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Abstract: Nonlinear non-Gaussian state-space models arise in numerous applications in
control and signal processing. Sequential Monte Carlo (SMC) methods, also known as Particle
Filters, provide very good numerical approximations to the associated optimal state estimation
problems. However, in many scenarios, the state-space model of interest also depends on
unknown static parameters that need to be estimated from the data. In this context, standard
SMC methods fail and it is necessary to rely on more sophisticated algorithms. The aim of
this paper is to present a comprehensive overview of SMC methods that have been proposed to
perform static parameter estimation in general state-space models. We discuss the advantages
and limitations of these methods.
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1. INTRODUCTION

Let {Xn}n≥0 and {Yn}n≥0 be X (⊆ Rnx) and Y (⊆
Rny) -valued stochastic processes defined on a (measur-
able) space (Ω,F). The discrete-time process {Xn}n≥0

is a hidden (or latent) Markov process of initial density
µθ (x) and Markov transition density fθ(x

′|x). We only
have access to the observation process {Yn}n≥0. The ob-
servations {Yn}n≥0 are assumed conditionally independent
given {Xn}n≥0 and are characterized by the conditional
marginal density gθ(y|x). To summarize, we have

X0 ∼ µθ (·) , Xn|(Xn−1 = xn−1) ∼ fθ(·|xn−1),
Yn|(X1, . . . , Xn = xn, . . . , XT ) ∼ gθ(·|xn).

(1)

The subscript θ on these densities is the parameter of
the model. We will assume a parameterization such that
θ ∈ Θ ⊂ Rnθ and Θ is open. All densities are taken
with respect to appropriate dominating measures, e.g. the
Lebesgue measure. This class of models includes many
nonlinear and non-Gaussian time series models such as

Xn+1 = ψθ (Xn, Vn+1) , Yn = φθ (Xn,Wn) , (2)

where {Vn}n≥1 and {Wn}n≥0 are independent sequences

of independent random variables and (ψθ, φθ) are a
pair of nonlinear functions. These models are known as
general state-space models or hidden Markov models in the
literature [8, 17]. They are ubiquitous in applied science
and are commonly used in control, signal processing,
econometrics, robotics, telecommunications etc.

When the parameter θ is known, on-line (resp. off-line)
inference about the state process {Xn} given the observa-
tions {Yn} is a so-called optimal filtering (resp. smoothing)
problem. Except for simple models such as the linear Gaus-
sian state-space model, or when X is a finite set, these op-
⋆ The first and last authors were supported by the European
Commission under project iFly FP6- TREN-037180.

timal state estimation problems cannot be solved exactly.
Standard approximation schemes such as the Extended
Kalman filter or the Gaussian sum filter can be unreliable,
while deterministic integration methods are difficult to
implement. SMC methods, also known as particle methods,
are a class of sequential simulation-based algorithms to
approximate the posterior distributions of interest. Their
wide spread popularity are due to the fact that they are
easy to implement, suitable for parallel implementation
and more importantly, have been demonstrated in numer-
ous settings to yield more accurate estimates than the
standard alternatives just mentioned [14, 17, 35].

The main objective of this paper is to discuss the scenario
where the parameter θ is unknown and needs to be esti-
mated from the data either in an on-line or off-line manner.
We will assume that the observations are generated from
the unknown ‘true’ model with parameter value θ∗, i.e.
Xn|(Xn−1 = xn−1) ∼ fθ∗(·|xn−1) and Yn|(Xn = xn) ∼
gθ∗(·|xn). The static parameter estimation problem has
generated a lot of interest over the past few years and
many SMC techniques have been proposed to solve it. In
this review, we attempt to give insights on the difficulties
of this task and provide a comprehensive overview of the
literature on the subject. We will present the main features
of each method and comment on their pros and cons. No
attempt however is made to discuss the intricacies of the
specific implementations. For this we refer the reader to
the original references.

We have chosen to broadly classify the methods as follows:

• Bayesian or Maximum Likelihood (ML).
• Off-line (batch) or on-line (recursive).

In a Bayesian approach, the unknown parameter is con-
sidered random and assigned a suitable prior distribution.



The posterior density of this parameter given the obser-
vations is to be characterised. In Maximum Likelihood,
the estimate of θ∗ is the maximizing argument of the
(marginal) likelihood of the observed data. Both these
estimation techniques can be implemented off-line or on-
line. Specifically, in an off-line framework we infer θ∗ by
iterating over a fixed observation record y0:T . In contrast,
on-line methods update the estimate of θ∗ sequentially as
observations {yn}n≥0 become available.

The rest of the paper is organized as follows. In Section 2
we review SMC methods for filtering and smoothing when
the parameter θ is known. In Section 3, we explain how
these techniques can be used to perform off-line and on-
line ML estimation. In Section 4, we describe algorithms to
perform off-line and on-line Bayesian inference. Finally, in
Section 5 we discuss the main advantages and drawbacks
of the methods presented here.

2. SMC FILTERING AND SMOOTHING

2.1 Preliminaries

Assume for the time being that the parameter θ is known.
Given observed data y0:n

1 , inference about the statesX0:n

may be based on the following posterior density:

pθ (x0:n| y0:n) =
pθ (x0:n, y0:n)

pθ (y0:n)
(3)

where

pθ (x0:n, y0:n) = µθ (x0)
n∏

k=1

fθ (xk|xk−1)
n∏

k=0

gθ (yk|xk)

(4)
and the marginal likelihood, pθ (y0:n), is given by

pθ (y0:n) =

∫
pθ (x0:n, y0:n) dx0:n. (5)

It is easy to check that

pθ (x0:n| y0:n) = pθ (x0:n−1| y0:n−1)
fθ (xn|xn−1) gθ (yn|xn)

pθ (yn| y0:n−1)
(6)

and
pθ (y0:n) = pθ (y0:n−1) pθ (yn| y0:n−1) (7)

where

pθ (yn| y0:n−1) =

∫
fθ (xn|xn−1) gθ (yn|xn) (8)

× pθ (xn−1| y0:n−1) dxn−1:n.

2.2 SMC filtering

In this section we described a SMC algorithm to nu-
merically approximate the sequence of posterior densities
{pθ (x0:n| y0:n)} .

Algorithm In SMC, the distribution of interest is ap-
proximated by a large cloud of N (N >> 1) random
samples termed particles. These particles are propagated
over time using an importance sampling and resampling
mechanisms. The algorithm relies on the introduction of
so-called importance densities: qθ (x0| y0) at time 0 and
qθ (xn| yn, xn−1) at times n ≥ 1. A default choice consists

1 For any sequence {zn}, let zi:j = (zi, zi+1, . . . , zj).

of taking qθ (x0| y0) = µθ (x0) and qθ (xn| yn, xn−1) =
fθ (xn|xn−1). The “optimal” choice is given by pθ (x1| y1)
and pθ (xn| yn, xn−1) and in practice it is recommended
to approximate these distributions if it is not possible to
sample from them; see [16, 41] for various approximation
strategies. We define the importance weights

w0 (x0) =
µθ (x0) gθ (y0|x0)

qθ(x0| y0)
, (9)

wn (xn−1:n) =
fθ (xn|xn−1) gθ (yn|xn)

qθ (xn| yn, xn−1)
for n ≥ 1. (10)

Note that in order to alleviate the notational burden we
adopt below the convention that whenever the index i is
used we mean ‘for all i ∈ {1, ..., N} ,’ and also omit the
dependence of the importance weights on θ - we will do
so in the remainder of the paper when no confusion is
possible. The algorithm can be summarized as follows.

SMC for Filtering

At time n = 0

• Sample X i
0 ∼ qθ(x0| y0).

• Compute the weights w0

(
X i

0

)
and set W i

0 ∝ w1

(
X i

0

)
,∑N

i=1W
i
0 = 1.

• Resample
{
W i

0 , X
i
0

}
to obtainN equally-weighted particles{

1
N , X

i

0

}
.

At time n ≥ 1

• Sample X i
n ∼ qθ(xn| yn, X

i

n−1) and set X i
0:n ←(

X
i

0:n−1, X
i
n

)
.

• Compute the weights wn

(
X i

n−1:n

)
defined in (10) and set

W i
n ∝ wn

(
X i

n−1:n

)
,
∑N

i=1W
i
n = 1.

• Resample
{
W i

n, X
i
0:n

}
to obtain N new equally-weighted

particles
{

1
N , X

i

0:n

}
.

At time n, the approximations of pθ (x0:n| y0:n) and
pθ (yn| y0:n−1) after the sampling step are

p̂θ (dx0:n| y0:n) =

N∑

i=1

W i
nδXi

0:n
(dx0:n) , (11)

p̂θ (yn| y0:n−1) =
1

N

N∑

i=1

wn

(
X i

n−1:n

)
. (12)

Hence an estimate of the marginal likelihood, by (7), is
given by

p̂θ (y0:n) = p̂θ (y0)
n∏

k=1

p̂θ (yk| y0:k−1) . (13)

After the resampling step, an alternative approximation of
pθ (x0:n| y0:n) is

pθ (dx0:n| y0:n) =
1

N

N∑

i=1

δ
X

i

0:n

(dx0:n) . (14)

The resampling procedure is introduced to copy (or mul-
tiply) particles with high weights and therefore discard-



ing particles with low weights. The resampling procedure
should satisfy the following unbiasedness property:

E [pθ (dx0:n| y0:n)] = p̂θ (dx0:n| y0:n) . (15)

The resampling procedure serves to focus the compu-
tational effort on the “promising” regions of the state-
space. The simplest resampling scheme is the following:
generate N independent samples from p̂θ (dx0:n| y0:n), i.e.,

X
i

0:n ∼ p̂θ (dx0:n| y0:n). This is called multinomial resam-
pling. Each original particle X i

0:n inherits N i
n offspring

and the joint distribution of
(
N1

n, . . . , N
N
n

)
is a multino-

mial distribution with parameter
(
W 1

n , . . . ,W
N
n

)
. Better

resampling schemes that have less variance have been
proposed, as have more advanced SMC algorithms with
better overall performance. Examples of the latter include
the Auxiliary Particle Filter (APF) [41] and the Resample-
Move algorithm [23].

Convergence results Many sharp convergence results are
available for SMC algorithms; see [12] for a survey for
practitioners and [14] for a book length review. A selection
of these results that give useful insights on the difficulties
of estimating static parameters with SMC are presented
below.

Let ǫθ,n (dx0:n) = p̂θ (dx0:n| y0:n) − pθ (dx0:n| y0:n). If
w0 (x0) and wn (xn−1:n) are upper bounded in their argu-
ments then it can be shown that for any bounded test func-
tion ϕn : Xn+1 → R, there exists constants Cθ,n,p < ∞
such that for any p > 0,

E

[∣∣∣∣
∫
ϕn(x0:n)ǫθ,n (dx0:n)

∣∣∣∣
p] 1

p

≤
Cθ,n,pϕn

N1/2
, (16)

where ϕn = supx0:n∈Xn+1 |ϕn(x0:n)|. This result is very
weak as typically Cθ,n,p grows exponentially/polynomially
with n. Hence to guarantee a fixed precision of the SMC
approximation we would need to increase the number of
particles as n increases. It appears impossible to estab-
lish a result where Cθ,n,p is independent of n. This is
intuitively not surprising as the dimension of the target
density pθ (x0:n| y0:n) we are approximating is increasing
with n. Moreover the successive resampling steps lead to
a depletion of the particle population; pθ (x0:m| y0:n) will
eventually be approximated by a single unique particle as
n − m increases. This is known in the literature as the
degeneracy problem. This is a fundamental weakness of
SMC: given a fixed number of particles N , it is impossi-
ble to approximate pθ (x0:n|y0:n) “well” when n is large.
Typically as soon as n is of order N .

Fortunately, it is also possible to establish much more
encouraging results. Many state-space models possess the
so-called exponential forgetting property. This property
states that for any x0, x

′
0 ∈ X and observation record y0:n,

∫
|pθ (xn| y0:n, x0)− pθ (xn| y0:n, x

′
0)| dxn ≤ Cλ

n, (17)

where λ ∈ [0, 1) and C is a constant. When exponential
forgetting holds, it is possible to establish results of the
following form. For an integer L > 0 and any bounded test
function ϕL : XL → R, there exists constants Dθ,L,p <∞
such that for any p > 0

E

[∣∣∣∣
∫
ϕL(xn−L+1:n)ǫθ,L (dxn−L+1:n)

∣∣∣∣
p] 1

p

≤
Dθ,L,pϕL

N1/2
,

(18)
where ǫθ,L (dxn−L+1:n) =

∫
Xn−L+1 ǫθ,n (dx0:n). This result

explains why SMC is an effective computational tool.
If we only look at the most recent marginal density
over a fixed horizon pθ (xn−L+1:n| y0:n), then there is no
accumulation of errors over time if the ‘true’ optimal filter
we are trying to approximate has ‘good’ mixing properties.
Under the same assumption (17), it is possible to derive a
central limit theorem for the marginal likelihood estimate
p̂θ (y0:n) and show that its asymptotic relative variance
only degrades linearly with the time index n, that is there
exists Cθ such that [14]

V(p̂θ (y0:n))

(pθ (y0:n))
2 ≤ Cθ

n

N
. (19)

On the contrary, even if (17) holds, then the asymptotic
variance of the SMC estimate of the additive functional

Iθ
n =

∫ [ n∑

k=0

ϕ (xk)

]
pθ (x0:n| y0:n) dx0:n, (20)

which is

Îθ
n =

∫ [ n∑

k=0

ϕ (xk)

]
p̂θ (dx0:n| y0:n) , (21)

satisfies [44]

V
(
Îθ
n

)
≥ Dθ

n2

N
. (22)

This negative result follows from the particle degeneracy
problem.

2.3 SMC smoothing

We have seen previously that SMC methods can pro-
vide an approximation of the sequence of densities
{pθ (x0:n| y0:n)} , and hence for {pθ (xk| y0:n) ; k = 0, ..., n} .
However these approximations are poor when n is large
because of the degeneracy problem. Various alternative
schemes which do not suffer from these problems have been
proposed in the literature.

Fixed-lag approximation The fixed-lag approximation is
the simplest approach and it was first proposed in [29]. It
relies on the fact that, for state-space models with “good”
forgetting properties (e.g. (17)), we have

pθ (x0:n| y0:T ) ≈ pθ

(
x0:n| y0:min(n+∆,T )

)
(23)

for ∆ large enough; that is observations collected at times
k > n+ ∆ do not bring any additional information about
X0:n. This suggests a very simple scheme — simply don’t
update the estimate of X0:n after time k = n + ∆. Algo-
rithmically, this means do not resample the components
X i

0:n of the particles X i
0:k at times k > n + ∆. This

algorithm is trivial to implement but the main practical
problem is that we typically do not know ∆. Hence we
need to replace ∆ with an estimate of it denoted L. If
we select L < ∆, then pθ

(
x0:n| y0:min(n+L,T )

)
is a poor

approximation of pθ (x0:n| y0:T ). If we select a large values
of L to ensure that L ≥ ∆ then the degeneracy problem
remains substantial. Moreover, even as N →∞, this SMC
approximation will have a fixed bias since pθ (x0:n| y0:T ) 6=
pθ

(
x0:n| y0:min(n+∆,T )

)
.



Forward filtering-backward smoothing It can be easily
established that

pθ (xn| y0:T ) =

∫
fθ (xn+1|xn)

pθ (xn+1| y0:n)
pθ (xn+1| y0:T ) dxn+1

× pθ (xn| y0:n) . (24)

So using the particle approximations of p̂θ (dxn| y0:n) =∑N
i=1W

i
nδXi

n
(dxn) and plugging them in (24), we ob-

tain a particle approximation of pθ (xn| y0:T ) of the form

p̂θ (dxn| y0:T ) =
∑N

i=1W
i
n|T δXi

n
(dxn) where the weights{

W i
n|T

}
satisfy the following backward recursion

W i
n|T = W i

n




N∑

j=1

W j
n+1|T

fθ(X
j
n+1|X

i
n)

∑N
l=1W

l
nfθ(X i

n+1|X
l
n)


 (25)

and W i
T |T = W i

T . See [16] for a derivation. This approach

is more efficient than the direct SMC approximation of the
smoothing densities outlined at the beginning of this sec-
tion. However the problem of such methods is that it pro-
vides a Monte Carlo approximation of the smoothed distri-

butions which relies on the same particles
{
X

(i)
n

}
used to

approximate the filtered distributions; it only re-weights
these samples. Hence, if pθ(xn|y0:n) and pθ(xn|y0:T ) have
high probability masses in different regions of the space,
then the Monte Carlo approximation will have a high
variance for reasonable values of N . The forward filtering-
backward sampling approach requires also O

(
N2T

)
oper-

ations to approximate {pθ (xn| y0:T )} instead of O (NT )
for the direct and fixed-lag methods.

Generalized two-filter smoothing The two-filter formula
is a well-established alternative to the forward-filtering
backward-smoothing technique to compute {pθ (xn| y0:T )}.
It relies on the following identity

pθ (xn| y0:T ) =
pθ (xn| y0:n−1) pθ (yn:T |xn)

pθ (yn:T | y0:n−1)
, (26)

where pθ (yn:T |xn) =
∫
pθ (yn:T , xn+1:T |xn) dxn+1:T is

the so-called backward information filter. The backward
information filter is not a probability density in argu-
ment xn and it is possible that

∫
pθ (yn:T |xn) dxn = ∞.

Although this is not an issue when pθ (yn:T |xn) can be
computed exactly, it does preclude the direct use of SMC
methods to estimate this integral. To address this problem,
a generalized version of the two-filter formula was proposed
in [7]. It relies on the introduction of a set of artificial

probability densities {p̃θ,n (xn)}Tn=1 and the joint densities

p̃θ (xn:T | yn:T ) ∝ p̃θ,n (xn) pθ (yn:T , xn+1:T |xn) , (27)

which are constructed such that their marginal densities,
p̃θ (xn| yn:T ) ∝ p̃θ,n (xn) pθ (yn:T |xn), are simply “inte-
grable” versions of the backward information filter. It is
easy to establish the following generalized two-filter for-
mula:

pθ(xn|y0:T ) ∝ [p̃θ,n (xn)]
−1
p̃θ(xn|yn:T )

×
∫
fθ (xn|xn−1) pθ (xn−1| y0:n−1) dxn−1.

(28)

It is possible to use a modified SMC method to perform an

approximation of {p̃θ (xn:T | yn:T )}, say ̂̃pθ(dxn:T |yn:T ) =∑N
i=1 W̃

i
nδX̃i

n:T

(dxn:T ); see [7] for details. Then by using

(28), we have p̂θ(dxn|y0:T ) =
∑N

i=1W
i
n|T δX̃i

n

(dxn) where

W j
n|T ∝ W̃

j
n

N∑

i=1

W i
n−1

fθ

(
X̃j

n|X
i
n−1

)

p̃θ,n

(
X̃j

n

) . (29)

Like the SMC implementation of the forward-backward
smoothing algorithm, this approach has a computational
complexityO(N2T ). However fast computational methods
have been developed to address this problem [30]. More-
over it is possible to reduce this computational complexity
to O(NT ) by using rejection sampling to sample from

p̂θ(dxn|y0:T ) using p̂θ (dxn−1| y0:n−1) and ̂̃pθ(dxn|yn:T ) as
proposal distributions if fθ (x′|x) /p̃θ,n (x′) < C < ∞.
More recently, an importance sampling type approach has
also been proposed in [22] to reduce the computational
complexity to O (NT ); see [6] for a similar idea developed
in the context of belief propagation. It is demonstrated ex-
perimentally in [7] that this procedure outperforms signifi-
cantly the forward filtering-backward smoothing approach.

3. MAXIMUM LIKELIHOOD PARAMETER
ESTIMATION

3.1 Off-line Methods

In Maximum Likelihood, the estimate of θ∗ is the maxi-
mizing argument of the marginal likelihood of the observed
data:

θ̂ = argmax
θ∈Θ

lT (θ) (30)

where
lT (θ) = log pθ (y0:T ) . (31)

Likelihood function evaluation For any θ ∈ Θ, it is
possible to evaluate lT (θ) numerically using SMC. It can
be shown that p̂θ(y0:T ) in (13) is an unbiased estimate

but l̂T (θ) = log p̂θ(y0:T ) is not. A standard bias correction
technique can be applied though; see for example [3, 40].

The SMC estimate l̂T (θ) is not a continuous function of θ
even when the particle filter is implemented with common
random numbers for different values of θ. This is because
of the resampling steps. Specifically, in multinomial re-
sampling, a piecewise constant and hence discontinuous
cumulative distribution function (cdf) is defined by the
weights {W i

n}
N
i=1 and particles {X i

n}
N
i=1. A small change

in θ will cause a small change in the importance weights
{W i

n}
N
i=1 and this will potentially generate a different set

of resampled particles {X
i

n}
N
i=1. As a result, the likeli-

hood function estimate will not be continuous in θ. A
solution to this problem was proposed in [25] by using an
importance sampling method. The proposed method has
computational complexity O

(
N2
)

and suffers from being
only valid in the neighborhood of a suitably preselected
parameter value.

When X ⊆ R, an elegant solution to the discontinuity
problem was proposed in [40]. The method uses com-
mon random numbers. The resampling operation is made
“smooth”by ordering the particles {X i

n}
N
i=1 and defining

a piecewise linear resampling cdf; see [40] for details.
This method requires O (N logN) operations to sort the
particles. The extension to the case when X ⊆ Rnx (and
nx > 1) is proposed in [33]. Although this method does not
generate a continuous estimate of the likelihood function,



it does provide a much “smoother” estimate than the stan-

dard approach, which means l̂T (θ) is easier to maximize.
The computational complexity is O (nxN logN).

Thus far the methods discussed only provide estimates of
the likelihood function. When θ is high-dimensional, the
optimization over the parameter space may be made more
efficient with estimates of the gradient as well. This is the
subject of the next section.

Gradient approach When gradient methods are consid-
ered we will assume all functions are regular enough so
that the change of order of integration and differentiation
is permitted. The log-likelihood may be maximized with
the following steepest ascent algorithm:

θk+1 = θk + γk+1 ∇θlT (θ)|θ=θk
. (32)

The gradient (denoted by ∇) is taken w.r.t. the parameter
θ, as indicated by the subscript of the gradient operator.
{γk} is a sequence of small positive real numbers, called
the step-size sequence, that should satisfy the following
constraints:

∑
k γk = ∞ and

∑
k γ

2
k < ∞. One possible

choice would be γk = k−α, 0.5 < α < 1 (e.g. γk = k−2/3).

To obtain the gradient of the log likelihood, which is so-
called score, we can use Fisher’s identity:

∇θl (θ) =
∫
∇θ log pθ (x0:T , y0:T ) pθ (x0:T | y0:T ) dx0:T

=
∫

(∇θ logµθ (x0) +∇θ log gθ (y0|x0)) pθ (x0| y0:T ) dx0

+
∑T

n=1

∫
(∇θ log fθ (xn|xn−1) +∇θ log gθ (yn|xn))

pθ (xn−1:n| y0:T ) dxn−1:n.
(33)

The simplest method to estimate the score numer-
ically would be to use the SMC approximation of
pθ (x0:T | y0:T ) in (11) and re-weight the samples using
∇θ log pθ (x0:T , y0:T ) [3]. However, the variance of this esti-
mate increases typically quadratically with T [44]. To im-
prove over this direct method, we can use the fixed-lag ap-
proximation (which however introduces a bias). These two
approaches admit on-line implementations. Alternatively,
we can use the forward filtering backward smoothing and
the generalized two filter smoothing methods which can be
extended straightforwardly to approximate the marginals
{pθ (xn−1:n| y0:T )}. These methods do not admit on-line
implementations. An alternative to Fisher’s identity to
compute the score is a method based on Infinitesimal Per-
turbation Analysis which has been recently proposed [10].
This method is also estimating the expectation with re-
spect to pθ (x0:T | y0:T ) of an additive functional of the form

s (x0, y0) +
∑T

n=1 s (xn−1:n, yn) so all the SMC smoothing
techniques described earlier can also be applied to estimate
this expectation.

Expectation-Maximization The Expectation Maximiza-
tion (EM) algorithm for maximizing lT (θ) is a two step
procedure, [15]. The first step, the expectation or E-step,
computes

Q(θk, θ) =
∫

log pθ(x0:T , y0:T ) pθk
(x0:T |y0:T )dx0:T

=
∫

(logµθ (x0) + log gθ (y0|x0)) pθk
(x0| y0:T ) dx0

+
∑T

n=1

∫
(log fθ (xn|xn−1) + log gθ (yn|xn))

pθk
(xn−1:n| y0:T ) dxn−1:n.

(34)
The second step is the maximization or M-step that
updates the parameter θk,

θk+1 = arg max
θ

Q(θk, θ) (35)

The sequence {lT (θk)}k generated by the EM is non-
decreasing, i.e. lT (θk+1) ≥ lT (θk).

All the SMC smoothing techniques presented earlier can
also be used to approximate Q(θk, θ) numerically; see [3]
for the direct method, [39] for the fixed-lag approximation,
[48] for the forward filtering-backward smoothing and [7]
for generalized two-filter smoothing. When pθ (x0:T , y0:T )
is in the exponential family, pθ (x0:T , y0:T ) depends on
(x0:T , y0:T ) only through a set of fixed dimensional suffi-

cient statistics of the form
∑T

n=1 sθ (xn−1:n, yn) . In this
case, the M step can typically be performed explicitly.
Since Q(θk, θ) is being approximated numerically, it can-
not be guaranteed that log-likelihood will increase mono-
tonically. Having said that, these algorithms display good
performance when the number of particles is large enough.

Discussion In some cases, one might prefer an steep-
est ascent procedure over the Expectation-Maximization
(EM) algorithm for a number of reasons. Firstly, if the
step-size sequence γk+1 were to be replaced by −γk+1Γ

−1
k

where Γk is Hessian of lT (θ) evaluated at θk (which can be
computed using SMC techniques, see [43], [44]) then the
rate of convergence is quadratic and thus faster than the
EM which converges linearly. The second reason is that
the gradient algorithm can be implemented even when
the M-step of the EM cannot be solved in closed-form
(see [32] for several examples of this.). On the other hand
one might prefer an EM approach if the M-step can be
computed analytically. Scaling the gradients for a large nθ

might be quite hard. In addition, the EM is numerically
more stable and typically computationally cheaper for high
dimensional parameter θ. Finally, both methods are lo-
cally optimal. They are thus sensitive to initialization and
might get trapped in a local maximum. It is recommended
that multiple runs of the algorithms from different initial
conditions are used.

Iterated filtering An alternative approach for off-line ML
estimation has been proposed in [26]. At iteration k, let θk

be estimate of the true parameter θ∗. The key idea is that
∇lT (θk) can be approximated by the posterior moments of
an artificial state-space model with latent Markov process

{Zn = (Xn, θ̃n)}Tn=0,

θ̃n+1 = θ̃n + εn+1, Xn+1 ∼ fθ̃n
(·|xn) (36)

and observed process Yn ∼ g
θ̃n

(·|xn). {εn}n≥1 is a zero-

mean white noise sequence with variance σ2Σ, E(θ̃0) = θk,

V(θ̃0) = τ2Σ. It is shown in [26] that ∇lT (θk) can be

approximated using {E(θ̃n|y0:n),V(θ̃n|y0:n)}Tn=0 and this
approximation improves as σ2, τ2 → 0. Having estimated

{E(θ̃n|y0:n),V(θ̃n|y0:n)}Tn=0 using SMC, the estimate θk

can be improved using a gradient ascent method.

Clearly as the variance of the additive noise {εn} decreases,
it will be necessary to use more particles as the mixing
properties of the artificial dynamic model deteriorates.
[26] provides some conditions ensuring that this iterative
procedure converges towards a local maximum of the
likelihood function. An advantage of this procedure over
standard gradient and EM techniques is that it only



requires being able to sample from fθ(x
′|x) and there

is no explicit calculations of the derivative. However, it
might require a bit of tuning when the parameter is high-
dimensional.

3.2 On-line Methods

For a long observation sequence the computation of the
gradient of lT (θ) can be prohibitive, moreover we might
have real-time constraints. An alternative would be a
recursive procedure in which the data is run through once
sequentially. If θn is the estimate of the model parameter
after n−1 observations, a recursive method would update
the estimate to θn+1 after receiving the new data yn.
Several recursive estimation procedures are now described.

Gradient approach A standard approach to perform
on-line parameter estimation is the following gradient
method:

θn+1 = θn + γn+1∇θ log pθ0:n(yn|y0:n−1). (37)

where {γn}n≥1 is the step-size sequence as in Section
3. Upon receiving yn, θn is updated in the direction of
ascent of the predictive density of this new observation. A
necessary requirement for on-line implementation is that
the previous values of estimates, other than θn, are also
used in the evaluation of ∇θ log pθ(yn|y0:n−1) at θ = θn.
This is indicated in the notation ∇θ log pθ0:n(yn|y0:n−1).
(Not doing so would require browsing through the entire
history of observations.) This approach has previously
appeared in [34, 11] for the finite state-space case. This
algorithm maximizes the average log-likelihood,

l(θ) = lim
n→∞

1

n
ln (θ) , (38)

where

l(θ) =

∫

Y×P(X )

log

(∫
gθ(y|x)µ(x)dx

)
λθ,θ∗(dy, dµ).

(39)
Here P(X ) is the space of probability distributions on
X , and λθ,θ∗(dy, dµ) is the marginal of the invariant
distribution the Markov chain {Xn, Yn, pθ(xn|Y0:n−1)}n≥0.

(See [34] for conditions ensuring the existence of l(θ).) It is
easy to check that the set of global maxima of l(θ) includes
indeed θ∗. The asymptotic properties of this algorithm (i.e.
the behavior of θn in the limit as n goes to infinity) have
been studied in the case of an i.i.d. hidden process by [47]
and for a HMM with a finite state-space in [34].

For general state-space models, it is impossible to compute
∇θ log pθ(yn|y0:n−1) exactly, which motivates the use of
SMC methods. Noting that ∇θ log pθ(yn|y0:n−1) is equal
to

∇θ log pθ(y0:n)−∇θ log pθ(y0:n−1),

it would be possible to use Fisher’s identity (33) with the
particle approximation of pθ (x0:n| y0:n) in (11) to compute
this gradient on-line. However, the variance of the estimate
of ∇θ log pθ(y0:n) would increase at least quadratically
with n; see Section 2 and [44]. A high and increasing
variance estimate of ∇θ log pθ(yn|y0:n−1) would render the
stochastic optimization algorithm unreliable. The fixed-
lag approximation could be used, but it introduces a bias
which is difficult to control.

An alternative approach to compute ∇θ log pθ(y0:n) has
been proposed in [43]. It relies on the “marginal” Fisher
identity

∇θ log pθ (y0:n) =

∫
∇θ log pθ (xn, y0:n) pθ (xn| y0:n) dxn.

(40)
The advantage of this identity over (33) is that it
only relies on the SMC approximation of the marginal
pθ (xn| y0:n). However it requires approximating
∇θ log pθ (xn, y0:n) which is given by the ratio of the fol-
lowing two equations:

pθ (y0:n−1)
−1
∇θpθ (xn, y0:n) = gθ (yn|xn)×∫

[∇θ log pθ (xn−1, y0:n−1) +∇θ log fθ(xn|xn−1)
+∇θ log gθ(yn|xn)]fθ (xn|xn−1) pθ (xn−1| y0:n−1) dxn−1

(41)
and

pθ (y0:n−1)
−1
pθ (xn, y0:n) = gθ (yn|xn)×∫

fθ (xn|xn−1) pθ (xn−1| y0:n−1) dxn−1.
(42)

Given an SMC approximation 1
N

∑N
i=1 δXi

n−1
(dxn−1) of

pθ (xn−1| y0:n−1) after the resampling step, we obtain the
following pointwise approximation of ∇θ log pθ (xn, y0:n)

˜∇θ log pθ (xn, y0:n) =
∇̃θpθ (xn, y0:n)

p̃θ (xn, y0:n)
(43)

where

pθ (y0:n−1)
−1
p̃θ (xn, y0:n) =

gθ(yn|xn)

N

N∑

i=1

fθ(xn|X
i

n−1),

(44)

pθ (y0:n−1)
−1 ∇̃θpθ (xn, y0:n) =

gθ(yn|xn)

N

N∑

i=1

fθ(xn|X
i

n−1)

×[ ˜∇θ log pθ

(
X

i

n−1, y0:n−1

)
+∇θ log fθ(xn|X

i

n−1)

+∇θ log gθ(yn|xn)]. (45)

Using p̂θ (dxn| y0:n) =
∑N

i=1W
i
nδXi

n
(dxn), it follows that

an alternative SMC estimate of ∇θ log pθ (y0:n) is given by

̂∇θ log pθ (y0:n) =

N∑

i=1

W i
n

˜∇θ log pθ

(
X i

n, y0:n
)

(46)

Experiments have confirmed that the variance of this
estimate of the score only increases linearly with n and
the variance of the estimate of ∇θ log pθ(yn|y0:n−1) is
uniformly bounded (in time) [44]. Hence this procedure
appears not to suffer from the degeneracy problem faced
by standard techniques. The price to pay is that its
computational cost is O

(
N2
)

per time step.

It is straightforward to modify this O
(
N2
)

algorithm
to compute the gradient recursively as required in (37)
and we refer the reader to [43, 44] for details. Finally,
this algorithm was used to successfully perform high-
dimensional parameter estimation in a robotics application
[38].

Expectation-Maximization A potential criticism of the
on-line gradient approach discussed above is that it can
be difficult to properly scale the gradient components
especially when nθ is large. As an alternative we can use
an on-line version of the EM algorithm. We assume that



pθ(x0:n, y0:n) is in the exponential family. In the off-line
approach, we needed to compute, at iteration k,

Q(θk, θ) =

∫
log pθ(x0:T , y0:T ) pθk

(x0:T |y0:T )dx0:T (47)

and then maximize this function (with respect to θ) to
obtain θk+1, i.e.

θk+1 = Λ (Sk) (48)
where Λ is a deterministic mapping and Sk is a set of
sufficient statistics of the form

Sk =
1

T

∫ ( T∑

n=1

s (xn−1:n, yn)

)
pθk

(x0:T |y0:T )dx0:T .

(49)
In the on-line approach, we simply use

θn+1 = Λ
(
Sn

)
(50)

where

Sn = γn+1

∫
s (xn−1:n, yn) pθ0:n(xn−1:n|y0:n)dxn−1:n

+ (1− γn+1)

∫ (n−1∑

k=1

s (xk−1:k, yk)

)

× pθ0:n(x0:n−1|y0:n)dx0:n−1 (51)

We could use the direct SMC approach to approximate
Sn on-line but the variance of the estimate would increase
over time. The fixed-lag approximation could also be used
but it introduces a bias which is difficult to control. In [18],
the authors propose an alternative O

(
N2
)

per time step

method to compute Sn. Experimentally, it appears that
the variance of this estimate is uniformly bounded over
time. A theoretical analysis of this algorithm is currently
being undertaken.

Discussion Experimentally the O(N2) algorithms pro-
vide estimates of ∇θ log pθ(yn|y0:n−1) (gradient [44]) or Sn

(EM [18]) whose variance is uniformly bounded in time for
numerous models. The key is that they only rely on the
SMC approximation of the marginal pθ (xn| y0:n). Hence
they are much more robust than algorithms that rely on
the SMC approximation of pθ (x0:n| y0:n) which degener-
ates over time. Alternatively, the fixed-lag approximation
could have been used but it introduces a bias which can
be difficult to quantify.

It is important to note that the on-line gradient and on-
line EM algorithms can be used in off-line applications
where a large dataset is available. For a sequence of
observations y0:T , provided T is large, “convergence” will
typically occur before T , i.e., θn ≈ θ where θ is a local
maximum of the likelihood for n < T . Of course this
will depend on the choice of step-size, how well the log-
likelihood discriminates between the competing choice of
models as well as the starting point θ0 of the algorithm.
One advantage of these on-line algorithms for a finite
dataset of length T is the computational savings of not
having to browse through the whole dataset repeatedly
either to compute the gradient of the likelihood or the
Q function. For smaller datasets, these algorithms can be
used by going through the data sayK times. Typically this
method is cheaper than iterating (32) K times the off-line
algorithms and can yield comparable parameter estimates.

In practice, it can be beneficial to start with a constant
but small step-size γn = γ. If the step-size decreases too

quickly in the first time steps, these algorithms might get
stuck at an early stage and fail to come close to a local
maximum of the likelihood.

Online Pseudo-Likelihood Estimation The previous on-
line gradient and on-line EM algorithms have a computa-
tional load of O(N2) per time step. To bypass this prob-
lem, [2] modify the function to be minimized. In particular,
they suggest the use of a pseudo likelihood function which
had been proposed earlier in [45] for finite state-space
HMM.

Assume that the state process {Xn} defined by (1) is
stationary with a known invariant distribution νθ. The
data set is divided into blocks, each containing L ob-
servations, i.e. y0:L−1, yL:2L−1, . . . , y(p−1)L:pL−1. Let yp =
y(p−1)L:pL−1. Similarly for the latent process, let Xp =
X(p−1)L:pL−1. Due to the stationarity assumption the joint
process {Xp, yp}p≥1 is identically distributed with the com-
mon distribution given by

pθ (xp, yp) = νθ

(
x(p−1)L

)
gθ

(
y(p−1)L

∣∣ x(p−1)L

)
(52)

×

pL−1∏

l=(p−1)L+1

fθ (xl|xl−1) gθ (yl|xl) .

Define the marginal pseudo likelihood (SDL) of p blocks
of observations as [2]:

pθ (y1:p) =

p∏

k=1

pθ (yk) (53)

where

pθ (yp) ,

∫

XL

pθ (yp,xp) dxp. (54)

An on-line EM is proposed in [2] to maximize this pseudo-
likelihood. The main advantage of this approach is that
it only requires an approximation of the fixed-dimensional
distributions pθ (xk| yk) . SMC methods can be used and
do not suffer the degeneracy problem as long as L is not
large, say L in the range from 5 to 30. The computational
cost will then be O(LN) per on-line EM step. This scheme
however requires knowledge of the stationary distribution
νθ. When it is not available, [2] propose an alternative
approach based on indirect inference.

4. BAYESIAN PARAMETER ESTIMATION

In the Bayesian setting, we choose a suitable prior den-
sity p (θ) for θ and compute the joint posterior density
p (x0:T , θ| y0:T ) in the off-line case, or the sequence of
posterior densities {p (x0:n, θ| y0:n)} in the on-line setting.

4.1 Off-line Methods

Particle Markov chain Monte Carlo A standard ap-
proach in statistics to approximate p (x0:T , θ| y0:T ) is to
use MCMC. Unfortunately it is quite difficult to design
efficient MCMC sampling algorithms for non-linear non-
Gaussian state-space models. Particle MCMC (PMCMC)
are a new class of MCMC techniques which rely on SMC
methods to build efficient high dimensional proposal dis-
tributions. Although this sounds a natural idea, techni-
cally it is a difficult task to formulate and it has only
appeared very recently [1]. We limit ourselves here to the



presentation of the Particle Marginal Metropolis-Hastings
(PMMH) sampler, which is an approximation of an ideal
MMH sampler for sampling from p (x0:T , θ| y0:T ). The
ideal MMH sampler would utilize the following proposal
density:

q ( (x′0:T , θ
′)| (x0:T , θ)) = q (θ′| θ) pθ′ (x′0:T | y0:T ) (55)

where q (θ′| θ) is a proposal density to obtain a candidate
θ′ when we are at location θ. The acceptance probability
of the associated sampler is

1 ∧
p (x′0:T , θ

′| y0:T ) q ( (x0:T , θ)| (x
′
0:T , θ

′))

p (x0:T , θ| y0:T ) q ( (x′0:T , θ
′)| (x0:T , θ))

(56)

= 1 ∧
pθ′ (y0:T ) p(θ′)q(θ|θ′)

pθ (y0:T ) p(θ)q(θ′|θ)
. (57)

Unfortunately this ideal algorithm cannot be implemented
as we cannot sample exactly from pθ′ (x′0:T | y0:T ) and we
cannot compute the terms pθ (y0:T ) and pθ′ (y0:T ) appear-
ing in the acceptance probability. The PMMH sampler is
an approximation of this ideal MMH sampler which relies
on the SMC approximations of the unknown terms. It
proceeds as follows.

PMMH Sampler

At iteration k = 0,

• Set θ(0) arbitrarily.

• Run an SMC algorithm targeting pθ(0) (x0:T | y0:T ), sample
X0:T (0) ∼ p̂θ(0) (dx0:T | y0:T ), and compute the marginal
likelihood estimate p̂θ(0) (y0:T )

At iteration k ≥ 1

• Sample a proposal θ′ ∼ q (θ| θ(k − 1)).

• Run an SMC algorithm targeting pθ′ (x0:T | y0:T ), sample
X ′

0:T ∼ p̂θ′ (dx0:T | y0:T ), and compute the marginal likeli-
hood estimate p̂θ′ (y0:T ) .
• Set θ(k) = θ′, X0:T (k) = X ′

0:T , p̂θ(k) (y0:T ) = p̂θ′ (y0:T )
with probability

1 ∧
p̂θ′ (y0:T ) p(θ′)q(θ(k − 1)|θ′)

p̂θ(k−1) (y0:T ) p(θ(k − 1))q(θ′|θ(k − 1))
, (58)

otherwise set θ(k) = θ(k − 1), X0:T (k) = X0:T (k − 1),
p̂θ(k) (y0:T ) = p̂θ(k−1) (y0:T ) .

The remarkable feature of this algorithm is that the
invariant distribution of the Markov chain {X0:T (k), θ(k)}
is p (x0:T , θ| y0:T ) whatever being the number of particles
N used in our SMC approximation; i.e. using an SMC
approximation does not introduce any bias. However,
obviously, the higher N the better the mixing properties
of the algorithm. Under favorable mixing assumptions,
(19) suggests that the variance of the acceptance rate of
the PMMH sampler is proportional to T/N so N should
roughly increase linearly with T . This was confirmed
experimentally in [1]. In [1], for some difficult inference
problems, the authors show that PMMH performs well
with minimal tuning, even when the transition density is
used as the proposal in the SMC algorithm. This is a very
attractive feature since, unlike standard MCMC methods,
the user does not need to design sophisticated proposals

for the state variables X0:T but only for the parameter
θ. A particle version of the Gibbs sampler has also been
developed [1].

4.2 On-line Methods

Deficiency of standard SMC At first sight, it seems that
estimating the sequence of posterior densities
{p (x0:n, θ| y0:n)}n≥0 can be easily achieved using stan-
dard SMC methods by merely introducing the extended
state Zn = (Xn, θn) with initial density p (θ0)µθ0 (x0) and
transition density fθn

(xn|xn−1) δθn−1 (θn) ; i.e. θn = θn−1.
Applying a standard SMC algorithm to the Markov pro-
cess {Zn}n≥0 means that the parameter space would only
be explored at the initialization of the algorithm. As a
result of the successive resampling steps, after a certain
time n, the approximation p̂ (dθ| y0:n) will only contain a
single unique value for θ. This is clearly a bad estimator.
Although we can establish results of the form

E

[∣∣∣∣
∫

Θ

ϕ(θ)ǫn (dθ)

∣∣∣∣
p] 1

p

≤
Cnϕ

N1/2
, (59)

where ϕ : Θ → R, ϕ = supθ∈Θ |ϕ(θ)| , ǫn (dθ) =
p̂ (dθ| y0:n) − p (dθ| y0:n), it is still unsatisfactory as Cn

typically grows exponentially/polynomially with n.

As a result on-line Bayesian parameter estimation is typ-
ically implemented using advanced SMC algorithms or
standard SMC (see Section 2.2) but with introduced artifi-
cial dynamics for the fixed parameter. However, we believe
that none of the methods presented in this section are
satisfactory. This should not come as a surprise. Even for
a fixed θ, the SMC estimate of pθ (y0:n) has a relative
variance that increases linearly with n under favorable
mixing assumptions; see (19). The methods in this section
try to approximate p (θ| y0:n) which is given by

p (θ| y0:n) ∝ pθ (y0:n) p (θ) . (60)

This is a hard problem as it implicitly requires having
to approximate pθ(i) (y0:n) for all the particles

{
θ(i)
}

approximating p (θ| y0:n). Hence we expect all on-line
Bayesian methods to provide estimates whose variance will
increase at least linearly with n; that is these methods will
provide poorer approximations as n increases.

Artificial dynamics A pragmatic approach that might
be useful in some applications is to introduce artificial
dynamics for the parameter θ [24], [28]:

θn+1 = θn + εn+1 (61)

where {εn}n≥0 is a small (and decreasing with n) artifi-
cial dynamic noise. SMC can now be applied to approxi-
mate {p (x0:n, θ| y0:n)}. A related kernel density estimation
method also appeared in [37], which proposes to use a
kernel density estimate of the target

p̂ (θ| y0:n) =
1

N

N∑

i=1

Mh

(
θ − θ(i)n

)
(62)

whereM is a convolution kernel, e.g. Gaussian or Epanech-
nikov, and h the smoothing parameter or width. Then
at time n + 1 samples from (62) to obtain a new set of
particles. As before the static parameter is transformed
to a slowly time-varying one, whose dynamics is related
to the width of the kernel Mh. Modifying the original



problem means that it is hard to quantify how much
bias is introduced in the resulting estimates. Also, both
these methods require a significant amount of tuning, e.g
choosing of the kernel width or the variance of the artificial
dynamic noise.

Practical filtering In [42], the authors rely on the follow-
ing key fixed-lag approximation:

p (x0:n−L, θ| y0:n−1) ≈ p (x0:n−L, θ| y0:n) (63)

for L large enough; that is x0:n−L has very little influence
on observations coming after n. To sample approximately
from p (θ| y0:n), they propose using several MCMC chains
in parallel to sample from

p
(
xn−L+1:n, θ| y0:n, X

(i)
0:n−L

)
(64)

= p
(
xn−L+1:n, θ| yn−L+1:n, X

(i)
n−L

)
(65)

which is an approximation to p (xn−L+1:n, θ| y0:n) . Then
they collect the last simulated sample for each chain

X
(i)
n−L+1:n, increment the time index and run several

MCMC chains in parallel to sample from

p
(
xn−L+2:n+1, θ| yn−L+2:n+1, X

(i)
0:n−L+1

)
(66)

and so on. Like all methods based on fixed-lag approxima-
tion, the choice of the lag L is difficult and there is a non-
vanishing bias which is difficult to quantify. However, the
method seems to perform well on the examples presented
by the authors.

Using MCMC steps within SMC algorithms To avoid the
introduction of an artificial dynamic model or of a fixed-
lag approximation, an approach originally proposed in [23]
consists of adding MCMC steps to re-introduce “diversity”
among the particles. More precisely, assume that at time
n that we have access to an SMC approximation of
p (x0:n, θ| y0:n) of the form

pθ (d (x0:n, θ)| y0:n) =
1

N

N∑

i=1

δ(
X

i

0:n,θ
i

n

) (d (x0:n, θ)) .

To add diversity in this population of particles, we
simply use an MCMC kernel with invariant density
p (x0:n, θ| y0:n), i.e.(

X
(i)
0:n, θ

(i)
n

)
∼ Kn

(
·, ·|X

i

0:n, θ
i

n

)

where by construction Kn satisfies

p (x′0:n, θ
′| y0:n) =∫

p (x0:n, θ| y0:n)Kn (x′0:n, θ
′|x0:n, θ) d (x0:n, θ) .

Contrary to standard applications of MCMC, the kernel
does not have to be ergodic. It is actually never ergodic
in practice as ensuring ergodicity would require one to
sample an increasing number of variables over time – the
algorithm would not be sequential anymore. In practice

one therefore setsX
(i)
0:n−L = X

i

0:n−L for some integer L ≥ 1

and only sample θ
(i)
n and possiblyX

(i)
n−L+1:n. Note that the

memory requirements for this method does not increase
over time if p (y0:n| θ, x0:n) can be summarized by a set of
fixed dimensional sufficient statistics.

This method was first used in an on-line Bayesian param-
eter estimation context in [4]. In this paper the authors
were using

Kn (x′0:n, θ
′|x0:n, θ) = δx0:n (x′0:n) p(θ′|x0:n, y0:n),

that is a Gibbs step to update the parameter val-
ues. It was used in a context where p (y0:n| θ, x0:n) =
p(θ|sn(x0:n, y0:n)), where sn(x0:n, y0:n) is a fixed- dimen-
sional vector of sufficient statistics. In this case, the algo-
rithm is particularly elegant as the memory requirements
do not increase over time. Similar strategies were adopted
in [21] and [46]. In cases where it is possible to sample from
pθ(xn|yn, xn−1) and compute pθ(yn|xn−1), it is beneficial
to swap the order of the sampling and resampling steps;
this is just a particular case of the APF of [41]. This
strategy is also beneficial in an on-line Bayesian param-
eter estimation context and has been discussed in [4, See
footnote, page 4] and at length in [31].

Degeneracy issues As opposed to the methods re-
lying on kernel or artificial dynamics, these sufficient
statistics/MCMC-based approaches have the advantage of
adding diversity to the particles approximating p (θ|y0:n)
without perturbing the target distribution. Unfortunately,
these elegant algorithms are not robust. This was no-
ticed in [4]. The reason for this is that these algorithms
rely implicitly on the SMC approximation of p (x0:n| y0:n)
whose dimension increases with n. Hence they suffer from
the standard degeneracy problem. This poor approxi-
mation of p (x0:n| y0:n) induces a poor approximation of
p(sn(x0:n, y0:n)|y0:n) and the errors do built up over time.
Results such as (22) suggest that the approximation error
increases at least quadratically with n. A convincing ex-
ample of this degeneracy problem for sufficient statistics
is given in [2]. However, these methods cannot completely
be ruled out. For small time horizons, a low dimensional
parameter space (typically not more than 5-10), an in-
formative prior and a large number of particles, they can
perform reasonably well.

5. CONCLUSION

We have reviewed the various SMC algorithms that have
been developed over the past ten years for estimating
the static parameters of a general state-space model. The
degeneracy of the particle population was identified as
the main cause of the poor performance of some of these
SMC algorithms. Several new algorithms that avoided the
particle degeneracy problem and yielded estimates with
less variance were proposed at an increased computational
cost. A summary of most of the algorithms discussed in
this paper, including their advantages/disadvantages and
computational cost, is presented in the following table.
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