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Abstract

Optimal estimation problems for non-linear non-Gaussian state-space models do not typically admit
analytic solutions. Since their introduction in 1993, particle filtering methods have become a very
popular class of algorithms to solve these estimation problems numerically in an online manner, i.e.
recursively as observations become available, and are now routinely used in fields as diverse as computer
vision, econometrics, robotics and navigation. The objective of this tutorial is to provide a complete,
up-to-date survey of this field as of 2008. Basic and advanced particle methods for filtering as well as
smoothing are presented.

Keywords: Central Limit Theorem, Filtering, Hidden Markov Models, Markov chain Monte Carlo, Par-
ticle methods, Resampling, Sequential Monte Carlo, Smoothing, State-Space models.



1 Introduction

The general state space hidden Markov models, which are summarised in section 2.1, provide an extremely
flexible framework for modelling time series. The great descriptive power of these models comes at the
expense of intractability: it is impossible to obtain analytic solutions to the inference problems of interest
with the exception of a small number of particularly simple cases. The “particle” methods described by
this tutorial are a broad and popular class of Monte Carlo algorithms which have been developed over
the past fifteen years to provide approximate solutions to these intractable inference problems.

1.1 Preliminary remarks

Since their introduction in 1993 [22], particle filters have become a very popular class of numerical meth-
ods for the solution of optimal estimation problems in non-linear non-Gaussian scenarios. In comparison
with standard approximation methods, such as the popular Extended Kalman Filter, the principal ad-
vantage of particle methods is that they do not rely on any local linearisation technique or any crude
functional approximation. The price that must be paid for this flexibility is computational: these meth-
ods are computationally expensive. However, thanks to the availability of ever-increasing computational
power, these methods are already used in real-time applications appearing in fields as diverse as chemical
engineering, computer vision, financial econometrics, target tracking and robotics. Moreover, even in
scenarios in which there are no real-time constraints, these methods can be a powerful alternative to
Markov chain Monte Carlo (MCMC) algorithms — alternatively, they can be used to design very efficient
MCMC schemes.

As a result of the popularity of particle methods, a few tutorials have already been published on the
subject [3, 8, 18, 29]. The most popular, [3], dates back to 2002 and, like the edited volume [16] from
2001, it is now somewhat outdated. This tutorial differs from previously published tutorials in two ways.
First, the obvious: it is, as of December 2008, the most recent tutorial on the subject and so it has been
possible to include some very recent material on advanced particle methods for filtering and smoothing.
Second, more importantly, this tutorial was not intended to resemble a cookbook. To this end, all of the
algorithms are presented within a simple, unified framework. In particular, we show that essentially all
basic and advanced methods for particle filtering can be reinterpreted as some special instances of a single
generic Sequential Monte Carlo (SMC) algorithm. In our opinion, this framework is not only elegant but
allows the development of a better intuitive and theoretical understanding of particle methods. It also
shows that essentially any particle filter can be implemented using a simple computational framework
such as that provided by [24]. Absolute beginners might benefit from reading [17], which provides an
elementary introduction to the field, before the present tutorial.

1.2 Organisation of the tutorial

The rest of this paper is organised as follows. In Section 2, we present hidden Markov models and the
associated Bayesian recursions for the filtering and smoothing distributions. In Section 3, we introduce a
generic SMC algorithm which provides weighted samples from any sequence of probability distributions.
In Section 4, we show how all the (basic and advanced) particle filtering methods developed in the
literature can be interpreted as special instances of the generic SMC algorithm presented in Section 3.
Section 5 is devoted to particle smoothing and we mention some open problems in Section 6.

1



2 Bayesian Inference in Hidden Markov Models

2.1 Hidden Markov Models and Inference Aims

Consider an X−valued discrete-time Markov process {Xn}n≥1 such that

X1 ∼ µ (x1) and Xn| (Xn−1 = xn−1) ∼ f (xn|xn−1) (1)

where “∼” means distributed according to, µ (x) is a probability density function and f (x|x′) denotes
the probability density associated with moving from x′ to x. All the densities are with respect to a
dominating measure that we will denote, with abuse of notation, dx. We are interested in estimating
{Xn}n≥1 but only have access to the Y−valued process {Yn}n≥1. We assume that, given {Xn}n≥1,
the observations {Yn}n≥1 are statistically independent and their marginal densities (with respect to a
dominating measure dyn) are given by

Yn| (Xn = xn) ∼ g (yn|xn) . (2)

For the sake of simplicity, we have considered only the homogeneous case here; that is, the transition
and observation densities are independent of the time index n. The extension to the inhomogeneous case
is straightforward. It is assumed throughout that any model parameters are known.

Models compatible with (1)-(2) are known as hidden Markov models (HMM) or general state-space mod-
els (SSM). This class includes many models of interest. The following examples provide an illustration
of several simple problems which can be dealt with within this framework. More complicated scenarios
can also be considered.

Example 1 - Finite State-Space HMM. In this case, we have X = {1, ...,K} so

Pr (X1 = k) = µ (k) , Pr (Xn = k|Xn−1 = l) = f (k| l) .

The observations follow an arbitrary model of the form (2). This type of model is extremely general
and examples can be found in areas such as genetics in which they can describe imperfectly observed
genetic sequences, signal processing, and computer science in which they can describe, amongst many
other things, arbitrary finite-state machines.

Example 2 - Linear Gaussian model. Here, X = Rnx , Y = Rny , X1 ∼ N (0,Σ) and

Xn = AXn−1 +BVn,

Yn = CXn +DWn

where Vn
i.i.d.∼ N (0, Inv

), Wn
i.i.d.∼ N (0, Inw

) and A,B,C,D are matrices of appropriate dimensions. Note
that N (m,Σ) denotes a Gaussian distribution of mean m and variance-covariance matrix Σ, whereas
N (x;m,Σ) denotes the Gaussian density of argument x and similar statistics. In this case µ (x) =
N (x; 0,Σ), f (x′|x) = N

(
x′;Ax,BBT

)
and g (y|x) = N

(
y;Cx,DDT

)
. As inference is analytically

tractable for this model, it has been extremely widely used for problems such as target tracking and
signal processing.

Example 3 - Switching Linear Gaussian model. We have X = U ×Z with U = {1, ...,K} and Z = Rnz .
Here Xn = (Un, Zn) where {Un} is a finite state-space Markov chain such that Pr (U1 = k) = µU (k) ,
Pr (Un = k|Un−1 = l) = fU (k| l) and conditional upon {Un} we have a linear Gaussian model with
Z1|U1 ∼ N (0,ΣU1) and

Zn = AUn
Zn−1 +BUn

Vn,

Yn = CUn
Zn +DUn

Wn

2
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Figure 1: A simulation of the stochastic volatility model described in example 4.

where Vn
i.i.d.∼ N (0, Inv ), Wn

i.i.d.∼ N (0, Inw ) and {Ak, Bk, Ck, Dk; k = 1, ...,K} are matrices of appropri-
ate dimensions. In this case we have µ (x) = µ (u, z) = µU (u)N (z; 0,Σu), f (x′|x) = f ( (u′, z′)| (u, z)) =
fU (u′|u)N

(
z′;Au′z,Bu′BT

u′

)
and g (y|x) = g (y| (u, z)) = N

(
y;Cuz,DuD

T
u

)
. This type of model pro-

vides a generalisation of that described in example 2 with only a slight increase in complexity.

Example 4 - Stochastic Volatility model. We have X = Y = R, X1 ∼ N
(

0, σ2

1−α2

)
and

Xn = αXn−1 + σVn,

Yn = β exp (Xn/2)Wn

where Vn
i.i.d.∼ N (0, 1) and Wn

i.i.d.∼ N (0, 1). In this case we have µ (x) = N
(
x; 0, σ2

1−α2

)
, f (x′|x) =

N
(
x′;αx, σ2

)
and g (y|x) = N

(
y; 0, β2 exp (x)

)
. Note that this choice of initial distribution ensures that

the marginal distribution of Xn is also µ (x) for all n. This type of model, and its generalisations, have
been very widely used in various areas of economics and mathematical finance: inferring and predicting
underlying volatility from observed price or rate data is an important problem. Figure 1 shows a short
section of data simulated from such a model with parameter values α = 0.91, σ = 1.0 and β = 0.5 which
will be used below to illustrate the behaviour of some simple algorithms.

Equations (1)-(2) define a Bayesian model in which (1) defines the prior distribution of the process of
interest {Xn}n≥1 and (2) defines the likelihood function; that is:

p (x1:n) = µ (x1)
n∏
k=2

f (xk|xk−1) (3)

and

p (y1:n|x1:n) =
n∏
k=1

g (yk|xk) , (4)

where, for any sequence {zn}n≥1, and any i ≤ j, zi:j := (zi, zi+1, ..., zj).
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In such a Bayesian context, inference about X1:n given a realisation of the observations Y1:n = y1:n relies
upon the posterior distribution

p (x1:n| y1:n) =
p (x1:n, y1:n)
p (y1:n)

, (5)

where

p (x1:n, y1:n) = p (x1:n) p (y1:n|x1:n) , (6)

and p (y1:n) =
∫
p (x1:n, y1:n) dx1:n. (7)

For the finite state-space HMM model discussed in Example 1, the integrals correspond to finite sums and
all these (discrete) probability distributions can be computed exactly. For the linear Gaussian model
discussed in Example 2, it is easy to check that p (x1:n| y1:n) is a Gaussian distribution whose mean
and covariance can be computed using Kalman techniques; see [1], for example. However, for most
non-linear non-Gaussian models, it is not possible to compute these distributions in closed-form and we
need to employ numerical methods. Particle methods are a set of flexible and powerful simulation-based
methods which provide samples approximately distributed according to posterior distributions of the
form p (x1:n| y1:n) and facilitate the approximate calculation of p (y1:n). Such methods are a subset of
the class of methods known as Sequential Monte Carlo (SMC) methods.

In this tutorial, we will review various particle methods to address the following problems:

• Filtering and Marginal likelihood computation: Assume that we are interested in the sequential approx-
imation of the distributions {p (x1:n| y1:n)}n≥1 and marginal likelihoods {p (y1:n)}n≥1. That is, we wish
to approximate p (x1| y1) and p (y1) at the first time instance, p (x1:2| y1:2) and p (y1:2) at the second
time instance and so on. We will refer to this problem as the optimal filtering problem. This is slightly
at variance with the usage in much of the literature which reserves the term for the estimation of the
marginal distributions {p (xn| y1:n)}n≥1 rather than the joint distributions {p (x1:n| y1:n)}n≥1.

We will describe basic and advanced particle filtering methods to address this problem including auxiliary
particle filtering, particle filtering with MCMC moves, block sampling strategies and Rao-Blackwellised
particle filters.

• Smoothing : Consider attempting to sample from a joint distribution p (x1:T | y1:T ) and approximating
the associated marginals {p (xn| y1:T )} where n = 1, ..., T . Particle filtering techniques can be used to
solve this problem but perform poorly when T is large for reasons detailed in this tutorial. We will
describe several particle smoothing methods to address this problem. Essentially, these methods rely
on the particle implementation of the forward filtering-backward smoothing formula or of a generalised
version of the two-filter smoothing formula.

