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Bayesian Curve Fitting Using MCMC With
Applications to Signal Segmentation
Elena Punskaya, Christophe Andrieu, Arnaud Doucet, and William J. Fitzgerald

Abstract—We propose some Bayesian methods to address the
problem of fitting a signal modeled by a sequence of piecewise con-
stant linear (in the parameters) regression models, for example,
autoregressive or Volterra models. A joint prior distribution is set
up over the number of the changepoints/knots, their positions, and
over the orders of the linear regression models within each segment
if these are unknown. Hierarchical priors are developed and, as
the resulting posterior probability distributions and Bayesian esti-
mators do not admit closed-form analytical expressions, reversible
jump Markov chain Monte Carlo (MCMC) methods are derived
to estimate these quantities. Results are obtained for standard de-
noising and segmentation of speech data problems that have al-
ready been examined in the literature. These results demonstrate
the performance of our methods.

Index Terms—Bayesian model, curve fitting, Markov chain
Monte Carlo methods, signal segmentation.

I. INTRODUCTION

A. Problem Statement

REGRESSION problems are among the most common
problems in signal processing. The aim is to estimate an

assumed functional relationship between a response and some
explanatory variables given noisy measurements. Many para-
metric and semi-parametric methods have been proposed in the
literature in order to solve these problems, including smoothing
splines and kernel methods. We adopt here a standard model
where the regression function is assumed to be a function
made up of low-order pieces that are standard linear regression
models within some segments, where the number and position
of the segments are parameters to estimate.

More formally, let us denote for any generic sequence,
T, and let be a vector of real

observations. The elements of may be represented by
one of the models , corresponding to the case when the
signal is in the form of the linear regression model with piece-
wise constant parameters and( ) change-
points. That is, one has

(1)
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where is a vector of model parameters for theth
segment,1 and is a vector of i.i.d.

Gaussian noise samples of varianceassociated with theth
model. The changepoints of the model are arranged

in the vector , and we adopt the convention
and for notational convenience. We also denote

and , where . The
matrix is the matrix of basis functions for theth segment

. For example, for the piecewise polynomial
model, is given by

...
...

...
. . .

...

and for a piecewise constant autoregressive (AR) process,
is of the following form:

...
...

. . .
...

Typically, the orders of the different linear regression models
are assumed equal and known, that is,

for any . However, in practice, there are
numerous applications (speech processing, for example) where
different model orders should be considered for different
segments and estimated from the data. Thus, in the general
case, the number of changepointsand the associated param-
eters ) are unknown. Given

, our aim is to estimate and .

B. Background

This model allows for a wide range of applications from
curve fitting of noisy data [1] to changepoint detection and
signal segmentation [2]. For example, the general piecewise
linear model and its extension to study multiple changepoints
in non-Gaussian impulsive noise environments is studied in [3].
In [4] and [5], it is shown that piecewise constant autoregressive
(AR) processes excited by white Gaussian noise have proved
useful for processing real signals, such as speech data.

In general, this class of models is very flexible with a large
number of parameters to be estimated; therefore, one needs to
prevent overfitting in some way. We adopt a Bayesian approach

1For notational simplicity, indexk is suppressed here and later.
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and set a prior (which also works as a penalty against overfitting)
on all the unknown parameters. Bayesian curve fitting/signal
segmentation for related models has been studied by several
authors recently, including [1]–[3] and [6]. Gustafsson [2] and
Djurić [6] have proposed to perform MAP (maximuma pos-
teriori) changepoint estimation using deterministic algorithms.
Although these methods are fast and can give good results, one
cannot compute any confidence intervals or perform Bayesian
model averaging. Moreover, it seems difficult to generalize them
to the case where the model orderwithin each segment is un-
known.

C. Resolution

We favor a “full” Bayesian approach where the complete pos-
terior distribution and any posterior feature of interest is esti-
mated using MCMC. Bayesian approaches for multiple change-
point detection based on MCMC for different models are pro-
posed, for example, in [7] or [8]. The closest work to the one
presented here is the technique followed in [1]; see also [9]. Our
methodology is, however, different in many respects.

