1.2). Our reasoning was as above; the theoretical
Radon-Nikodym derivative given in (1.1) is unknown and requires the knowledge of the rejection
probability r(y). However, clearly, the correct Radon-Nikodym derivative is as (1.3) and does not
require knowledge of the rejection probabilities r(x(i)): This result might be useful in the context
of population Monte Carlo algorithms (see e.g. [1] and the references therein). Such algorithms
use �standard� proposal mechanisms in order to simulate the samples, along with adaptation
techniques for the proposals. This note shows that such methodology can use M-H kernels. This
enriches the potential applications of this methodology.
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