2.2 Filtering and Marginal Likelihood

The first area of interest, and that to which the vast majority of the literature on particle methods has
been dedicated from the outset, is the problem of filtering: characterising the distribution of the state of
the hidden Markov model at the present time, given the information provided by all of the observations
received up to the present time. This can be thought of as a “tracking” problem: keeping track of the
current “location” of the system given noisy observations — and, indeed, this is an extremely popular
area of application for these methods. The term is sometimes also used to refer to the practice of
estimating the full trajectory of the state sequence up to the present time given the observations received
up to this time.

We recall that, following (1)-(2), the posterior distribution p (x1:n| y1:n) is defined by (5) — the prior is
defined in (3) and the likelihood in (4). The unnormalised posterior distribution p (x1:n, y1:n) given in
(5) satisfies

p (x1:n, y1:n) = p (x1:n−1, y1:n−1) f (xn|xn−1) g (yn|xn) . (8)

4



Consequently, the posterior p (x1:n| y1:n) satisfies the following recursion

p (x1:n| y1:n) = p (x1:n−1| y1:n−1)
f (xn|xn−1) g (yn|xn)

p (yn| y1:n−1)
, (9)

where
p (yn| y1:n−1) =

∫
p (xn−1| y1:n−1) f (xn|xn−1) g (yn|xn) dxn−1:n (10)

In the literature, the recursion satisfied by the marginal distribution p (xn| y1:n) is often presented. It is
straightforward to check (by integrating out x1:n−1 in (9)) that we have

p (xn| y1:n) =
g (yn|xn) p (xn| y1:n−1)

p (yn| y1:n−1)
, (11)

where
p (xn| y1:n−1) =

∫
f (xn|xn−1) p (xn−1| y1:n−1) dxn−1. (12)

Equation (12) is known as the prediction step and (11) is known as the updating step. However, most
particle filtering methods rely on a numerical approximation of recursion (9) and not of (11)-(12).

If we can compute {p (x1:n| y1:n)} and thus {p (xn| y1:n)} sequentially, then the quantity p (y1:n), which
is known as the marginal likelihood, can also clearly be evaluated recursively using

p (y1:n) = p (y1)
n∏
k=2

p (yk| y1:k−1) (13)

where p (yk| y1:k−1) is of the form (10).

2.3 Smoothing

One problem, which is closely related to filtering, but computationally more challenging for reasons
which will become apparent later, is known as smoothing. Whereas filtering corresponds to estimating
the distribution of the current state of an HMM based upon the observations received up until the current
time, smoothing corresponds to estimating the distribution of the state at a particular time given all
of the observations up to some later time. The trajectory estimates obtained by such methods, as a
result of the additional information available, tend to be smoother than those obtained by filtering. It
is intuitive that if estimates of the state at time n are not required instantly, then better estimation
performance is likely to be obtained by taking advantage of a few later observations. Designing efficient
sequential algorithms for the solution of this problem is not quite as straightforward as it might seem,
but a number of effective strategies have been developed and are described below.

More formally: assume that we have access to the data y1:T , and wish to compute the marginal distri-
butions {p (xn| y1:T )} where n = 1, ..., T or to sample from p (x1:T | y1:T ). In principle, the marginals
{p (xn| y1:T )} could be obtained directly by considering the joint distribution p (x1:T | y1:T ) and integrat-
ing out the variables (x1:n−1, xn+1:T ). Extending this reasoning in the context of particle methods, one
can simply use the identity p(xn|y1:T ) =

∫
p(x1:T |y1:T )dx1:n−1dxn+1:T and take the same approach which

is used in particle filtering: use Monte Carlo algorithms to obtain an approximate characterisation of
the joint distribution and then use the associated marginal distribution to approximate the distributions
of interest. Unfortunately, as is detailed below, when n � T this strategy is doomed to failure: the
marginal distribution p(xn|y1:n) occupies a privileged role within the particle filter framework as it is, in
some sense, better characterised than any of the other marginal distributions.

For this reason, it is necessary to develop more sophisticated strategies in order to obtain good smoothing
algorithms. There has been much progress in this direction over the past decade. Below, we present two
alternative recursions that will prove useful when numerical approximations are required. The key to the
success of these recursions is that they rely upon only the marginal filtering distributions {p (xn| y1:n)}.
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2.3.1 Forward-Backward Recursions

The following decomposition of the joint distribution p (x1:T | y1:T )

p (x1:T | y1:T ) = p (xT | y1:T )
T−1∏
n=1

p (xn|xn+1, y1:T )

= p (xT | y1:T )
T−1∏
n=1

p (xn|xn+1, y1:n) , (14)

shows that, conditional on y1:T , {Xn} is an inhomogeneous Markov process.

Eq. (14) suggests the following algorithm to sample from p (x1:T | y1:T ). First compute and store the
marginal distributions {p (xn| y1:n)} for n = 1, ..., T . Then sample XT ∼ p (xT | y1:T ) and for n =
T − 1, T − 2, ..., 1, sample Xn ∼ p (xn|Xn+1, y1:n) where

p (xn|xn+1, y1:n) =
f (xn+1|xn) p (xn| y1:n)

p (xn+1| y1:n)

It also follows, by integrating out (x1:n−1, xn+1:T ) in Eq. (14), that

p (xn| y1:T ) = p (xn| y1:n)
∫

f (xn+1|xn)
p (xn+1| y1:n)

p (xn+1| y1:T ) dxn+1. (15)

So to compute {p (xn| y1:T )}, we simply modify the backward pass and, instead of sampling from
p (xn|xn+1, y1:n), we compute p (xn| y1:T ) using (15).

2.3.2 Generalised Two-Filter Formula

The two-filter formula is a well-established alternative to the forward-filtering backward-smoothing tech-
nique to compute the marginal distributions {p (xn| y1:T )} [4]. It relies on the following identity

p (xn| y1:T ) =
p (xn| y1:n−1) p (yn:T |xn)

p (yn:T | y1:n−1)
,

where the so-called backward information filter is initialised at time n = T by p (yT |xT ) = g (yT |xT )
and satisfies

p (yn:T |xn) =
∫ T∏

k=n+1

f (xk|xk−1)
T∏
k=n

g (yk|xk) dxn+1:T (16)

= g (yn|xn)
∫
f (xn+1|xn) p (yn+1:T |xn+1) dxn+1.

The backward information filter is not a probability density in argument xn and it is even possible that∫
p (yn:T |xn) dxn =∞. Although this is not an issue when p (yn:T |xn) can be computed exactly, it does

preclude the direct use of SMC methods to estimate this integral. To address this problem, a generalised
version of the two-filter formula was proposed in [5]. It relies on the introduction of a set of artificial
probability distributions {p̃n (xn)} and the joint distributions

p̃n (xn:T | yn:T ) ∝ p̃n (xn)
T∏

k=n+1

f (xk|xk−1)
T∏
k=n

g (yk|xk) , (17)

which are constructed such that their marginal distributions, p̃n (xn| yn:T ) ∝ p̃n (xn) p (yn:T |xn), are
simply “integrable versions” of the backward information filter. It is easy to establish the generalised
two-filter formula

p(x1|y1:T ) ∝ µ (x1) p̃(x1|y1:T )
p̃1 (x1)

, p(xn|y1:T ) ∝ p(xn|y1:n−1)p̃(xn|yn:T )
p̃n (xn)

(18)
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which is valid whenever the support of p̃n (xn) includes the support of the prior pn (xn); that is

pn (xn) =
∫
µ (x1)

n∏
k=2

f (xk|xk−1) dx1:n−1 > 0⇒ p̃n (xn) > 0.

The generalised two-filter smoother for {p(xn|yn:T )} proceeds as follows. Using the standard forward
recursion, we can compute and store the marginal distributions {p (xn| y1:n−1)}. Using a backward
recursion, we compute and store {p̃(xn|yn:T )}. Then for any n = 1, ..., T we can combine p (xn| y1:n−1)
and p̃(xn|yn:T ) to obtain p(xn|y1:T ).

In [4], this identity is discussed in the particular case where p̃n (xn) = pn (xn). However, when computing
{p̃(xn|yn:T )} using SMC, it is necessary to be able to compute p̃n (xn) exactly hence this rules out the
choice p̃n (xn) = pn (xn) for most non-linear non-Gaussian models. In practice, we should select a heavy-
tailed approximation of pn (xn) for p̃n (xn) in such settings. It is also possible to use the generalised-two
filter formula to sample from p(x1:T |y1:T ); see [5] for details.

2.4 Summary

Bayesian inference in non-linear non-Gaussian dynamic models relies on the sequence of posterior dis-
tributions {p (x1:n| y1:n)} and its marginals. Except in simple problems such as Examples 1 and 2, it is
not possible to compute these distributions in closed-form. In some scenarios, it might be possible to
obtain reasonable performance by employing functional approximations of these distributions. Here, we
will discuss only Monte Carlo approximations of these distributions; that is numerical schemes in which
the distributions of interest are approximated by a large collection of N random samples termed parti-
cles. The main advantage of such methods is that under weak assumptions they provide asymptotically
(i.e. as N → ∞) consistent estimates of the target distributions of interest. It is also noteworthy that
these techniques can be applied to problems of moderately-high dimension in which traditional numerical
integration might be expected to perform poorly.

3 Sequential Monte Carlo Methods

Over the past fifteen years, particle methods for filtering and smoothing have been the most common
examples of SMC algorithms. Indeed, it has become traditional to present particle filtering and SMC
as being the same thing in much of the literature. Here, we wish to emphasise that SMC actually
encompasses a broader range of algorithms — and by doing so we are able to show that many more
advanced techniques for approximate filtering and smoothing can be described using precisely the same
framework and terminology as the basic algorithm.

SMC methods are a general class of Monte Carlo methods that sample sequentially from a sequence
of target probability densities {πn (x1:n)} of increasing dimension where each distribution πn (x1:n) is
defined on the product space Xn. Writing

πn (x1:n) =
γn (x1:n)
Zn

(19)

we require only that γn : Xn → R+ is known pointwise; the normalising constant

Zn =
∫
γn (x1:n) dx1:n (20)

might be unknown. SMC provide an approximation of π1 (x1) and an estimate of Z1 at time 1 then an
approximation of π2 (x1:2) and an estimate of Z2 at time 2 and so on.
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For example, in the context of filtering, we could have γn (x1:n) = p (x1:n, y1:n) , Zn = p (y1:n) so
πn (x1:n) = p (x1:n| y1:n). However, we emphasise that this is just one particular choice of target distri-
butions. Not only can SMC methods be used outside the filtering context but, more importantly for this
tutorial, some advanced particle filtering and smoothing methods discussed below do not rely on this
sequence of target distributions. Consequently, we believe that understanding the main principles behind
generic SMC methods is essential to the development of a proper understanding of particle filtering and
smoothing methods.

We start this section with a very basic review of Monte Carlo methods and Importance Sampling (IS). We
then present the Sequential Importance Sampling (SIS) method, point out the limitations of this method
and show how resampling techniques can be used to partially mitigate them. Having introduced the basic
particle filter as an SMC method, we show how various advanced techniques which have been developed
over the past fifteen years can themselves be interpreted within the same formalism as SMC algorithms
associated with sequences of distributions which may not coincide with the filtering distributions. These
alternative sequences of target distributions are either constructed such that they admit the distributions
{p (x1:n| y1:n)} as marginal distributions, or an importance sampling correction is necessary to ensure
the consistency of estimates.