Our model is more general as it allows not only for an
unknown number of segments [1] but for an unknown model
order within each segment as well, if necessary [9], that is,
we face a “double” model selection problem. We also adopt
hierarchical prior distributions where the hyperparameters are
assumed random with a vague prior distribution; a similar
approach was adopted in [10]. This has the effect of increasing
robustness of the Bayesian models in comparison with the
standard approach, where these parameters are fixed [1], [2],
which was also demonstrated by a simulation study. We pro-
pose efficient algorithms in order to sample from the posteriors
based on reversible jump MCMC [11].

D. Plan

The rest of the paper is organized as follows. For the sake of
clarity, as the “double” selection problem is quite complex, we
have chosen to begin in Section II with the case where the orders
of the different linear regression models are all equal and
known; then, in Section III, the case where they can be different
and are unknown is treated. In Section IV, we apply our methods
to standard denoising problems [1] and speech segmentation [2],
[4], [5].

II. BAYESIAN INFERENCE FORFIXED MODEL DIMENSIONS

We assume that the model order for each segment is fixed and
known a priori, i.e., , for , is given,
and for notational convenience, we will denote the unknown
parameters in this case .

A. Bayesian Model and Estimation Objectives

We follow a Bayesian approach where are regarded as
random with a known prior that reflects our degree of belief in
the different values of these quantities. In order to increase ro-
bustness of the prior, the hyperparameters are assumed random
with a vague distribution [12], that is, we adopt a hierarchical
Bayesian model.

1) Bayesian Hierarchical Model:In our case, it is natural to
introduce a binomial distribution as a prior distribution for the
number of changepoints and their positions (as in [2])

(2)

where such that
, and is an indicator function of the set

(1 if , 0 otherwise). We assign a normal distribution to
the parameters of the models ( here)

(3)

with the same hyperparameter for all segments when the
model order is assumed known, , , and
a conjugate Inverse-Gamma distribution to the noise variances

(4)

with . This choice of prior [see (3) and (4)], given the
Gaussian noise model, allows the marginalization of the param-
eters2 .

The algorithm requires the specification of and . It is
clear that these parameters play an important role in model se-
lection. Indeed, the Bayes factors are dependent on them. Thus,
in order to increase the robustness of the prior, we propose to
estimate from the data (as it is done, for example,
in [10]), i.e., we consider to be random. We assign
a vague conjugate Inverse-Gamma distribution to the scale hy-
perparameter

and set . We also choose a uniform prior distribution for
, and a noninformative improper Jeffreys’ prior for
.
Thus, the following hierarchical structure is assumed for the

prior of the parameters.

which can be visualized with a directed acyclic graph (DAG),
as shown in Fig. 1 (for convenience, we do not show the fixed
parameters , and ).

For our problem, the overall parameter space can be written
as a finite union of subspaces

, where denotes the space of the

parameters for the th segment, i.e., ,

, denotes the hyperparameter

space, which is given by ,
and ( is defined in Section II-A1).

2It is worth noticing that from the algorithmic point of view, this model allows
for the faster updating of the Markov chain due to conditional independence be-
tween the coefficient and regression variance parameters on the hyperparame-
ters.
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Fig. 1. DAG for the prior distribution.

There is a natural hierarchical structure for this setup, which
we can formalize by modeling the joint distribution of all vari-
ables as

As the noise is assumed to be i.i.d. Gaussian (Section I), the
likelihood takes the form

where is the Euclidean norm.
2) Bayesian Detection and Estimation:Any Bayesian infer-

ence on and is based on the following posterior ob-
tained using Bayes’ theorem:

Our aim is to estimate this posterior distribution and, more
specifically, some of its features such as the marginal dis-
tributions. In our case, however, it is not possible to obtain
these quantities analytically, as it requires the evaluation
of high-dimensional integrals of nonlinear functions in the
parameters. Therefore, we apply MCMC methods and a
reversible jump MCMC method in particular (see Section II-B
for details). The key idea is to build an ergodic Markov chain

whose equilibrium distribution
is the desired posterior distribution. Under weak additional
assumptions, the samples generated by the Markov
chain are asymptotically distributed according to the posterior
distribution and can thus be used to easily evaluate all posterior
features of interest.

The proposed Bayesian model allows for the integration of
the nuisance parameters ( , ) and hyperparameter

. The resultant expression for up to a nor-
malizing constant is (here T )

(5)

with

T

T

T (6)

where, again, and for the fixed model order
case.

It has already been pointed out that this posterior distribu-
tion is complex in the parameters and that the pos-
terior model probability cannot be determined an-
alytically. In the next section, we develop a method to estimate

or, if needed

Once the approximation of is obtained, the
number of changepoints and their positions can be easily esti-
mated according to the MAP criterion

where and is the corresponding estimates. Alter-
natively, one can compute the minimum mean square error
(MMSE) estimate of the regression function using Bayesian
model averaging.

B. MCMC Algorithm

The problem addressed here is, in fact, a model uncertainty
problem of variable dimensionality in terms of the number
of changepoints. It can be treated efficiently using reversible
jump MCMC method [11]. This method extends the tradi-
tional Metropolis–Hastings algorithm to the case where moves
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from one dimension to another are proposed and accepted
with some probability. This probability should be designed
in a special way in order to preserve reversibility and thus
ensure that is the invariant distribution
of the Markov chain (MC). In general, if we propose a move
from the model with parameters to the model

with parameters using a proposal distribution
, the acceptance probability is given by

(7)

Here, the proposal is made directly in the new parameter
space rather than via “dimensional” matching random variables
[11], and the Jacobian term is equal to 1; see [13] and [14] for a
detailed introduction.

In fact, a particular choice of the moves will only affect the
convergence rate of the algorithm. To ensure a low level of re-
jection, we want the proposed “jumps” to be small; therefore,
the following moves have been selected:

• birth of a changepoint (proposing a new changepoint at
random);

• death of a changepoint (removing a changepoint chosen
randomly);

• update of the changepoint positions (proposing a new po-
sition for each of the existing changepoints).

At each iteration, one of the moves described above is ran-
domly chosen with probabilities , , and such that

for all . For , the death of
a changepoint is impossible, and for , the birth is im-
possible; thus, , . Otherwise, we choose

. After each move, an update of the hyperparameters is
performed. We now describe the main steps of the algorithm.

Reversible Jump MCMC Algorithm
(Main Procedure)
1) Initialize . Set .
2) If then birth of a new

changepoint (Section II-B1);
else if then death of a
changepoint (Section II-B1);
else update the changepoints positions
(Section II-B2).

3) Update of the hyperparameters (Sec-
tion II-B3).

4) and goto 2.

We now detail the steps of the algorithm. To simplify the nota-
tion, we drop the superscript from all variables at iteration.

1) Death/Birth of the Changepoints:First, let the current
state of the MC be ( , , and consider the death
move, which implies a modification of the dimension of the
model, respectively, from to . Our proposal begins by
choosing a changepoint to be removed among existing
ones. If the move is accepted, then two segments th and

Fig. 2. Death (left) and birth (right) moves.

th will be merged, thus reducing by , and a new segment
will be created (see Fig. 2).

Algorithm for the Death Move
Choose a changepoint to be removed:

.
Evaluate ; see (8).
If , the new MC state is
accepted.

For the birth move ( ), again, the position of
a new changepoint is first proposed, which means that the
th segment (for ) should be split into two if

the move is accepted. Assuming that the current state of the
MC is , we have the following (

here).

Algorithm for the Birth Move
Propose a new changepoint position

.
Evaluate ; see (8).
If , the new state of
the MC is accepted.

The acceptance ratio of the birth and death (of a changepoint)
moves are deduced from the general expression (7), and the cor-
responding acceptance probabilities are

(8)

For the birth of the changepoint, , we obtain
from (5)
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Fig. 3. Update of the changepoint positions.

where, for convenience, we denote for the segment between the
changepoints and

(9)

2) Update of the Changepoint Positions:Although the up-
date of the changepoint positions does not involve a change
in dimension, it is somewhat more complicated than the birth/
death moves. In fact, updating the position of changepoint
means removing theth changepoint and proposing instead a
new one (this approach also facilitates the extension of the al-
gorithm to the more complex case of unknown model orders for
each segment). We determinesuch that , and
it is worth noticing that if , the update move may actually
be described as a combination of the birth of the changepoint
and the death of the changepoint(see Fig. 3). Otherwise, we
just update the position within the same segment. This process
is repeated for all existing changepoints and is de-
scribed later in more detail.

Algorithm for the Update of the
Changepoint Positions
For

Propose a new position for the th
changepoint ;
determine such that .
Evaluate , if then see (10)
else see (11).
If then the new state
of the MC is accepted.

Since for the update of the positions of changepoints
combines the birth of theth changepoint and death of theth
changepoint at the same time, the acceptance ratio for the pro-
posed move is given by

(10)

If , it becomes

(11)

where is defined in (9).
We have also used a Metropolis–Hasting update with random

walk proposal to perform a local exploration of the space.
3) Update of the Hyperparameters:The algorithm devel-

oped requires the simulation of the hyperparametersand .
This can be done according to standard Gibbs moves [15] so
that and are sampled from Inverse-Gamma and Gamma
distributions, respectively.

T

(12)

(13)

The probability distribution allowing the update of requires
the simulation of the nuisance parameters , which are,
in turn, sampled as

(14)

(15)

with , (as we are considering the fixed
model order case). Thus, assuming that the current state of the
MC is , the update of the hyperparameters is per-
formed according to the following algorithm.

Algorithm for the Update of the
Hyperparameters

Update of
sample and

, see (14) and (15).

sample see
(12).
Sample see (13).
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III. B AYESIAN INFERENCE FORUNKNOWN MODEL

DIMENSIONS

In the previous section, we addressed the problem of segmen-
tation under the assumption that , for ,
with known . However, in many applications, different model
orders should be considered for different segments, and these
model orders should also be estimated from the data available.
We now address this difficult problem.

A. Extended Bayesian Model

In Section II-A, an original Bayesian model was proposed
for the case of fixed model orders for each segment. The steps
analogous to those taken in that section can yield an extended
Bayesian model whereby the unknown parameters, including
the orders of the models for different segments, are regarded
as being drawn from appropriate prior distributions.

1) Hierarchical Structure for the Prior:Here, we adopt a
truncated Poisson distribution for the model order3

where the mean is interpreted as the expected (approximate
as ) number of model parameters.

For the parameters, , , and , we assign priors sim-
ilar to the ones introduced in Section II-A1 [see (2)–(4)], with
the only exception that the hyperparameteris now different

for the different segments , although it is still assumed
to be drawn from the Inverse-Gamma distribution

with . However, since in our particular case the Bayes
factors depends on the hyperparameter[see (22)], we assume
that is also randomly distributed according to a conjugate
prior Gamma distribution to make the prior more robust

with and fixed , ( ). Similarly, we assign
a conjugate prior Gamma density to:

where and , ( ). Again, a uniform prior
distribution and a noninformative Jeffreys’ priors are chosen for

and , correspondingly.
As a result, the following extended hierarchical structure is

assumed for the prior of the parameters.

(16)

3In fact, any other discrete probability distribution may be adopted as a prior
for p . In addition, the priors dependent on the number of changepoints can be
introduced.

Fig. 4. DAG for the prior distribution.

which can be visualized with a DAG, as shown in Fig. 4
(for convenience, we do not show fixed parameters

).
2) Bayesian Inference:As was mentioned in Section II-A2,

the Bayesian inference on the unknown parameters, , ,

and [where ] is based on the pos-
terior probability distribution

(17)

As in the fixed model order case, the parameters
and hyperparameter can be in-

tegrated out giving the marginalized expression for

(18)

where [see also (6) for , , and
].

The resulting posterior distribution again appears highly non-
linear in its parameters, thus precluding analytical calculations,
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and MCMC methods must be employed in order to evaluate the
posterior features of interest.4

B. MCMC Algorithm

In the case where the orders of the models for each segment
are unknown, Bayesian computation for the estimation of the
joint posterior distribution is even
more complex. Here, a “double” model selection, in terms of
both the number of changepointsand the model orders ,
should be performed. Therefore, an MCMC sampler capable
of “jumping” between subspaces of variable dimensionality in
terms of both and , should be constructed. In
order to be able to sample directly from the joint distribution on

with
( denotes the hyperparameter space), we propose a reversible
jump MCMC method [11].

The procedure is similar to the one described in Section II-B.
The moves from the model with parameters
to the model with parameters are gen-
erated using a proposal distribution

and are randomly accepted according to the
acceptance probability

(19)

In particular, moves relative to birth, death of the changepoints,
or update of their positions are randomly chosen with proba-
bilities , , and such that for all

; , , and are the same as in Section II-B.
In addition, due to “double” variable dimensionality, an update
of the model order for each of the segments is performed after
each of the “changepoint” moves. Thus, the algorithm proceeds
as follows.

Reversible Jump MCMC Algorithm
(Main Procedure)
1) Initialize . Set

.
2) If then birth of a new

changepoint (Section III-B1);
else if then death of a
changepoint (Section II-B1);
else update the changepoints positions
(Section III-B1).

3) Update of the model orders and hyperpa-
rameters (Section II-B2).

4) and goto 2.

4We could also integrate out the parameter� , but this increases significantly
the computational complexity of the resulting MCMC sampler.

The different steps of the algorithm are described in the fol-
lowing [the superscript from all variables at iteration is
dropped].

1) Changepoint Moves:The algorithms for the birth, death
of the changepoints, and update of their positions presented in
Section II-B-1 can be easily extended to the case where the
are unknown. The main difficulty here is to choose the proposal
for the new model orders. We employ the following approach. If
two segments th and th are to be merged, the model order
for the new segment is the sum of the model orders of the two
original segments, i.e., , where , are the
model orders of the existing th and th segments. If theth
segment is to be split, one of the new model orders is selected
randomly, , and another one is set equal to

, where is the order of the originalth model
(see Fig. 2). The latter ensures that the birth/death moves are
reversible ( ). The update move, as was mentioned
before, is performed as a combination of the birth and death of
changepoints (see Fig. 3). However, if, during the update, the
position of a changepoint with respect to the other changepoints
does not change (it stays between the same changepoints as it
was before), we do not update the order of the models.

In addition, we should also sample the hyperparameterfor
the new segments created when removing or adding a change-
point (recall that is different from segment to segment). We
select as proposal distribution for

T

(20)

where , are the means of the distributions given by
(14) and (15) but with matrices and cor-
responding to the value of the hyperparameter

[the mean of the distribution ] (see
[16] for details)

T

(21)
The acceptance probabilities for the birth and death moves

are as in (19)

(22)

where from (18) for the birth of the changepoint,
, we obtain

(23)

with

(24)
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The acceptance probability for the update of the changepoint
positions is given by (10) if . For , it becomes

(25)

The algorithms for these moves are presented in more detail
in [16].

2) Model Orders Update:The update of the model orders
for each segment does not involve changing the number of
changepoints or their positions. However, we still have to per-
form “jumps” between the subspaces of different dimensions
and will therefore continue using the reversible jump MCMC
method, although it is formulated now in a less complicated
form. Similarly, the moves are chosen to be

1) birth of the model parameter ( );
2) death of the model parameter ( );
3) update of the hyperparameter.

The probabilities for choosing these moves are defined in ex-
actly the same way as for changepoint moves:

; , ; otherwise, for
. The procedure is performed for each segment and the

main steps are described as follows.

Algorithm for the Update of the Model
Orders and Hyperparameters

For ,
— if then propose
;
else if then propose

;
— if [see (26)], the
new state of the MC is accepted.
— sample ; see
(29),

,
are sam-

pled from (14) and (15).
Propose [see (27)]; if

[see (28)] then .
Sample hyperparameters see (13)
and (30).

The acceptance probability for the different types of moves
(in terms of the model orders) is given by

(26)

where from (19)

T

T

For the birth move ( ), the acceptance ratio is
, where . Assuming

that the current model order is ( ), one obtains the
acceptance ratio for the death move ( ) as

. Thus, the birth/death moves are, indeed,
reversible.

Taking into account the series representation of the exponen-
tial function, we adopt the following proposal distribution for
the parameter :

(27)

and sample according to a Metropolis–Hastings step with the
acceptance probability equal to

(28)

The hyperparameters are sampled using a standard Gibbs
move by analogy with (12).

T

(29)

Similarly, we sample as in (13) and according to

(30)

IV. SIMULATIONS

In the first set of simulations, we address the standard
problem of denoising smooth and unsmooth test functions [1],
[17]. To compare our results with [1], we have used a fixed
model order . Subsequently, we apply our algorithm with
unknown model orders to the segmentation of signals modeled
as piecewise constant AR processes and a speech signal [2],
[4], [5].

A. Curve Fitting: Fixed Model Order

1) Smooth Function:First, we assessed the performance of
the algorithm proposed in Section II by applying it to synthetic
piecewise polynomials with , , and
(model parameters and noise variances are presented in Table I).

The estimates of the number of changepoints and their posi-
tions were obtained using the MAP criterion (see Section II-A2)
after 50 000 iterations of the algorithm and a burn-in period
of 10 000 (further iterations yielded no appreciable difference).
The estimated number of changepoints was equal to , and
Table II gives the estimated changepoint positions. Fig. 5 show
the original noisy and estimated curves. In Fig. 6, the estimation
of the marginal posterior distributions of the number of change-
points is presented. The MMSE estimate of the
regression function obtained by making use of Bayesian model
averaging was 0.026.
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TABLE I
PARAMETERS OF THEPOLYNOMIAL MODEL AND NOISE VARIANCE FOR

EACH SEGMENT

TABLE II
REAL AND ESTIMATED VALUES FORCHANGEPOINTPOSITIONS

Fig. 5. Piecewise polynomials. (Top) Original curve. (Middle) Curve with
noise added. (Bottom) Estimate.

Fig. 6. Estimation of the marginal posterior distribution of the number of
changepoints for the piecewise polynomial model.

The algorithm was coded using Matlab, and the simulations
were performed on a 500 MHz Intel Pentium III PC. Processing
of 1000 iterations required on average 95 s.

TABLE III
ESTIMATED NUMBER OF CHANGEPOINTS ANDAVERAGE MMSE

Fig. 7. Blocks test curve. (Top) True function with noise added. (Bottom)
Estimate of the function.

Fig. 8. Heavisine test curve. (Top) True function with noise added. (Bottom)
Estimate of the function.

2) Unsmooth Functions:In the second example, we applied
our algorithm to some common curves (such as “Blocks,”
“Heavisine”) previously used in the literature as a test [1],
[17]. Following [1], the number of grid points was taken to be
2048, the standard noise deviation was set equal to for
all segments, and the model order for each polynomial was
set to be . The results for the number of changepoints
and average MMSE compared with those obtained by [1] are
presented in Table III. Figs. 7 and 8 show the original functions
with the noise added and the estimates obtained. It is worth
noticing that although the polynomial order equal to 3 was
adopted throughout, the reconstructions of both “Blocks” and
“Heavisine” curve are almost perfect. The estimated number
of changepoints and the average MMSE for “Bumps” and
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TABLE IV
PARAMETERS OF THEAR MODEL AND NOISEVARIANCE FOREACH SEGMENT

TABLE V
REAL AND ESTIMATED VALUES FORCHANGEPOINT AND MODEL ORDER

“Doppler” obtained in additional experiments are also shown
in Table III. (The results for the wavelet methods in [17] are
given in [1]; the method in [1] performs significantly better).

Our hierarchical model allows the “automatic” determination
of hyperparameter values, contrary to the one in [1]. This has
the effect of providing both a more sparse representation of the
regression function and a reduced MMSE as we prevent over-
fitting.

B. Signal Segmentation: Unknown Model Orders

1) Piecewise Constant Autoregressive Processes:We now
illustrate the performance of the segmentation method proposed
above by applying it to synthetic data ( ) , which can be
described as a piecewise constant autoregressive (AR) process
with changepoints. The parameters of the AR models

and noise variances , drawn at random, are given
in Table IV. We interpret the first samples as the initial
conditions and proceed with analysis on the remaining
data points.

The number of iterations of the algorithm was 100 000 (the
results for a higher number of iterations are indistinguishable),
and as was described in Section II-A2, we adopt the MAP as
a detection criterion, from which one, indeed, finds
changepoints. Then, for fixed , the model order for each
segment is estimated by MAP ,

. The results are presented in Table V. Fig. 9 shows
the segmented signal and the estimation of the marginal poste-
rior distributions of the changepoint positions .

Then we estimated the mean and the associated standard de-
viation of the marginal posterior distributions for
50 realizations of the experiment with fixed model parameters
and changepoint positions. The results are presented in Fig. 10,
and it is worth noticing that they are very stable with respect to
the fluctuations in the excitation noise realization.

2) Speech Segmentation:We also implemented the pro-
posed algorithm for processing a real speech signal which
was previously examined in the literature [2], [4], [5]. It was
recorded inside a car by the French National Agency for

Fig. 9. (Top) Segmented signal (the original changepoints are shown as a
solid line, and the estimated changepoints are shown as a dotted line). (Bottom)
Estimation of the marginal posterior distribution of the changepoint positions.

Fig. 10. Mean and standard deviation for 50 realizations of the posterior
distribution.

Telecommunications for testing and evaluating speech recog-
nition algorithms, as described in [5]. According to [2], the
sampling frequency was 12 kHz, and a highpass filtered version
of the signal with cut-off frequency 150 Hz and resolution of
16 bits is presented in Fig. 11.

Different segmentation methods [2], [4], [5] were applied to
the signal, and a summary of the results can be found in [2].
We show these results in Table VI in order to compare them to
the ones obtained using our proposed method (see also Figs. 11
and 12). The estimated orders of the AR models are presented
in Table VII, and as one can see, they are quite different from
segment to segment. This resulted in different positions for the
changepoints, which is especially crucial in the case of the third
and fourth changepoint. Its position changed significantly due
to the estimated model orders for the second ( ) and
third segments ( ). As it is illustrated in Fig. 12, the
changepoints obtained by the proposed method visually seem
preferable.
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Fig. 11. Segmented speech signal (the changepoints estimated by Gustafsson
are shown as a dotted line and ones estimated using the proposed method are
shown as a solid line).

TABLE VI
CHANGEPOINT POSITIONS FORDIFFERENTMETHODS

Fig. 12. Changepoint positions (the changepoints estimated by Gustafsson are
shown as a dotted line and the ones estimated using the proposed method are
shown as a solid line).

TABLE VII
ESTIMATED MODEL ORDERS

V. CONCLUSION

In this paper, we have presented some Bayesian methods for
a variety of challenging functions modeled as a piecewise con-
stant linear regression. Our model and algorithms appear quite
flexible and have applications in denoising and in signal seg-
mentation. They can also be used for prediction, as one can
straightforwardly evaluate the predictive distribution using the
MCMC samples.

There are many possible extensions to this work. Among
others, one could extend the algorithm to multivariate signals,
the statistical assumptions on the noise distribution could be re-
laxed, or an on-line version of the algorithm could be developed
based on particle filtering methods.
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