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Abstract. It is shown that it is possible to use Metropolis-Hastings (M-H) kernels in importance sampling

(IS) algorithms which are of cost O(N?2), N being the number of simulated samples. It might not have been
previously realized.

1. Introduction. Throughout this note, suppose one is interested in sampling from a proba-
bility measure 7 on (R™, B(R™)), where 7 admits a positive density, also denoted 7, w.r.t Lebesgue
measure A"

Suppose IS is used to simulate from 7, with the following importance distribution:

a(dy) = /Qvna»zr<xvdy>AL“b<dx>

where, for ¢(z,y) a conditional probability density w.r.t \"*”;

K(z,dy) = a(z,y)q(z, y)\°"(dy) + 6, (dy)r(z)
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is a M-H kernel of invariant distribution 7 and n(z)A**"(dz) is a probability measure, with
n(z) > 0 Yz € R™. Intuitively, this is a sensible scheme, as K should help guide samples to
‘good’ parts of the state-space. Unfortunately, such a scheme is not possible as the associated
importance weight:

di (y) = m(y)
dq Jon n(@)a(@,y)q(z, y) N (dz) + r(y)n(y)

can not be computed: the first integral appearing in the denominator and the rejection proba-
bility, 7(y), are not typically known.

Consider the scenario, instead where one samples from 7, N—times, {X (i)}lgig ~ and uses
the importance distribution:
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In this scenario, the importance weight is exactly

di ) (y) 1.3
o (y) LN 0@, 9)q(@®, y) (1.3)

for y # (" and it is zero otherwise.

A rigourous proof of this can be established along the lines of [3]. An informal proof follows
from the fact that the probability of generating a candidate from ¢V(dy) such that y # z( is
given by
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and the distribution of such a candidate is

Sty (@@ y)g(e, y) N (dy)
Zf\; (1 - T(x(i)))

Hence if one has the computational power to perform an O(N?) algorithm it is possible to
use M-H kernels in an IS algorithm.

2. Implications of the Result. The main motivation of this note relates to our earlier
paper [2]. In that paper, we state correctly that ¢V (dy) is not known exactly as the rejection
probabilities r(x(i)) are unknown. However, it was implicitly implied that it prevents one from
using M-H kernels in proposals such as in (1.2). Our reasoning was as above; the theoretical
Radon-Nikodym derivative given in (1.1) is unknown and requires the knowledge of the rejection
probability r(y). However, clearly, the correct Radon-Nikodym derivative is as (1.3) and does not
require knowledge of the rejection probabilities r(2(*)). This result might be useful in the context
of population Monte Carlo algorithms (see e.g. [1] and the references therein). Such algorithms
use ‘standard’ proposal mechanisms in order to simulate the samples, along with adaptation
techniques for the proposals. This note shows that such methodology can use M-H kernels. This
enriches the potential applications of this methodology.
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