3.1 Basics of Monte Carlo Methods

Initially, consider approximating a generic probability density πn (x1:n) for some fixed n. If we sample
N independent random variables, Xi

1:n ∼ πn (x1:n) for i = 1, ..., N , then the Monte Carlo method
approximates πn (x1:n) by the empirical measure1

π̂n (x1:n) =
1
N

N∑
i=1

δXi
1:n

(x1:n) ,

where δx0 (x) denotes the Dirac delta mass located at x0. Based on this approximation, it is possible to
approximate any marginal, say πn (xk), easily using

π̂n (xk) =
1
N

N∑
i=1

δXi
k

(xk) ,

and the expectation of any test function ϕn : Xn → R given by

In (ϕn) :=
∫
ϕn (x1:n)πn (x1:n) dx1:n,

is estimated by

IMC
n (ϕn) :=

∫
ϕn (x1:n) π̂n (x1:n) dx1:n =

1
N

N∑
i=1

ϕn
(
Xi

1:n

)
.

It is easy to check that this estimate is unbiased and that its variance is given by

V
[
IMC
n (ϕn)

]
=

1
N

(∫
ϕ2
n (x1:n)πn (x1:n) dx1:n − I2

n (ϕn)
)
.

The main advantage of Monte Carlo methods over standard approximation techniques is that the variance
of the approximation error decreases at a rate of O(1/N) regardless of the dimension of the space Xn.
However, there are at least two main problems with this basic Monte Carlo approach:

• Problem 1 : If πn (x1:n) is a complex high-dimensional probability distribution, then we cannot sample
from it.

1We persist with the abusive use of density notation in the interests of simplicity and accessibility; the alternations
required to obtain a rigorous formulation are obvious.
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• Problem 2 : Even if we knew how to sample exactly from πn (x1:n), the computational complexity of
such a sampling scheme is typically at least linear in the number of variables n. So an algorithm sampling
exactly from πn (x1:n), sequentially for each value of n, would have a computational complexity increasing
at least linearly with n.

3.2 Importance Sampling

We are going to address Problem 1 using the IS method. This is a fundamental Monte Carlo method
and the basis of all the algorithms developed later on. IS relies on the introduction of an importance
density2 qn (x1:n) such that

πn (x1:n) > 0⇒ qn (x1:n) > 0.

In this case, we have from (19)-(20) the following IS identities

πn (x1:n) =
wn (x1:n) qn (x1:n)

Zn
, (21)

Zn =
∫
wn (x1:n) qn (x1:n) dx1:n (22)

where wn (x1:n) is the unnormalised weight function

wn (x1:n) =
γn (x1:n)
qn (x1:n)

.

In particular, we can select an importance density qn (x1:n) from which it is easy to draw samples; e.g.
a multivariate Gaussian. Assume we draw N independent samples Xi

1:n ∼ qn (x1:n) then by inserting
the Monte Carlo approximation of qn (x1:n) — that is the empirical measure of the samples Xi

1:n — into
(21)–(22) we obtain

π̂n (x1:n) =
N∑
i=1

W i
nδXi

1:n
(x1:n) , (23)

Ẑn =
1
N

N∑
i=1

wn
(
Xi

1:n

)
(24)

where

W i
n =

wn
(
Xi

1:n

)∑N
j=1 wn

(
Xj

1:n

) . (25)

Compared to standard Monte Carlo, IS provides an (unbiased) estimate of the normalising constant with
relative variance

VIS

[
Ẑn

]
Z2
n

=
1
N

(∫
π2
n (x1:n)
qn (x1:n)

dx1:n − 1
)
. (26)

If we are interested in computing In (ϕn), we can also use the estimate

IIS
n (ϕn) =

∫
ϕn (x1:n) π̂n (x1:n) dx1:n =

N∑
i=1

W i
nϕn

(
Xi

1:n

)
.

Unlike IMC
n (ϕn), this estimate is biased for finite N . However, it is consistent and it is easy to check

that its asymptotic bias is given by

lim
N→∞

N
(
IIS
n (ϕn)− In (ϕn)

)
= −

∫
π2
n (x1:n)
qn (x1:n)

(ϕn (x1:n)− In (ϕn)) dx1:n.

2Some authors use the terms proposal density or instrumental density interchangeably.
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When the normalising constant is known analytically, we can calculate an unbiased importance sampling
estimate — however, this generally has higher variance and this is not typically the case in the situations
in which we are interested.

Furthermore, IIS
n (ϕ) satisfies a Central Limit Theorem (CLT) with asymptotic variance

1
N

∫
π2
n (x1:n)
qn (x1:n)

(ϕn (x1:n)− In (ϕn))2
dx1:n. (27)

The bias being O(1/N) and the variance O(1/N), the mean-squared error given by the squared bias plus
the variance is asymptotically dominated by the variance term.

For a given test function, ϕn (x1:n), it is easy to establish the importance distribution minimising the
asymptotic variance of IIS

n (ϕn). However, such a result is of minimal interest in a filtering context as
this distribution depends on ϕn (x1:n) and we are typically interested in the expectations of several test
functions. Moreover, even if we were interested in a single test function, say ϕn (x1:n) = xn, then selecting
the optimal importance distribution at time n would have detrimental effects when we will try to obtain
a sequential version of the algorithms (the optimal distribution for estimating ϕn−1(x1:n−1) will almost
certainly not be — even similar to — the marginal distribution of x1:n−1 in the optimal distribution for
estimating ϕn(x1:n) and this will prove to be problematic).

A more appropriate approach in this context is to attempt to select the qn (x1:n) which minimises the
variance of the importance weights (or, equivalently, the variance of Ẑn). Clearly, this variance is
minimised for qn (x1:n) = πn (x1:n). We cannot select qn (x1:n) = πn (x1:n) as this is the reason we
used IS in the first place. However, this simple result indicates that we should aim at selecting an IS
distribution which is close as possible to the target. Also, although it is possible to construct samplers
for which the variance is finite without satisfying this condition, it is advisable to select qn (x1:n) so that
wn (x1:n) < Cn <∞.

3.3 Sequential Importance Sampling

We are now going to present an algorithm that admits a fixed computational complexity at each time
step in important scenarios and thus addresses Problem 2. This solution involves selecting an importance
distribution which has the following structure

qn (x1:n) = qn−1 (x1:n−1) qn (xn|x1:n−1)

= q1 (x1)
n∏
k=2

qk (xk|x1:k−1) . (28)

Practically, this means that to obtain particles Xi
1:n ∼ qn (x1:n) at time n, we sample Xi

1 ∼ q1 (x1) at
time 1 then Xi

k ∼ qk
(
xk|Xi

1:k−1

)
at time k for k = 2, ..., n. The associated unnormalised weights can

be computed recursively using the decomposition

wn (x1:n) =
γn (x1:n)
qn (x1:n)

=
γn−1 (x1:n−1)
qn−1 (x1:n−1)

γn (x1:n)
γn−1 (x1:n−1) qn (xn|x1:n−1)

(29)

which can be written in the form

wn (x1:n) = wn−1 (x1:n−1) · αn (x1:n)

= w1 (x1)
n∏
k=2

αk (x1:k)

10



where the incremental importance weight function αn (x1:n) is given by

αn (x1:n) =
γn (x1:n)

γn−1 (x1:n−1) qn (xn|x1:n−1)
. (30)

The SIS algorithm proceeds as follows, with each step carried out for i = 1, . . . , N :

Sequential Importance Sampling

At time n = 1

• Sample Xi
1 ∼ q1(x1).

• Compute the weights w1

(
Xi

1

)
and W i

1 ∝ w1

(
Xi

1

)
.

At time n ≥ 2

• Sample Xi
n ∼ qn(xn|Xi

1:n−1).

• Compute the weights

wn
(
Xi

1:n

)
= wn−1

(
Xi

1:n−1

)
· αn

(
Xi

1:n

)
,

W i
n ∝ wn

(
Xi

1:n

)
.

At any time, n, we obtain the estimates π̂n (x1:n) (Eq. 23) and Ẑn (Eq. 24) of πn (x1:n) and Zn,
respectively. It is straightforward to check that a consistent estimate of Zn/Zn−1 is also provided by the
same set of samples:

Ẑn
Zn−1

=
N∑
i=1

W i
n−1αn

(
Xi

1:n

)
.

This estimator is motivated by the fact that∫
αn (x1:n)πn−1 (x1:n−1) qn(xn|x1:n−1)dx1:n =

∫
γn(x1:n)πn−1(x1:n−1)qn(xn|x1:n−1)

γn−1(x1:n−1)qn(xn|x1:n−1)
dx1:n =

Zn
Zn−1

.

In this sequential framework, it would seem that the only freedom the user has at time n is the choice of
qn (xn|x1:n−1)3. A sensible strategy consists of selecting it so as to minimise the variance of wn (x1:n).
It is straightforward to check that this is achieved by selecting

qopt
n (xn|x1:n−1) = πn (xn|x1:n−1)

as in this case the variance of wn (x1:n) conditional upon x1:n−1 is zero and the associated incremental
weight is given by

αopt
n (x1:n) =

γn (x1:n−1)
γn−1 (x1:n−1)

=
∫
γn (x1:n) dxn
γn−1 (x1:n−1)

.

Note that it is not always possible to sample from πn (xn|x1:n−1). Nor is it always possible to compute
αopt
n (x1:n). In these cases, one should employ an approximation of qopt

n (xn|x1:n−1) for qn (xn|x1:n−1).

In those scenarios in which the time required to sample from qn (xn|x1:n−1) and to compute αn (x1:n) is
independent of n (and this is, indeed, the case if qn is chosen sensibly and one is concerned with a problem

3However, as we will see later, the key to many advanced SMC methods is the introduction of a sequence of target
distributions which differ from the original target distributions.
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such as filtering), it appears that we have provided a solution for Problem 2. However, it is important to
be aware that the methodology presented here suffers from severe drawbacks. Even for standard IS, the
variance of the resulting estimates increases exponentially with n (as is illustrated below; see also [28]).
As SIS is nothing but a special version of IS in which we restrict ourselves to an importance distribution
of the form (28) it suffers from the same problem. We demonstrate this using a very simple toy example.

Example. Consider the case where X = R and

πn (x1:n) =
n∏
k=1

πn (xk) =
n∏
k=1

N (xk; 0, 1) , (31)

γn (x1:n) =
n∏
k=1

exp
(
−x

2
k

2

)
,

Zn = (2π)n/2 .

We select an importance distribution

qn (x1:n) =
n∏
k=1

qk (xk) =
n∏
k=1

N
(
xk; 0, σ2

)
.

In this case, we have VIS

[
Ẑn

]
<∞ only for σ2 > 1

2 and

VIS

[
Ẑn

]
Z2
n

=
1
N

[(
σ4

2σ2 − 1

)n/2
− 1

]
.

It can easily be checked that σ4

2σ2−1 > 1 for any 1
2 < σ2 6= 1: the variance increases exponentially with n

even in this simple case. For example, if we select σ2 = 1.2 then we have a reasonably good importance

distribution as qk (xk) ≈ πn (xk) but N
VIS[ bZn]
Z2

n
≈ (1.103)n/2 which is approximately equal to 1.9 × 1021

for n = 1000! We would need to use N ≈ 2× 1023 particles to obtain a relative variance
VIS[ bZn]
Z2

n
= 0.01.

This is clearly impracticable.

3.4 Resampling

We have seen that IS — and thus SIS — provides estimates whose variance increases, typically expo-
nentially, with n. Resampling techniques are a key ingredient of SMC methods which (partially) solve
this problem in some important scenarios.

Resampling is a very intuitive idea which has major practical and theoretical benefits. Consider first an
IS approximation π̂n (x1:n) of the target distribution πn (x1:n). This approximation is based on weighted
samples from qn (x1:n) and does not provide samples approximately distributed according to πn (x1:n) . To
obtain approximate samples from πn (x1:n), we can simply sample from its IS approximation π̂n (x1:n);
that is we select Xi

1:n with probability W i
n. This operation is called resampling as it corresponds to

sampling from an approximation π̂n (x1:n) which was itself obtained by sampling. If we are interested
in obtaining N samples from π̂n (x1:n), then we can simply resample N times from π̂n (x1:n). This is
equivalent to associating a number of offspring N i

n with each particle Xi
1:n in such a way that N1:N

n =(
N1
n, ..., N

N
n

)
follow a multinomial distribution with parameter vector

(
N,W 1:N

n

)
and associating a weight

of 1/N with each offspring. We approximate π̂n (x1:n) by the resampled empirical measure

πn (x1:n) =
N∑
i=1

N i
n

N
δXi

1:n
(x1:n) (32)

where E
[
N i
n

∣∣W 1:N
n

]
= NW i

n. Hence πn (x1:n) is an unbiased approximation of π̂n (x1:n).
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Improved unbiased resampling schemes have been proposed in the literature. These are methods of
selecting N i

n such that the unbiasedness property is preserved, and such that V
[
N i
n

∣∣W 1:N
n

]
is smaller

than that obtained via the multinomial resampling scheme described above. To summarize, the three
most popular algorithms found in the literature are, in descending order of popularity/efficiency:

Systematic Resampling Sample U1 ∼ U
[
0, 1

N

]
and define Ui = U1 + i−1

N for i = 2, ..., N , then set

N i
n =

∣∣∣{Uj :
∑i−1
k=1W

k
n ≤ Uj ≤

∑i
k=1W

k
n

}∣∣∣ with the convention
∑0
k=1 := 0. It is straightforward

to establish that this approach is unbiased.

Residual Resampling Set Ñ i
n =

⌊
NW i

n

⌋
, sample N

1:N

n from a multinomial of parameters
(
N,W

1:N

n

)
where W

i

n ∝ W i
n − N−1Ñ i

n then set N i
n = Ñ i

n+ N
i

n. This is very closely related to breaking the
empirical CDF up into N components and then sampling once from each of those components: the
stratified resampling approach of [7].

Multinomial Resampling Sample N1:N
n from a multinomial of parameters

(
N,W 1:N

n

)
.

Note that it is possible to sample efficiently from a multinomial distribution in O (N) operations. How-
ever, the systematic resampling algorithm introduced in [25] is the most widely-used algorithm in the
literature as it is extremely easy to implement and outperforms other resampling schemes in most sce-
narios (although this is not guaranteed in general [13]).

Resampling allows us to obtain samples distributed approximately according to πn (x1:n), but it should
be clear that if we are interested in estimating In (ϕn) then we will obtain an estimate with lower variance
using π̂n (x1:n) than that which we would have obtained by using πn (x1:n). By resampling we indeed add
some extra “noise”— as shown by [9]. However, an important advantage of resampling is that it allows
us to remove of particles with low weights with a high probability. In the sequential framework in which
we are interested, this is extremely useful as we do not want to carry forward particles with low weights
and we want to focus our computational efforts on regions of high probability mass. Clearly, there is
always the possibility than a particle having a low weight at time n could have an high weight at time
n + 1, in which case resampling could be wasteful. It is straightforward to consider artificial problems
for which this is the case. However, we will show that in the estimation problems we are looking at
the resampling step is provably beneficial. Intuitively, resampling can be seen to provide stability in the
future at the cost of an increase in the immediate Monte Carlo variance. This concept will be made more
precise in section 3.6.

3.5 A Generic Sequential Monte Carlo Algorithm

SMC methods are a combination of SIS and resampling. At time 1, we compute the IS approximation
π̂1 (x1) of π1 (x1) which is a weighted collection of particles

{
W i

1, X
i
1

}
. Then we use a resampling step to

eliminate (with high probability) those particles with low weights and multiply those with high weights.
We denote by

{
1
N , X

i

1

}
the collection of equally-weighted resampled particles. Remember that each

original particle Xi
1 has N i

1 offspring so there exist N i
1 distinct indexes j1 6= j2 6= · · · 6= jNi

1
such that

X
j1
1 = X

j2
1 = · · · = X

j
Ni

1
1 = Xi

1. After the resampling step, we follow the SIS strategy and sample
Xi

2 ∼ q2(x2|X
i

1). Thus
(
X
i

1, X
i
2

)
is approximately distributed according to π1 (x1) q2 (x2|x1). Hence

the corresponding importance weights in this case are simply equal to the incremental weights α2 (x1:2).
We then resample the particles with respect to these normalised weights and so on. To summarise,
the algorithm proceeds as follows (this algorithm is sometimes referred to as Sequential Importance
Resampling (SIR) or Sequential Importance Sampling and Resampling (SIS/R)).
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Sequential Monte Carlo

At time n = 1

• Sample Xi
1 ∼ q1(x1).

• Compute the weights w1

(
Xi

1

)
and W i

1 ∝ w1

(
Xi

1

)
.

• Resample
{
W i

1, X
i
1

}
to obtain N equally-weighted particles

{
1
N , X

i

1

}
.

At time n ≥ 2

• Sample Xi
n ∼ qn(xn|X

i

1:n−1) and set Xi
1:n ←

(
X
i

1:n−1, X
i
n

)
.

• Compute the weights αn
(
Xi

1:n

)
and W i

n ∝ αn
(
Xi

1:n

)
.

• Resample
{
W i
n, X

i
1:n

}
to obtain N new equally-weighted particles

{
1
N , X

i

1:n

}
.

At any time n, this algorithm provides two approximations of πn (x1:n) . We obtain

π̂n (x1:n) =
N∑
i=1

W i
nδXi

1:n
(x1:n) (33)

after the sampling step and

πn (x1:n) =
1
N

N∑
i=1

δ
X

i
1:n

(x1:n) (34)

after the resampling step. The approximation (33) is to be preferred to (34). We also obtain an
approximation of Zn/Zn−1 through

Ẑn
Zn−1

=
1
N

N∑
i=1

αn
(
Xi

1:n

)
.

As we have already mentioned, resampling has the effect of removing particles with low weights and
multiplying particles with high weights. However, this is at the cost of immediately introducing some
additional variance. If particles have unnormalised weights with a small variance then the resampling
step might be unnecessary. Consequently, in practice, it is more sensible to resample only when the
variance of the unnormalised weights is superior to a pre-specified threshold. This is often assessed by
looking at the variability of the weights using the so-called Effective Sample Size (ESS) criterion [30, pp.
35-36], which is given (at time n) by

ESS =

(
N∑
i=1

(
W i
n

)2)−1

.

Its interpretation is that in a simple IS setting, inference based on the N weighted samples is approxi-
mately equivalent (in terms of estimator variance) to inference based on ESS perfect samples from the
target distribution. The ESS takes values between 1 and N and we resample only when it is below a
threshold NT ; typically NT = N/2. Alternative criteria can be used such as the entropy of the weights{
W i
n

}
which achieves its maximum value when W i

n = 1
N . In this case, we resample when the entropy is

below a given threshold.
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Sequential Monte Carlo with Adaptive Resampling

At time n = 1

• Sample Xi
1 ∼ q1(x1).

• Compute the weights w1

(
Xi

1

)
and W i

1 ∝ w1

(
Xi

1

)
.

• If resampling criterion satisfied then resample
{
W i

1, X
i
1

}
to obtain N equally weighted particles

{
1
N , X

i

1

}
and set

{
W

i

1, X
i

1

}
←
{

1
N , X

i

1

}
, otherwise set

{
W

i

1, X
i

1

}
←
{
W i

1, X
i
1

}
.

At time n ≥ 2

• Sample Xi
n ∼ qn(xn|X

i

1:n−1) and set Xi
1:n ←

(
X
i

1:n−1, X
i
n

)
.

• Compute the weights αn
(
Xi

1:n

)
and W i

n ∝W
i

n−1αn
(
Xi

1:n

)
.

• If resampling criterion satisfied, then resample
{
W i
n, X

i
1:n

}
to obtainN equally weighted particles

{
1
N , X

i

1:n

}
and set

{
W

i

n, X
i

n

}
←
{

1
N , X

i

n

}
, otherwise set

{
W

i

n, X
i

n

}
←
{
W i
n, X

i
n

}
.

In this context too we have two approximations of πn (x1:n)

π̂n (x1:n) =
N∑
i=1

W i
nδXi

1:n
(x1:n) , (35)

πn (x1:n) =
N∑
i=1

W
i

nδXi
1:n

(x1:n)

which are equal if no resampling step is used at time n. We may also estimate Zn/Zn−1 through

Ẑn
Zn−1

=
N∑
i=1

W
i

n−1αn
(
Xi

1:n

)
. (36)

SMC methods involve systems of particles which interact (via the resampling mechanism) and, conse-
quently, obtaining convergence results is a much more difficult task than it is for SIS where standard
results (iid asymptotics) apply. However, there are numerous sharp convergence results available for
SMC; see [10] for an introduction to the subject and the monograph of Del Moral [11] for a complete
treatment of the subject. An explicit treatment of the case in which resampling is performed adaptively
is provided by [12].

The presence or absence of degeneracy is the factor which most often determines whether an SMC
algorithm works in practice. However strong the convergence results available for limitingly large samples
may be, we cannot expect good performance if the finite sample which is actually used is degenerate.
Indeed, some degree of degeneracy is inevitable in all but trivial cases: if SMC algorithms are used for
sufficiently many time steps every resampling step reduces the number of unique values representing X1,
for example. For this reason, any SMC algorithm which relies upon the distribution of full paths x1:n

will fail for large enough n for any finite sample size, N , in spite of the asymptotic justification. It is
intuitive that one should endeavour to employ algorithms which do not depend upon the full path of
the samples, but only upon the distribution of some finite component xn−L:n for some fixed L which
is independent of n. Furthermore, ergodicity (a tendency for the future to be essentially independent
of the distant past) of the underlying system will prevent the accumulation of errors over time. These
concepts are precisely characterised by existing convergence results, some of the most important of which
are summarised and interpreted in section 3.6.
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Although sample degeneracy emerges as a consequence of resampling, it is really a manifestation of a
deeper problem — one which resampling actually mitigates. It is inherently impossible to accurately
represent a distribution on a space of arbitrarily high dimension with a sample of fixed, finite size. Sample
impoverishment is a term which is often used to describe the situation in which very few different particles
have significant weight. This problem has much the same effect as sample degeneracy and occurs, in
the absence of resampling, as the inevitable consequence of multiplying together incremental importance
weights from a large number of time steps. It is, of course, not possible to circumvent either problem
by increasing the number of samples at every iteration to maintain a constant effective sample size as
this would lead to an exponential growth in the number of samples required. This sheds some light on
the resampling mechanism: it “resets the system” in such a way that its representation of final time
marginals remains well behaved at the expense of further diminishing the quality of the path-samples.
By focusing on the fixed-dimensional final time marginals in this way, it allows us to circumvent the
problem of increasing dimensionality.

3.6 Convergence Results for Sequential Monte Carlo Methods

Here, we briefly discuss selected convergence results for SMC. We focus on the CLT as it allows us to
clearly understand the benefits of the resampling step and why it “works”. If multinomial resampling
is used at every iteration4, then the associated SMC estimates of Ẑn/Zn and In (ϕn) satisfy a CLT and
their respective asymptotic variances are given by

1
N

(∫
π2
n (x1)
q1 (x1)

dx1 − 1 +
n∑
k=2

∫
π2
n (x1:k)

πk−1 (x1:k−1) qk (xk|x1:k−1)
dxk−1:k − 1

)
(37)

and∫ π2
1(x1)
q1(x1)

(∫
ϕn (x1:n)πn (x2:n|x1) dx2:n − In (ϕn)

)2
dx1

+
∑n−1
k=2

∫ π2
n(x1:k)

πk−1(x1:k−1)qk(xk|x1:k−1)

(∫
ϕn (x1:n)πn (xk+1:n|x1:k) dxk+1:n − In (ϕn)

)2
dx1:k

+
∫ π2

n(x1:n)
πn−1(x1:n−1)qn(xn|x1:n−1) (ϕn (x1:n)− In (ϕn))2

dx1:n.

(38)

A short and elegant proof of this result is given in [11, Chapter 9]; see also [9]. These expression
are very informative. They show that the resampling step has the effect of “resetting” the particle
system whenever it is applied. Comparing (26) to (37), we see that the SMC variance expression has
replaced the importance distribution qn (x1:n) in the SIS variance with the importance distributions
πk−1 (x1:k−1) qk (xk|x1:k−1) obtained after the resampling step at time k − 1. Moreover, we will show
that in important scenarios the variances of SMC estimates are orders of magnitude smaller than the
variances of SIS estimates.

Let us first revisit the toy example discussed in section 3.3.

Example (continued). In this case, it follows from (37) that the asymptotic variance is finite only
when σ2 > 1

2 and

VSMC

[
Ẑn

]
Z2
n

≈ 1
N

[∫
π2
n (x1)
q1 (x1)

dx1 − 1 +
n∑
k=2

∫
π2
n (xk)
qk (xk)

dxk − 1

]

=
n

N

[(
σ4

2σ2 − 1

)1/2

− 1

]
4Similar expressions can be established when a lower variance resampling strategy such as residual resampling is used

and when resampling is performed adaptively [12]. The results presented here are sufficient to guide the design of par-
ticular algorithms and the additional complexity involved in considering more general scenarios serves largely to produce
substantially more complex expressions which obscure the important points.
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compared to
VIS

[
Ẑn

]
Z2
n

=
1
N

[(
σ4

2σ2 − 1

)n/2
− 1

]
.

The asymptotic variance of the SMC estimate increases linearly with n in contrast to the exponential
growth of the IS variance. For example, if we select σ2 = 1.2 then we have a reasonably good importance
distribution as qk (xk) ≈ πn (xk). In this case, we saw that it is necessary to employ N ≈ 2 × 1023

particles in order to obtain
VIS[ bZn]
Z2

n
= 10−2 for n = 1000. Whereas to obtain the same performance,

VSMC[ bZn]
Z2

n
= 10−2, SMC requires the use of just N ≈ 104 particles: an improvement by 19 orders of

magnitude.

This scenario is overly favourable to SMC as the target (31) factorises. However, generally speaking, the
major advantage of SMC over IS is that it allows us to exploit the forgetting properties of the model
under study as illustrated by the following example.

Example. Consider the following more realistic scenario where

γn (x1:n) = µ (x1)
n∏
k=2

Mk (xk|xk−1)
n∏
k=1

Gk (xk)

with µ a probability distribution, Mk a Markov transition kernel and Gk a positive “potential” func-
tion. Essentially, filtering corresponds to this model with Mk (xk|xk−1) = f (xk|xk−1) and the time
inhomogeneous potential function Gk(xk) = g (yk|xk). In this case, πk (xk|x1:k−1) = πk (xk|xk−1)
and we would typically select an importance distribution qk (xk|x1:k−1) with the same Markov property
qk (xk|x1:k−1) = qk (xk|xk−1). It follows that (37) is equal to

1
N

(∫
π2

1 (x1)
q1 (x1)

dx1 − 1 +
n∑
k=2

∫
π2
n (xk−1:k)

πk−1 (xk−1) qk (xk|xk−1)
dxk−1:k − 1

)

and (38), for ϕn (x1:n) = ϕ (xn), equals:∫ π2
1(x1)
q1(x1)

(∫
ϕ (xn)πn (xn|x1) dx2:n − In (ϕ)

)2
dx1

+
∑n−1
k=2

∫ π2
n(xk−1:k)

πk−1(xk−1)qk(xk|xk−1)

(∫
ϕ (xn)πn (xn|xk) dxk − In (ϕ)

)2
dxk−1:k

+
∫ π2

n(xn−1:n)
πn−1(xn−1)qn(xn|xn−1) (ϕ (xn)− In (ϕ))2

dxn−1:n,

where we use the notation In (ϕ) for In (ϕn). In many realistic scenarios, the model associated with
πn (x1:n) has some sort of ergodic properties; i.e. ∀xk, x′k ∈ X πn (xn|xk) ≈ πn (xn|x′k) for large enough
n − k. In layman’s terms, at time n what happened at time k is irrelevant if n − k is large enough.
Moreover, this often happens exponentially fast; that is for any (xk, x′k)

1
2

∫
|πn (xn|xk)− πn (xn|x′k)| dxn ≤ βn−k

for some β < 1. This property can be used to establish that for bounded functions ϕ ≤ ‖ϕ‖∣∣∣∣∫ ϕ (xn)πn (xn|xk) dxn − I (ϕ)
∣∣∣∣ ≤ βn−k ‖ϕ‖

and under weak additional assumptions we have

π2
n (xk−1:k)

πk−1 (xk−1) qk (xk|xk−1)
≤ A

for a finite constant A. Hence it follows that

VSMC

[
Ẑn

]
Z2
n

≤ C · n
N

,
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VSMC

[
În (ϕ)

]
≤ D

N
.

for some finite constants C,D that are independent of n. These constants typically increase polynomi-
ally/exponentially with the dimension of the state-space X and decrease as β → 0.

3.7 Summary

We have presented a generic SMC algorithm which approximates {πn (x1:n)} and {Zn} sequentially in
time.

• Wherever it is possible to sample from qn (xn|x1:n−1) and evaluate αn (x1:n) in a time independent
of n, this leads to an algorithm whose computational complexity does not increase with n.

• For any k, there exists n > k such that the SMC approximation of πn (x1:k) consists of a single
particle because of the successive resampling steps. It is thus impossible to get a “good” SMC
approximation of the joint distributions {πn (x1:n)} when n is too large. This can easily be seen in
practice, by monitoring the number of distinct particles approximating πn (x1).

• However, under mixing conditions, this SMC algorithm is able to provide estimates of marginal
distributions of the form πn (xn−L+1:n) and estimates of Zn/Zn−1 whose variance is uniformly
bounded with n. This property is crucial and explains why SMC methods “work” in many realistic
scenarios.

• Practically, one should keep in mind that the variance of SMC estimates can only expected to be
reasonable if the variance of the incremental weights is small. In particular, this requires that we
can only expect to obtain good performance if πn (x1:n−1) ≈ πn−1 (x1:n−1) and qn (xn|x1:n−1) ≈
πn (xn|x1:n−1); that is if the successive distributions we want to approximate do not differ much
one from each other and the importance distribution is a reasonable approximation of the “optimal”
importance distribution. However, if successive distributions differ significantly, it is often possible
to design an artificial sequence of distributions to “bridge” this transition [21, 31].

4 Particle Filtering

Remember that in the filtering context, we want to be able to compute a numerical approximation
of the distribution {p (x1:n| y1:n)}n≥1 sequentially in time. A direct application of the SMC methods
described earlier to the sequence of target distributions πn (x1:n) = p (x1:n| y1:n) yields a popular class
of particle filters. More elaborate sequences of target and proposal distributions yield various more
advanced algorithms. For ease of presentation, we present algorithms in which we resample at each
time step. However, in practice we recommend only resampling when the ESS is below a threshold and
employing the systematic resampling scheme.

4.1 SMC for Filtering

First, consider the simplest case in which γn (x1:n) = p (x1:n, y1:n) is chosen, yielding πn (x1:n) =
p (x1:n| y1:n) and Zn = p (y1:n). Practically, it is only necessary to select the importance distribu-
tion qn (xn|x1:n−1). We have seen that in order to minimise the variance of the importance weights at
time n, we should select qopt

n (xn|x1:n−1) = πn (xn|x1:n−1) where

πn (xn|x1:n−1) = p (xn| yn, xn−1)

=
g (yn|xn) f (xn|xn−1)

p (yn|xn−1)
, (39)
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and the associated incremental importance weight is αn (x1:n) = p (yn|xn−1) . In many scenarios, it is
not possible to sample from this distribution but we should aim to approximate it. In any case, it shows
that we should use an importance distribution of the form

qn (xn|x1:n−1) = q (xn| yn, xn−1) (40)

and that there is nothing to be gained from building importance distributions depending also upon
(y1:n−1, x1:n−2) — although, at least in principle, in some settings there may be advantages to using
information from subsequent observations if they are available. Combining (29), (30) and (40), the
incremental weight is given by

αn (x1:n) = αn (xn−1:n) =
g (yn|xn) f (xn|xn−1)

q (xn| yn, xn−1)
.

The algorithm can thus be summarised as follows.

SIR/SMC for Filtering

At time n = 1

• Sample Xi
1 ∼ q(x1| y1).

• Compute the weights w1

(
Xi

1

)
=

µ(Xi
1)g(y1|Xi

1)
q(Xi

1|y1)
and W i

1 ∝ w1

(
Xi

1

)
.

• Resample
{
W i

1, X
i
1

}
to obtain N equally-weighted particles

{
1
N , X

i

1

}
.

At time n ≥ 2

• Sample Xi
n ∼ q(xn| yn, X

i

n−1) and set Xi
1:n ←

(
X
i

1:n−1, X
i
n

)
.

• Compute the weights αn
(
Xi
n−1:n

)
=

g(yn|Xi
n)f(Xi

n|Xi
n−1)

q(Xi
n|yn,Xi

n−1)
and W i

n ∝ αn
(
Xi
n−1:n

)
.

• Resample
{
W i
n, X

i
1:n

}
to obtain N new equally-weighted particles

{
1
N , X

i

1:n

}
.

We obtain at time n

p̂ (x1:n| y1:n) =
N∑
i=1

W i
nδXi

1:n
(x1:n) ,

p̂ (yn| y1:n−1) =
N∑
i=1

W i
n−1αn

(
Xi
n−1:n

)
.

However, if we are interested only in approximating the marginal distributions {p (xn| y1:n)} and {p (y1:n)}
then we need to store only the terminal-value particles

{
Xi
n−1:n

}
to be able to compute the weights: the

algorithm’s storage requirements do not increase over time.

Many techniques have been proposed to design “efficient” importance distributions q (xn| yn, xn−1) which
approximate p (xn| yn, xn−1). In particular the use of standard suboptimal filtering techniques such as
the Extended Kalman Filter or the Unscented Kalman Filter to obtain importance distributions is very
popular in the literature [14, 37]. The use of local optimisation techniques to design q (xn| yn, xn−1)
centred around the mode of p (xn| yn, xn−1) has also been advocated [33, 34].
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Figure 2: Filtering estimates obtained for the stochastic volatility model using SIS. At each time the
mean and standard deviation of xn conditional upon y1:n is estimated using the particle set. It initially
performs reasonably, but the approximation eventually collapses: the estimated mean begins to diverge
from the truth and the estimate of the standard deviation is inaccurately low.

4.1.1 Example: Stochastic Volatility

Returning to example 4 and the simulated data shown in figure 1, we are able to illustrate the performance
of SMC algorithms with and without resampling steps in a filtering context.

An SIS algorithm (corresponding to the above SMC algorithm without a resampling step) with N = 1000
particles, in which the conditional prior is employed as a proposal distribution (leading to an algorithm
in which the particle weights are proportional to the likelihood function) produces the output shown in
figure 2. Specifically, at each iteration, n, of the algorithm the conditional expectation and standard
deviation of xn, given y1:n is obtained. It can be seen that the performance is initially good, but after
a few iterations the estimate of the mean becomes inaccurate, and the estimated standard deviation
shrinks to a very small value. This standard deviation is an estimate of the standard deviation of the
conditional posterior obtained via the particle filter: it is not a measure of the standard deviation of
the estimator. Such an estimate can be obtained by considering several independent particle filters run
on the same data and would illustrate the high variability of estimates obtained by a poorly-designed
algorithm such as this one. In practice, approximations such as the effective sample size are often used as
surrogates to characterise the uncertainty of the filter estimates but these perform well only if the filter
is providing a reasonable approximation of the conditional distributions of interest. Figure 3 supports
the theory that the failure of the algorithm after a few iterations is due to weight degeneracy, showing
that the number of particles with significant weight falls rapidly.

The SIR algorithm described above was also applied to this problem with the same proposal distribution
and number of particles as were employed in the SIS case. For simplicity, multinomial resampling was
applied at every iteration. Qualitatively, the same features would be observed if a more sophisticated
algorithm were employed, or adaptive resampling were used although these approaches would lessen
the severity of the path-degeneracy problem. Figure 4 shows the distribution of particle weights for
this algorithm. Notice that unlike the SIS algorithm shown previously, there are many particles with
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Figure 3: Empirical distributions of the particle weights obtained with the SIS algorithm for the stochastic
volatility model at iterations 2, 10 and 50. Although the algorithm is reasonably initialised, by iteration
10 only a few tens of particles have significant weight and by iteration 50 a single particle is dominant.
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Figure 4: Empirical distribution of particle weights for an SIR algorithm applied to the stochastic
volatility model. Notice that there is no evidence of weight degeneracy in contrast to the SIS case. This
comes at the cost of reducing the quality of the path-space representation.
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Figure 5: SIR Filtering estimates for the SV model.

significant weight at all three time points. It is important to note that while this is encouraging it is
not evidence that the algorithm is performing well: it provides no information about the path-space
distribution and, in fact, it is easy to construct poorly-performing algorithms which appear to have a
good distribution of particle weights (for instance, consider a scenario in which the target is relatively
flat in its tails but sharply concentrated about a mode; if the proposal has very little mass in the vicinity
of the mode then it is likely that a collection of very similar importance weights will be obtained — but
the sample thus obtained does not characterise the distribution of interest well). Figure 5 shows that the
algorithm does indeed produce a reasonable estimate and plausible credible interval. And, as we expect,
a problem does arise when we consider the smoothing distributions p(xn|y1:500) as shown in figure 6:
the estimate and credible interval is unreliable for n � 500. This is due to the degeneracy caused at
the beginning of the path by repeated resampling. In contrast the smoothed estimate for n ≈ 500 (not
shown) is reasonable.

4.2 Auxiliary Particle Filtering

As was discussed above, the optimal proposal distribution (in the sense of minimising the variance of
importance weights) when performing standard particle filtering is q (xn| yn, xn−1) = p (xn| yn, xn−1).
Indeed, αn (xn−1:n) is independent of xn in this case so it is possible to interchange the order of the
sampling and resampling steps. Intuitively, this yields a better approximation of the distribution as it
provides a greater number of distinct particles to approximate the target. This is an example of a general
principle: resampling, if it is to be applied in a particular iteration, should be performed before, rather
than after, any operation that doesn’t influence the importance weights in order to minimise the loss of
information.

It is clear that if importance weights are independent of the new state and the proposal distribution
corresponds to the marginal distribution of the proposed states then weighting, resampling and then
sampling corresponds to a reweighting to correct for the discrepancy between the old and new marginal
distribution of the earlier states, resampling to produce an unweighted sample and then generation of
the new state from its conditional distribution. This intuition can easily be formalised.
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Figure 6: SIR Smoothing estimates for the SV model.

However, in general, the incremental importance weights do depend upon the new states and this straight-
forward change of order becomes impossible. In a sense, this interchange of sampling and resampling
produces an algorithm in which information from the next observation is used to determine which parti-
cles should survive resampling at a given time (to see this, consider weighting and resampling occurring
as the very last step of the iteration before the current one, rather than as the first step of that iteration).
It is desirable to find methods for making use of this future information in a more general setting, so that
we can obtain the same advantage in situations in which it is not possible to make use of the optimal
proposal distribution.

The Auxiliary Particle Filter (APF) is an alternative algorithm which does essentially this. It was
originally introduced in [33] using auxiliary variables — hence its name. Several improvements were
proposed to reduce its variance [7, 34]. We present here the version of the APF presented in [7] which
only includes one resampling step at each time instance. It has long been realised that, experimentally,
this version outperforms the original two stage resampling algorithm proposed in [33] and is widely used;
see [7] for a comparison of both approaches. The APF is a look ahead method where at time n we try
to predict which samples will be in regions of high probability masses at time n+ 1.

It was shown in [23] that the APF can be reinterpreted as a standard SMC algorithm applied to the
following sequence of target distributions

γn (x1:n) = p (x1:n, y1:n) p̃ (yn+1|xn) (41)

with p̃ (yn+1|xn) chosen as an approximation of the predictive likelihood p (yn+1|xn) if it is not known
analytically. It follows that πn (x1:n) is an approximation of p (x1:n| y1:n+1) denoted p̃ (x1:n| y1:n+1) given
by

πn (x1:n) = p̃ (x1:n| y1:n+1) ∝ p (x1:n| y1:n) p̃ (yn+1|xn) (42)

In the APF we also use an importance distribution qn (xn|x1:n−1) of the form (40) which is typically
an approximation of (39). Note that (39) is different from πn (xn|x1:n−1) in this scenario. Even if we
could sample from πn (xn|x1:n−1), one should remember that in this case the object of inference is not
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πn (x1:n) = p̃ (x1:n| y1:n+1) but p (x1:n| y1:n). The associated incremental weight is given by

αn (xn−1:n) =
γn (x1:n)

γn−1 (x1:n−1) qn (xn|x1:n−1)

=
g (yn|xn) f (xn|xn−1) p̃ (yn+1|xn)

p̃ (yn|xn−1) q (xn| yn, xn−1)
.

To summarize, the APF proceeds as follows.

Auxiliary Particle Filtering

At time n = 1

• Sample Xi
1 ∼ q(x1| y1).

• Compute the weights w1

(
Xi

1

)
=

µ(Xi
1)g(y1|Xi

1)ep(y2|Xi
1)

q(Xi
1|y1)

and W i
1 ∝ w1

(
Xi

1

)
.

• Resample
{
W i

1, X
i
1

}
to obtain N equally-weighted particles

{
1
N , X

i

1

}
.

At time n ≥ 2

• Sample Xi
n ∼ q(xn| yn, X

i

n−1) and set Xi
1:n ←

(
X
i

1:n−1, X
i
n

)
.

• Compute the weights αn
(
Xi
n−1:n

)
=

g(yn|Xi
n)f(Xi

n|Xi
n−1)ep(yn+1|Xi

n)ep(yn|Xi
n−1)q(Xi

n|yn,Xi
n−1)

and W i
n ∝ αn

(
Xi
n−1:n

)
.

• Resample
{
W i
n, X

i
1:n

}
to obtain N new equally-weighted particles

{
1
N , X

i

1:n

}
.

Keeping in mind that this algorithm does not approximate the distributions {p (x1:n| y1:n)} but the
distributions {p̃ (x1:n| y1:n+1)}, we use IS to obtain an approximation of p (x1:n| y1:n) with

πn−1 (x1:n−1) qn (xn|x1:n−1) = p̃ (x1:n−1| y1:n) q (xn| yn, xn−1)

as the importance distribution. A Monte Carlo approximation of this importance distribution is obtained
after the sampling step in the APF and the associated unnormalised importance weights are given by

w̃n (xn−1:n) =
p (x1:n, y1:n)

γn−1 (x1:n−1) qn (xn|x1:n−1)
=

g (yn|xn) f (xn|xn−1)
p̃ (yn|xn−1) q (xn| yn, xn−1)

. (43)

It follows that we obtain

p̂ (x1:n| y1:n) =
N∑
i=1

W̃ i
nδXi

1:n
(x1:n) ,

p̂ (y1:n) =
1
N

N∑
i=1

w̃n
(
Xi
n−1:n

)
where

W̃ i
n ∝ w̃n

(
Xi
n−1:n

)
or W̃ i

n ∝ W i
n−1w̃n

(
Xi
n−1:n

)
if resampling was not performed at the end of the previous iteration. Se-

lecting qn (xn|x1:n−1) = p (xn| yn, xn−1) and p̃ (yn|xn−1) = p (yn|xn−1), when it is possible to do so,
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leads to the so-called “perfect adaptation” case [33]. In this case, the APF takes a particularly simple
form as αn (xn−1:n) = p (yn|xn−1) and w̃n (xn−1:n) = 1. This is similar to the algorithm discussed in
the previous subsection where the order of the sampling and resampling steps is interchanged.

This simple reinterpretation of the APF shows us several things:

• We should select a distribution p̃ (x1:n| y1:n) with thicker tails than p (x1:n| y1:n).

• Setting p̃ (yn|xn−1) = g (yn|µ (xn−1)) where µ denotes some point estimate is perhaps unwise as
this will not generally satisfy that requirement.

• We should use an approximation of the predictive likelihood which is compatible with the model
we are using in the sense that it encodes at least the same degree of uncertainty as the exact model.

These observations follows from the fact that p̃ (x1:n| y1:n) is used as an importance distribution to
estimate p (x1:n| y1:n) and this is the usual method to ensure that the estimator variance remains finite.
Thus p̃ (yn|xn−1) should be more diffuse than p (yn|xn−1).

It has been suggested in the literature to set p̃ (yn|xn−1) = g (yn|µ (xn−1)) where µ (xn−1) corresponds
to the mode, mean or median of f (xn|xn−1). However, this simple approximation will often yield an
importance weight function (43) which is not upper bounded on X × X and could lead to estimates with
a large/infinite variance.

An alternative approach, selecting an approximation p̃ (yn, xn|xn−1) = p̃ (yn|xn−1) q (xn| yn, xn−1) of
the distribution p (yn, xn|xn−1) = p (yn|xn−1) p (xn| yn, xn−1) = g (yn|xn) f (xn|xn−1) such that the
ratio (43) is upper bounded on X × X and such that it is possible to compute p̃ (yn|xn−1) pointwise and
to sample from q (xn| yn, xn−1), should be preferred.

4.3 Limitations of Particle Filters

The algorithms described earlier suffer from several limitations. It is important to emphasise at this point
that, even if the optimal importance distribution p (xn| yn, xn−1) can be used, this does not guarantee
that the SMC algorithms will be efficient. Indeed, if the variance of p (yn|xn−1) is high, then the
variance of the resulting approximation will be high. Consequently, it will be necessary to resample
very frequently and the particle approximation p̂ (x1:n| y1:n) of the joint distribution p (x1:n| y1:n) will
be unreliable. In particular, for k � n the marginal distribution p̂ (x1:k| y1:n) will only be approximated
by a few if not a single unique particle because the algorithm will have resampled many times between
times k and n. One major problem with the approaches discussed above is that only the variables

{
Xi
n

}
are sampled at time n but the path values

{
Xi

1:n−1

}
remain fixed. An obvious way to improve upon

these algorithms would involve not only sampling
{
Xi
n

}
at time n, but also modifying the values of the

paths over a fixed lag
{
Xi
n−L+1:n−1

}
for L > 1 in light of the new observation yn; L being fixed or upper

bounded to ensure that we have a sequential algorithm (i.e. one whose computational cost and storage
requirements are uniformly bounded over time). The following two sections describe two approaches to
limit this degeneracy problem.

4.4 Resample-Move

This degeneracy problem has historically been addressed most often using the Resample-Move algorithm
[20]. Like Markov Chain Monte Carlo (MCMC), it relies upon Markov kernels with appropriate invari-
ant distributions. Whilst MCMC uses such kernels to generate collections of correlated samples, the
Resample-Move algorithm uses them within an SMC algorithm as a principled way to “jitter” the par-
ticle locations and thus to reduce degeneracy. A Markov kernel Kn (x′1:n|x1:n) of invariant distribution
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p (x1:n| y1:n) is a Markov transition kernel with the property that∫
p (x1:n| y1:n)Kn (x′1:n|x1:n) dx1:n = p (x′1:n| y1:n) .

For such a kernel, if X1:n ∼ p (x1:n| y1:n) and X ′1:n|X1:n ∼ K (x1:n|X1:n) then X ′1:n is still marginally
distributed according to p (x1:n| y1:n). Even if X1:n is not distributed according to p (x1:n| y1:n) then,
after an application of the MCMC kernel, X ′1:n can only have a distribution closer than that of X1:n

(in total variation norm) to p (x1:n| y1:n). A Markov kernel is said to be ergodic if iterative application
of that kernel generates samples whose distribution converges towards p (x1:n| y1:n) irrespective of the
distribution of the initial state.

It is easy to construct a Markov kernel with a specified invariant distribution. Indeed, this is the
basis of MCMC — for details see [35] and references therein. For example, we could consider the
following kernel, based upon the Gibbs sampler: set x′1:n−L = x1:n−L then sample x′n−L+1 from
p
(
xn−L+1| y1:n, x

′
1:n−L, xn−L+2:n

)
, sample x′n−L+2 from p

(
xn−L+2| y1:n, x

′
1:n−L+1, xn−L+3:n

)
and so on

until we sample x′n from p
(
xn| y1:n, x

′
1:n−1

)
; that is

Kn (x′1:n|x1:n) = δx1:n−L

(
x′1:n−L

) n∏
k=n−L+1

p
(
x′k| y1:n, x

′
1:k−1, xk+1:n

)
and we write, with a slight abuse of notation, the non-degenerate component of the MCMC kernel
Kn

(
x′n−L+1:n

∣∣x1:n

)
. It is straightforward to verify that this kernel is p (x1:n| y1:n)-invariant.

If it is not possible to sample from p
(
x′k| y1:n, x

′
1:k−1, xk+1:n

)
= p

(
x′k| yk, x′k−1, xk+1

)
, we can in-

stead employ a Metropolis-Hastings (MH) strategy and sample a candidate according to some proposal
q
(
x′k| yk, x′k−1, xk:k+1

)
and accept it with the usual MH acceptance probability

min

(
1,
p (x′1:k, xk+1:n| y1:n) q

(
xk| yk, x′k−1, x

′
k, xk+1

)
p
(
x′1:k−1, xk+1:n

∣∣ y1:n

)
q
(
x′k| yk, x′k−1, xk:k+1

))

= min

(
1,
g (yk|x′k) f (xk+1|x′k) f

(
x′k|x′k−1

)
q
(
xk| yk, x′k−1, x

′
k, xk+1

)
g (yk|xk) f (xk+1|xk) f

(
xk|x′k−1

)
q
(
x′k| yk, x′k−1, xk:k+1

) ) .
It is clear that these kernels can be ergodic only if L = n and all of the components of x1:n are updated.
However, in our context we will typically not use ergodic kernels as this would require sampling an
increasing number of variables at each time step. In order to obtain truly online algorithms, we restrict
ourselves to updating the variables Xn−L+1:n for some fixed or bounded L.

The algorithm proceeds as follows, withKn denoting a Markov kernel of invariant distribution p(x1:n|y1:n).

SMC Filtering with MCMC Moves

At time n = 1

• Sample Xi
1 ∼ q(x1| y1).

• Compute the weights w1

(
Xi

1

)
=

µ(Xi
1)g(y1|Xi

1)
q(Xi

1|y1)
and W i

1 ∝ w1

(
Xi

1

)
.

• Resample
{
W i

1, X
i
1

}
to obtain N equally-weighted particles

{
1
N , X

i

1

}
.

• Sample X ′i1 ∼ K1(x1|X
i

1).
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At time 1 < n < L

• Sample Xi
n ∼ q(xn| yn, X ′in−1) and set Xi

1:n ←
(
X ′i1:n−1, X

i
n

)
.

• Compute the weights αn
(
Xi
n−1:n

)
=

g(yn|Xi
n)f(Xi

n|Xi
n−1)

q(Xi
n|yn,Xi

n−1)
and W i

n ∝ αn
(
Xi
n−1:n

)
.

• Resample
{
W i
n, X

i
1:n

}
to obtain N equally-weighted particles

{
1
N , X

i

1:n

}
.

• Sample X ′i1:n ∼ Kn(x1:n|X
i

1:n).

At time n ≥ L

• Sample Xi
n ∼ q(xn| yn, X ′in−1) and set Xi

1:n ←
(
X ′i1:n−1, X

i
n

)
.

• Compute the weights αn
(
Xi
n−1:n

)
=

g(yn|Xi
n)f(Xi

n|Xi
n−1)

q(Xi
n|yn,Xi

n−1)
and W i

n ∝ αn
(
Xi
n−1:n

)
.

• Resample
{
W i
n, X

i
1:n

}
to obtain N new equally-weighted particles

{
1
N , X

i

1:n

}
.

• Sample X ′in−L+1:n ∼ Kn(xn−L+1:n|X
i

1:n) and set X ′i1:n ←
(
X
i

1:n−L, X
′i
n−L+1:n

)
.

The following premise, which [35] describes as “generalised importance sampling”, could be used to justify
inserting MCMC transitions into an SMC algorithm after the sampling step. Given a target distribution
π, an instrumental distribution µ and a π-invariant Markov kernel, K, the following generalisation of
the IS identity holds: ∫

π(y)ϕ(y)dy =
∫∫

µ(x)K(y|x)
π(y)L(x| y)
µ(x)K(y|x)

ϕ(y)dxdy

for any Markov kernel L. This approach corresponds to importance sampling on an enlarged space
using µ(x)K(y|x) as the proposal distribution for a target π(y)L(x| y) and then estimating a function
ϕ′(x, y) = ϕ(y). In particular, for the time-reversal kernel associated with K

L(x| y) =
π(x)K(y|x)

π (y)
,

we have the importance weight
π(y)L(x| y)
µ(x)K(y|x)

=
π (x)
µ(x)

.

This interpretation of such an approach illustrates its deficiency: the importance weights depend only
upon the location before the MCMC move while the sample depends upon the location after the move.
Even if the kernel was perfectly mixing, leading to a collection of iid samples from the target distribution,
some of these samples would be eliminated and some replicated in the resampling step. Resampling before
an MCMC step will always lead to greater sample diversity than performing the steps in the other order
(and this algorithm can be justified directly by the invariance property).

Based on this reinterpretation of MCMC moves within IS, it is possible to reformulate this algorithm
as a specific application of the generic SMC algorithm discussed in Section 3. To simply notation we
write qn (xn|xn−1) for q (xn| yn, xn−1). To clarify our argument, it is necessary to add a superscript to
the variables; e.g. Xp

k corresponds to the pth time the random variable Xk is sampled; in this and the
following section, this superscript does not denote the particle index. Using such notation, this algorithm
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is the generic SMC algorithm associated to the following sequence of target distributions

πn
(
x1:L+1

1 , . . . , x1:L+1
n−L+1, x

1:L
n−L, ..., x

1:2
n

)
= p

(
xL+1

1 , . . . ., xL+1
n−L+1, x

L
n−L, ..., x

2
n

∣∣ y1:n

)
Ln
(
x1
n, x

2
n−1, ..., x

L
n−L+1

∣∣x2
n, x

3
n−1, ..., x

L+1
n−L+1

)
× · · · × L2

(
x2

1, x
1
2

∣∣x3
1, x

2
2

)
L1

(
x1

1

∣∣x2
1

)
where Ln is the time-reversal kernel associated with Kn whereas, if no resampling is used5, a path up
to time n is sampled according to

qn
(
x1:L+1

1 , . . . , x1:L+1
n−L+1, x

1:L
n−L, ..., x

1:2
n

)
= q1

(
x1

1

)
K1

(
x2

1

∣∣x1
1

)
q2

(
x1

2

∣∣x2
1

)
K2

(
x3

1, x
2
2

∣∣x2
1, x

1
2

)
× · · · × qn

(
x1
n

∣∣x2
n−1

)
Kn

(
xL+1
n−L+1, . . . , x

3
n−1, x

2
n

∣∣xL+1
1:n−L, x

L
n−L+1, . . . , x

2
n−1, x

1
n

)
.

This sequence of target distributions admits the filtering distributions of interest as marginals. The
clear theoretical advantage of using MCMC moves is that the use of even non-ergodic MCMC kernels
{Kn} can only improve the mixing properties of {πn} compared to the “natural” sequence of filtering
distributions; this explains why these algorithms outperform a standard particle filter for a given number
of particles.

Finally, we note that the incorporation of MCMC moves to improve sample diversity is an idea which
is appealing in its simplicity and which can easily be incorporated into any of the algorithms described
here.

4.5 Block Sampling

The Resample-Move method discussed in the previously section suffers from a major drawback. Although
it does allow us to reintroduce some diversity among the set of particles after the resampling step over
a lag of length L, the importance weights have the same expression as for the standard particle filter.
So this strategy does not significantly decrease the number of resampling steps compared to a standard
approach. It can partially mitigate the problem associated with resampling, but it does not prevent
these resampling steps in the first place.

An alternative block sampling approach has recently been proposed in [15]. This approach goes further
than the Resample-Move method, which aims to sample only the component xn at time n in regions of
high probability mass and then to uses MCMC moves to rejuvenate xn−L+1:n after a resampling step.
The block sampling algorithm attempts to directly sample the components xn−L+1:n at time n; the
previously-sampled values of the components xn−L+1:n−1 sampled are simply discarded. In this case, it
can easily be shown that the optimal importance distribution (that which minimises the variance of the
importance weights at time n) is:

p (xn−L+1:n| yn−L+1:n, xn−L) =
p (xn−L:n, yn−L+1:n)
p (yn−L+1:n|xn−L)

(44)

where

p (yn−L+1:n|xn−L) =
∫ n∏

k=n−L+1

f (xk|xk−1) · g (yk|xk) dxn−L+1:n. (45)

As in the standard case (corresponding to L = 1), it is typically impossible to sample from (44) and/or to
compute (45). So in practice we need to design an importance distribution q (xn−L+1:n| yn−L+1:n, xn−L)
approximating p (xn−L+1:n| yn−L+1:n, xn−L). Henceforth, we consider the case where L > 1.

The algorithm proceeds as follows.

5Once again, similar expressions can be obtained in the presence of resampling and the technique remains valid.
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SMC Block Sampling for Filtering

At time n = 1

• Sample Xi
1 ∼ q(x1| y1).

• Compute the weights w1

(
Xi

1

)
=

µ(Xi
1)g(y1|Xi

1)
q(Xi

1|y1)
and W i

1 ∝ w1

(
Xi

1

)
.

• Resample
{
W i

1, X
i
1

}
to obtain N equally-weighted particles

{
1
N , X

i

1

}
.

At time 1 < n < L

• Sample Xi
1:n ∼ q(x1:n| y1:n).

• Compute the weights αn
(
Xi

1:n

)
=

p(Xi
1:n,y1:n)

q(Xi
1:n|y1:n)

and W i
n ∝ αn

(
Xi
n−1:n

)
.

• Resample
{
W i
n, X

i
1:n

}
to obtain N equally-weighted particles

{
1
N , X

i

1:n

}
.

At time n ≥ L

• Sample Xi
n−L+1:n ∼ q(xn−L+1:n|yn−L+1:n, X

i

1:n−1).

• Compute the weights

wn

(
X
i

n−L:n−1, X
i
n−L+1:n

)
=
p
(
X
i

1:n−L, X
i
n−L+1:n, y1:n

)
q(X

i

n−L+1:n−1|yn−L+1:n−1, X
i

n−L)

p
(
X
i

1:n−1, y1:n−1

)
q(Xi

n−L+1:n|yn−L+1:n, X
i

n−L)
(46)

and W i
n ∝ wn

(
X
i

n−L:n−1, X
i
n−L+1:n

)
.

• Resample
{
W i
n, X

i

1:n−L, X
i
n−L+1:n

}
to obtain N new equally weighted particles

{
1
N , X

i

1:n

}
.

When the optimal IS distribution is used q (xn−L+1:n| yn−L+1:n, xn−L) = p (xn−L+1:n| yn−L+1:n, xn−L),
we obtain

wn (x1:n−1, xn−L+1:n) =
p (x1:n−L, xn−L+1:n, y1:n) p(xn−L+1:n−1|yn−L+1:n−1, xn−L)

p (x1:n−1, y1:n−1) p (xn−L+1:n| yn−L+1:n, xn−L)
= p (yn| yn−L+1:n, xn−L) .

This optimal weight has a variance which typically decreases exponentially fast with L (under mixing
assumptions). Hence, in the context of adaptive resampling, this strategy dramatically reduces the
number of resampling steps. In practice, we cannot generally compute this optimal weight and thus use
(46) with an approximation of p (xn−L+1:n| yn−L+1:n, xn−L) for q (xn−L+1:n| yn−L+1:n, xn−L). When
a good approximation is available, the variance of (46) can be reduced significantly compared to the
standard case where L = 1.

Again, this algorithm is a specific application of the generic SMC algorithm discussed in Section 3. To
simply notation we write qn (xn−L+1:n|xn−L) for q (xn−L+1:n| yn−L+1:n, xn−L). To clarify our argument,
it is again necessary to add a superscript to the variables; e.g. Xp

k corresponds to the pth time the random
variable Xk is sampled; remember that in the present section, this superscript does not denote the particle
index. Using this notation, the algorithm corresponds to the generic SMC algorithm associated with the
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following sequence of target distributions

πn
(
x1:L

1 , . . . , x1:L
n−L+1, x

1:L−1
n−L+2, . . . , x

1
n

)
= p

(
xL1:n−L+1, x

L−1
n−L+2, . . . , x

1
n

∣∣ y1:n

)
qn−1

(
xL−1
n−L+1, . . . , x

1
n−1

∣∣xLn−L)
× · · · q2

(
x2

1, x
1
2

)
q1

(
x1

1

)
.

where, if no resampling is used, a path is sampled according to

qn
(
x1:L

1 , . . . , x1:L
n−L+1, x

1:L−1
n−L+2, ..., x

1
n

)
= q1

(
x1

1

)
q2

(
x2

1, x
1
2

)
× · · · × qn

(
xLn−L+1, ..., x

1
n

∣∣xLn−L) .
The sequence of distributions admits the filtering distributions of interest as marginals. The mixing
properties of {πn} are also improved compared to the ‘natural’ sequence of filtering distributions; this is
the theoretical explanation of the better performance obtained by these algorithms for a given number
of particles.

4.6 Rao-Blackwellised Particle Filtering

Let us start by quoting Trotter [36]: “A good Monte Carlo is a dead Monte Carlo”. Trotter specialised in
Monte Carlo methods and did not advocate that we should not use them, but that we should avoid them
whenever possible. In particular, whenever an integral can be calculated analytically doing so should be
preferred to the use of Monte Carlo techniques.

Assume, for example, that one is interested in sampling from π (x) with x = (u, z) ∈ U × Z and

π (x) =
γ (u, z)
Z

= π (u)π (z|u)

where π (u) = Z−1γ (u) and

π (z|u) =
γ (u, z)
γ (u)

admits a closed-form expression; e.g. a multivariate Gaussian. Then if we are interested in approximating
π (x) and computing Z, we only need to perform a MC approximation π (u) and Z =

∫
γ (u) du on the

space U instead of U × Z. We give two classes of important models where this simple idea can be used
successfully.

4.6.1 Conditionally linear Gaussian models

Consider X = U × Z with Z = Rnz . Here Xn = (Un, Zn) where {Un} is a unobserved Markov process
such that U1 ∼ µU (u1) , Un|Un−1 ∼ fU (un|Un−1) and conditional upon {Un} we have a linear Gaussian
model with Z1|U1 ∼ N (0,ΣU1) and

Zn = AUn
Zn−1 +BUn

Vn,

Yn = CUn
Zn +DUn

Wn

where Vn
i.i.d.∼ N (0, Inv

), Wn
i.i.d.∼ N (0, Inw

) and for any u ∈ U {Au, Bu, Cu, Du} are matrices of appropri-
ate dimensions. In this case we have µ (x) = µ (u, z) = µU (u)N (x; 0,Σz), f (x′|x) = f ( (u′, z′)| (u, z)) =
fU (u′|u)N

(
z′;Au′z,Bu′BT

u′

)
and g (y|x) = g (y| (u, z)) = N

(
y;Cuz,DuD

T
u

)
. The switching state-

space model discussed in Example 3 corresponds to the case where {Un} is a finite state-space Markov
process.

We are interested in estimating

p (u1:n, z1:n| y1:n) = p (u1:n| y1:n) p (z1:n| y1:n, u1:n) .
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Conditional upon {Un}, we have a standard linear Gaussian model {Zn}, {Yn}. Hence p (z1:n| y1:n, u1:n)
is a Gaussian distribution whose statistics can be computed using Kalman techniques; e.g. the marginal
p (zn| y1:n, u1:n) is a Gaussian distribution whose mean and covariance can be computed using the Kalman
filter. It follows that we only need to use particle methods to approximate

γn (u1:n) = p (u1:n, y1:n)
= p (u1:n) p (y1:n|u1:n)

where p (u1:n) follows from the Markov assumption on {Un} and p (y1:n|u1:n) is a marginal likelihood
which can be computed through the Kalman filter. In this case, we have

qopt (un| y1:n, u1:n−1) = p (un| y1:n, u1:n−1)

=
p (yn| y1:n−1, u1:n) fU (un|un−1)

p (yn| y1:n−1, u1:n−1)
.

The standard SMC algorithm associated with γn (u1:n) and the sequence of IS distributions q (un| y1:n, u1:n−1)
proceeds as follows.

SMC for Filtering in Conditionally Linear Gaussian Models

At time n = 1

• Sample U i1 ∼ q(u1| y1).

• Compute the weights w1

(
U i1
)

=
µU(Ui

1)p(y1|Ui
1)

q(Ui
1|y1)

and W i
1 ∝ w1

(
U i1
)
.

• Resample
{
W i

1, U
i
1

}
to obtain N equally-weighted particles

{
1
N , U

i

1

}
.

At time n ≥ 2

• Sample U in ∼ q
(
un| y1:n, U

i

1:n−1

)
and set U i1:n ←

(
U
i

1:n−1, U
i
n

)
.

• Compute the weights αn
(
U i1:n

)
=

p(yn|y1:n−1,U
i
1:n)fU(Ui

n|Ui
n−1)

q(Ui
n|y1:n,Ui

1:n−1)
and W i

n ∝ αn
(
U i1:n

)
.

• Resample
{
W i
n, U

i
1:n

}
to obtain N new equally-weighted particles

{
1
N , U

i

1:n

}
.

This algorithm provides also two approximations of p (u1:n| y1:n) given by

p̂ (u1:n| y1:n) =
N∑
i=1

W i
nδUi

1:n
(u1:n) ,

p (u1:n| y1:n) =
1
N

N∑
i=1

δ
U

i
1:n

(u1:n)

and

p̂ (yn| y1:n−1) =
1
N

N∑
i=1

αn
(
U i1:n

)
.

At first glance, it seems that this algorithm cannot be implemented as it requires storing paths
{
U i1:n

}
of

increasing dimension so as to allow the computation of p (yn| y1:n−1, u1:n) and sampling from q (un| y1:n, u1:n−1).
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The key is to realise that p (yn| y1:n−1, u1:n) is a Gaussian distribution of mean yn|n−1 (u1:n) and covari-
ance Sn|n−1 (u1:n) which can be computed using the Kalman filter. Similarly, given that the optimal IS
distribution only depends on the path u1:n through p (yn| y1:n−1, u1:n), it is sensible to build an impor-
tance distribution q (un| y1:n, u1:n−1) which only depends on u1:n through p (yn| y1:n−1, u1:n). Hence in
practice, we do not need to store

{
U i1:n

}
but only

{
U in−1:n

}
and the Kalman filter statistics associated

with
{
U i1:n

}
. The resulting particle filter is a bank of interacting Kalman filters where each Kalman

filter is used to compute the marginal likelihood term p (y1:n|u1:n).

4.6.2 Partially observed linear Gaussian models

The same idea can be applied to the class of partially observed linear Gaussian models [2]. Consider
X = U × Z with Z = Rnz . Here Xn = (Un, