
ARTICLE  IN  PRESS

Statistics and Probability Letters ( ) –
www.elsevier.com/locate/stapro

A note on auxiliary particle filters

Adam M. Johansena,∗, Arnaud Doucetb

a Department of Mathematics, University of Bristol, UK
b Departments of Statistics & Computer Science, University of British Columbia, Vancouver, BC, Canada

Received 11 July 2007; received in revised form 7 January 2008; accepted 7 January 2008

Abstract

The auxiliary particle filter (APF) introduced by Pitt and Shephard [Pitt, M.K., Shephard, N., 1999. Filtering via simulation:
Auxiliary particle filters. J. Am. Statist. Ass. 94, 590–599] is a very popular alternative to Sequential Importance Sampling and
Resampling (SISR) algorithms to perform inference in state-space models. We propose a novel interpretation of the APF as an
SISR algorithm. This interpretation allows us to present simple guidelines to ensure good performance of the APF and the first
convergence results for this algorithm. Additionally, we show that, contrary to popular belief, the asymptotic variance of APF-based
estimators is not always smaller than those of the corresponding SISR estimators — even in the ‘perfect adaptation’ scenario.
c© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let t = 1, 2, . . . denote a discrete-time index. Consider an unobserved X -valued Markov process {X t }t≥1 such
that X1 ∼ µ (·) and X t | (X t−1 = xt−1) ∼ f (·|xt−1) where f (·|xt−1) is the homogeneous transition density with
respect to a suitable dominating measure. The observations {Yt }t≥1 are conditionally independent given {X t }t≥1 and
distributed according to Yt | (X t = xt ) ∼ g (·|xt ) where g(·|xt ) is a density with respect to a suitable dominating
measure.

For any sequence {zt }t≥1, we use the notation zi : j =
(
zi , zi+1, . . . , z j

)
. In numerous applications, we are interested

in estimating recursively in time the sequence of posterior densities {p (x1:t |y1:t )}t≥1 given up to a normalising
constant by

p (x1:t |y1:t ) ∝ µ (x1) g (y1|x1)

t∏
k=2

f (xk |xk−1) g (yk |xk) . (1)

When the model is linear Gaussian,1 the posterior distributions are Gaussian and their statistics can be computed
using Kalman techniques. For non-linear non-Gaussian methods, these distributions do not typically admit a closed-
form and it is necessary to employ numerical approximations. Recently, the class of Sequential Monte Carlo (SMC)
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methods – also known as particle filters – has emerged to solve this problem; see Doucet et al. (2001) and Liu
(2001) for a review of the literature. Two classes of methods are primarily used: Sequential Importance Sampling
and Resampling (SISR) algorithms (Del Moral, 2004; Liu, 2001; Doucet et al., 2000) and Auxiliary Particle Filters
(APF) (Pitt and Shephard, 1999; Carpenter et al., 1999; Pitt and Shephard, 2001).

In the literature, the APF methodology is always presented as being significantly different to the SISR methodology.
It was originally introduced in Pitt and Shephard (1999) using auxiliary variables — hence its name. Several
improvements were proposed to reduce its variance (Carpenter et al., 1999; Pitt and Shephard, 2001). In Godsill
and Clapp (2001, p. 141), the APF is presented without introducing any auxiliary variable and also reinterpreted as an
SISR algorithm. However, this SISR algorithm is non-standard as it relies on a proposal distribution at time t on the
path space X t which is dependent on all the paths sampled previously.

We study here the version of the APF presented in Carpenter et al. (1999) which only includes one resampling
step at each time instance. Experimentally this version outperforms the original two-stage resampling algorithm
proposed in Pitt and Shephard (1999) and is widely used; see Carpenter et al. (1999) for a comparison of both
approaches and Fearnhead et al. (2007) for an application to partially-observed diffusions. We propose a novel
interpretation of this APF as a standard SISR algorithm which we believe has two principal advantages over previous
derivations/interpretations. First, it allows us to give some simple guidelines to ensure good performance of the APF.
These guidelines differ from many practical implementations of the APF and explain some of the poor performance
reported in the literature. Second, there is no convergence result available for the APF in the literature whereas there
are numerous results available for SISR algorithms; see Del Moral (2004) for a thorough treatment. Via this novel
interpretation, we can easily adapt these results to the APF. We present here the asymptotic variance associated with
APF-based estimators and show that this asymptotic variance is not necessarily lower than that of the corresponding
standard SISR-based estimators — even in the ‘perfect adaptation’ case which is discussed further below. Note that
after submission of this manuscript some theoretical results for the APF have been established independently in Douc
et al. (2007).

2. SISR and APF

2.1. A generic SISR algorithm

Consider an arbitrary sequence of probability densities {πt (x1:t )}t≥1. To sample sequentially from these
distributions, the SISR algorithm introduces at time t an importance distribution qt (xt |xt−1) to impute X t (and q1 (x1)

at time 1). Note that it is possible to use a distribution qt (xt |x1:t−1) but this additional freedom is not useful for the
optimal filtering applications discussed here. The SISR algorithm proceeds as follows; see for example Doucet et al.
(2001) and Liu (2001, chapter 3) for variations:

At time 1.
Sampling step
For i = 1 : N , sample X (i)

1,1 ∼ q1 (·).
Resampling step

For i = 1 : N , compute w1

(
X (i)

1,1

)
=

π1

(
X (i)

1,1

)
q1

(
X (i)

1,1

) and W (i)
1 =

w1

(
X (i)

1,1

)
∑N

j=1 w1

(
X ( j)

1,1

) .

For i = 1 : N , sample X̌ (i)
1,1 ∼

∑N
j=1 W ( j)

1 δ
X ( j)

1,1
(dx1), where δx (·) denotes the singular distribution located at x .

At time t, t ≥ 2.
Sampling step

For i = 1 : N , sample X (i)
t,t ∼ qt

(
·|X̌ (i)

t−1,t−1

)
.

Resampling step

For i = 1 : N , compute wt

(
X̌ (i)

1:t−1,t−1, X (i)
t,t

)
=

πt

(
X̌ (i)

1:t−1,t−1,X (i)
t,t

)
πt−1

(
X̌ (i)

1:t−1,t−1

)
qt

(
X (i)

t,t |X̌
(i)
t−1,t−1

)
and W (i)

t =
wt

(
X̌ (i)

1:t−1,t−1,X (i)
t,t

)
∑N

j=1 wt

(
X̌ ( j)

1:t−1,t−1,X ( j)
t,t

) .
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For i = 1 : N , sample X̌ (i)
1:t,t ∼

∑N
j=1 W ( j)

t δ(
X̌ ( j)

1:t−1,t−1,X ( j)
t,t

) (dx1:t ) .

The empirical measure

ρ̂N
t (dx1:t ) =

1
N

N∑
i=1

δ(
X̌ (i)

1:t−1,t−1,X (i)
t,t

) (dx1:t )

is an approximation of πt−1 (x1:t−1) qt (xt |xt−1) whereas

π̂ N
t (dx1:t ) =

N∑
i=1

W (i)
t δ(

X̌ (i)
1:t−1,t−1,X (i)

t,t

) (dx1:t )

is an approximation of πt (x1:t ).
Whilst, in practice, one may also wish to employ a lower variance resampling strategy such as residual resampling

and to use it only when some criterion indicates that it is necessary, results of the sort presented here are sufficient to
guide the design of particular algorithms and the additional complexity involved in considering more general scenarios
serves largely to produce substantially more complex expressions which obscure the important points.

2.2. APF as an SISR algorithm

The standard SISR algorithm for filtering corresponds to the case in which we set πt (x1:t ) = p (x1:t |y1:t ). In this
case, for any test function ϕt : X t

→ R, we estimate ϕt =
∫

ϕt (x1:t ) p (x1:t |y1:t ) dx1:t by

ϕ̂N
t,SISR =

∫
ϕt (x1:t ) π̂ N

t (dx1:t ) =

N∑
i=1

W (i)
t ϕ

(
X̌ (i)

1:t−1,t−1, X (i)
t,t

)
. (2)

The APF described in Carpenter et al. (1999) corresponds to the case where we select

πt (x1:t ) = p̂ (x1:t |y1:t+1) ∝ p (x1:t |y1:t ) p̂ (yt+1|xt ) (3)

with p̂ (yt+1|xt ) an approximation of

p (yt+1|xt ) =

∫
g (yt+1|xt+1) f (xt+1|xt ) dxt+1

if p (yt+1|xt ) is not known analytically. As the APF does not approximate p (x1:t |y1:t ) directly, we need to
use importance sampling to estimate ϕt . We use the importance distribution πt−1 (x1:t−1) qt (xt |xt−1) whose
approximation ρ̂N

t (dx1:t ) is obtained after the sampling step. The resulting estimate is given by

ϕ̂N
t,APF =

N∑
i=1

W̃ (i)
t ϕt

(
X̌ (i)

1:t−1,t−1, X (i)
t,t

)
(4)

where

W̃ (i)
t =

w̃t

(
X̌ (i)

t−1,t−1, X (i)
t,t

)
N∑

j=1
w̃t

(
X̌ ( j)

t−1,t−1, X ( j)
t,t

)
and

w̃t (xt−1:t ) =
p (x1:t |y1:t )

πt−1 (x1:t−1) qt (xt |xt−1)
∝

g (yt |xt ) f (xt |xt−1)

p̂ (yt |xt−1) qt (xt |xt−1)
. (5)

In both cases, we usually select qt (xt |xt−1) as an approximation to

p (xt |yt , xt−1) =
g (yt |xt ) f (xt |xt−1)

p (yt |xt−1)
.
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This distribution is often referred to as the optimal importance distribution (Doucet et al., 2001). When it is possible
to select qt (xt |xt−1) = p (xt |xt−1, yt ) and p̂ (yt |xt−1) = p (yt |xt−1), we obtain the so-called ‘perfect adaptation’
case (Pitt and Shephard, 1999). In this case, the APF takes a particularly simple form as the importance weights (5)
are all equal. This can be interpreted as a standard SISR algorithm where the order of the sampling and resampling
steps is interchanged. It is widely believed that this strategy yields estimates with a necessarily smaller variance as it
increases the number of distinct particles at time t . We will show that this is not necessarily the case.

2.3. APF settings

It is well known in the literature that we should select for qt (xt |xt−1) a distribution with thicker tails than
p (xt |yt , xt−1). However, this simple reinterpretation of the APF shows that we should also select a distribution
p̂ (x1:t−1|y1:t ) with thicker tails than p (x1:t−1|y1:t ) as p̂ (x1:t−1|y1:t ) is used as an importance distribution to estimate
p (x1:t−1|y1:t ). Thus p̂ (yt |xt−1) should be more diffuse than p (yt |xt−1). It has been suggested in the literature
to set p̂ (yt |xt−1) = g (yt |µ (xt−1)) where µ (xt−1) corresponds to the mode, mean or median of f (xt |xt−1).
However, this simple approximation will often yield an importance weight function (5) which is not upper bounded
on X × X and could lead to an estimator with a large – or even infinite – variance. An alternative, and preferable
approach consists of selecting an approximation p̂ (yt , xt |xt−1) = p̂ (yt |xt−1) p̂ (xt |yt , xt−1) of the distribution
p (yt , xt |xt−1) = p (yt |xt−1) p (xt |yt , xt−1) = g (yt |xt ) f (xt |xt−1) such that the ratio (5) is upper bounded onX×X
and such that it is possible to compute p̂ (yt |xt−1) pointwise and to sample from p̂ (xt |yt , xt−1).

2.4. Convergence results

There is a wide range of sharp convergence results available for SISR algorithms (Del Moral, 2004). We present
here a Central Limit Theorem (CLT) for the SISR and the APF estimates (2) and (4), giving the asymptotic variances
of these estimates. The asymptotic variance of the CLT for the SISR estimate (2) has been established several times in
the literature. We present here a new representation which we believe clarifies the influence of the ergodic properties
of the optimal filter on the asymptotic variance.

Proposition. Under the regularity conditions given in Chopin (2004, Theorem 1) or Del Moral (2004, Section 9.4,
pp. 300–306), we have

√
N

(
ϕ̂N

t,SISR − ϕt

)
→ N

(
0, σ 2

SISR (ϕt )
)

,

√
N

(
ϕ̂N

t,APF − ϕt

)
→ N

(
0, σ 2

APF (ϕt )
)

where ‘→’ denotes convergence in distribution and N
(
0, σ 2

)
is the zero-mean normal of variance σ 2. Moreover, at

time t = 1 we have

σ 2
SISR (ϕ1) = σ 2

APF (ϕ1) =

∫
p (x1|y1)

2

q1 (x1)
(ϕ1 (x1) − ϕ1)

2 dx1

whereas for t > 1

σ 2
SISR (ϕt ) =

∫
p (x1|y1:t )

2

q1 (x1)

(∫
ϕt (x1:t ) p (x2:t |y2:t , x1) dx2:t − ϕt

)2

dx1

+

t−1∑
k=2

∫
p (x1:k |y1:t )

2

p (x1:k−1|y1:k−1) qk (xk |xk−1)

(∫
ϕt (x1:t ) p (xk+1:t |yk+1:t , xk) dxk+1:t − ϕt

)2

dx1:k

+

∫
p (x1:t |y1:t )

2

p (x1:t−1|y1:t−1) qt (xt |xt−1)

(
ϕt (x1:t ) − ϕt

)2 dx1:t , (6)

and

σ 2
APF(ϕt ) =

∫
p(x1|y1:t )

2

q1(x1)

(∫
ϕt (x1:t )p(x2:t |y2:t , x1)dx2:t − ϕ̄t

)2

dx1
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+

t−1∑
k=2

∫
p(x1:k |y1:t )

2

p̂(x1:k−1|y1:k)qk(xk |xk−1)

(∫
ϕt (x1:t )p(xk+1:t |yk+1:t , xk)dxk+1:t − ϕ̄t

)2

dx1:k

+

∫
p(x1:t |y1:t )

2

p̂(x1:t−1|y1:t )qt (xt |xt−1)
(ϕt (x1:t ) − ϕ̄t )

2 dx1:t . (7)

Sketch of Proof. Expression (6) follows from a straightforward but tedious rewriting of the expression given in Del
Moral (2004, Section 9.4, pp. 300–306). We do not detail these lengthy calculations here.

The variance of the estimate
∑N

i=1 W (i)
t ϕt (X̌ (i)

1:t−1,t−1, X (i)
t,t ), when πt (x1:t ) is given by (3), is given by an expression

similar to (6) but with the terms p̂ (x1:k |y1:t+1), p̂ (x1:k−1|y1:k) and p̂ (xk+1:t−1|yk+1:t+1, xk) replacing p (x1:k |y1:t ),
p (x1:k−1|y1:k−1) and p (xk+1:t |yk+1:t , xk), respectively (and with ϕ̄t replaced by

∫
ϕt (x1:t ) p̂(x1:t |y1:t+1)d(x1:t )).

Then by the same argument as Chopin (2004, Lemma A2) the variance σ 2
APF (ϕt ) is equal to the variance of∑N

i=1 W (i)
t ϕ′

t (X̌ (i)
1:t−1,t−1, X (i)

t,t ) where

ϕ′
t (x1:t ) =

p (x1:t |y1:t )

p̂ (x1:t |y1:t+1)
[ϕt (x1:t ) − ϕ̄t ]

and the expression (7) follows directly. A rigorous derivation can be found in Johansen (2006) or in further detail
in Johansen and Doucet (2007). �

Corollary. In the perfect adaptation scenario where p̂ (yt |xt−1) = p (yt |xt−1) and qt (xt |xt−1) = p (xt |yt , xt−1), we
have

σ 2
APF(ϕt ) =

∫
p(x1|y1:t )

2

p(x1|y1)

(∫
ϕt (x1:t )p(x2:t |y2:t , x1)dx2:t − ϕ̄t

)2

dx1

+

t−1∑
k=2

∫
p(x1:k |y1:t )

2

p(x1:k |y1:k)

(∫
ϕt (x1:t )p(xk+1:t |yk+1:t , xk)dxk+1:t − ϕ̄t

)2

dx1:k

+

∫
p(x1:t |y1:t ) (ϕt (x1:t ) − ϕ̄t )

2 dx1:t .

Remark. The asymptotic bias for the APF can also be established by a simple adaptation of Del Moral et al. (2007,
Theorem 1.1). Both the bias and variance associated with ϕt (x1:t ) = ϕt (xt ) can be uniformly bounded in time
using Del Moral et al. (2007, Proposition 4.1.); see also Chopin (2004, Theorem 5).

One may interpret these variance expressions via a local error decomposition such as that of Del Moral (2004,
Chapters 7 & 9). The error of the particle system estimate at time t may be decomposed as a sum of differences,
specifically, the difference in the estimate due to propagating forward the particle system rather than the exact
solution from each time-step to the next. Summing over all such terms gives the difference between the particle
system estimate and the truth. These variance expressions illustrate that, asymptotically at least, the variance follows
a similar decomposition.

Each term in the variance expressions matches an importance sampling variance. Loosely, it is the variance
associated with estimating the integral of a function under the smoothing distribution p(x1:k |y1:t ) using as an
importance distribution the last resampling distribution propagated forward according to the proposal; the functions
being integrated correspond to propagating the system forward to time t using all remaining observations and then
estimating the integral of ϕt . Thus, for ergodic systems in which some forgetting property holds, the early terms in this
sum will decay (at least when ϕt depends only upon the final time marginal) and the system will remain well behaved
over time.

3. Example

To illustrate the implications of these results, we employ the following binary state-space model with common
state and observation spaces:

X = {0, 1} p(x1 = 0) = 0.5 p(xt = xt−1) = 1 − δ yt ∈ X p(yt = xt ) = 1 − ε.
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Fig. 1. Asymptotic variance difference, σ 2
APF(ϕ2) − σ 2

SISR(ϕ2) for the example. This is negative wherever the APF outperforms SISR.

This is an extremely simple state-space model and one could obtain the exact solution without difficulty. However,
the evolution of this system from t = 1 to t = 2 provides sufficient structure to illustrate the important points and the
simplicity of the model enables us to demonstrate concepts which generalise to more complex scenarios.

We consider the estimation of the function ϕ2(x1:2) = x2 during the second iteration of the algorithms when
the observation sequence begins with y1 = 0, y2 = 1. The optimal importance distributions and the true predictive
likelihood are available in this case. Additionally, the model has two parameters which are simple to interpret: δ

determines how ergodic the dynamic model is (when δ is close to 0.5 the state at time t is largely unrelated to that at
time t − 1; when it approaches 0 or 1 the two become extremely highly correlated) and ε determines how informative
the observations are (when ε reaches zero, the observation at time t specifies the state deterministically, and as it
approaches 0.5 it provides no information about the state).

Fig. 1 shows the difference between the asymptotic variance of the APF and SISR algorithms in this setting; note
that the function plotted is negative whenever the APF outperforms SISR in terms of the asymptotic variance of its
estimates. A number of interesting features can be discerned. Particularly, the APF provides better estimates when δ

is small, but exhibits poorer performance when δ ∼ 1 and ε ∼ 0.25. When δ < 0.5 the observation sequence has low
probability under the prior, the APF ameliorates the situation by taking into account the predictive likelihood. The
case in which ε and δ are both small is, unsurprisingly, that in which the APF performs best: the prior probability of
the observation sequence is low, but the predictive likelihood is very concentrated.

Whilst it may appear counter-intuitive that the APF can be outperformed by SIR even in the perfect adaptation case,
this can perhaps be understood by noting that perfect adaptation is simply a one-step-ahead process. The variance
decomposition contains terms propagated forward from all previous times and whilst the adaptation may be beneficial
at the time which it is performed it may have a negative influence on the variance at a later point. We also note that,
although the APF approach does not dominate SIR, it seems likely to provide better performance in most scenarios.

Fig. 2 shows experimental and asymptotic variances for the two algorithms. The displayed experimental variances
were calculated as N times the empirical variance of 500 runs of each algorithm with N = 3, 000 particles. This
provides an illustration that the asymptotic results presented above do provide a useful performance guide.

4. Discussion and extension

The main idea behind the APF, that is modifying the original sequence of target distributions to guide particles
into promising regions, can be extended outside the filtering framework. Assume we are interested in a sequence
of distributions {πt (x1:t )}. Instead of using the SISR algorithm to sample from it, we use the SISR algorithm on a
sequence of distributions {π̂t+1 (x1:t )} where π̂t+1 (x1:t ) is an approximation of

πt+1 (x1:t ) =

∫
πt+1 (x1:t+1) dxt+1.

We then perform inference with respect to πt (x1:t ) by using importance sampling with the importance distribution
π̂t−1 (x1:t−1) qt (xt |x1:t−1) obtained after the sampling step at time t .

Please cite this article in press as: Johansen, A.M., Doucet, A., A note on auxiliary particle filters. Statistics and Probability Letters (2008),
doi:10.1016/j.spl.2008.01.032



ARTICLE  IN  PRESS
A.M. Johansen, A. Doucet / Statistics and Probability Letters ( ) – 7

Fig. 2. Comparative variance graph: empirical and asymptotic results for the example.

We also note that it has been recommended in the literature by several authors (e.g. Liu (2001, pp. 73–74)) to
resample the particles not according to the normalized weights associated with wSISR

t (x1:t ) =
πt (x1:t )

πt−1(x1:t−1)qt(xt |x1:t−1)
but according to a generic score function wt (x1:t ) > 0 at time t

wt (x1:t ) = g
(
wSISR

t (x1:t )
)

,

where g : R+
→ R+ is a monotonically increasing function; a common choice being g (x) = xα where 0 < α ≤ 1.

To the best of our knowledge, it has never been specified clearly in the literature that this approach simply corresponds
to a standard SISR algorithm for the sequence of distributions

π ′
t (x1:t ) ∝ g

(
wSISR

t (x1:t )
)

πt−1 (x1:t−1) qt (xt |x1:t−1) .

The estimates of expectations with respect to πt (x1:t ) can then be computed using importance sampling. This
approach is rather similar to the APF and could also be easily studied.
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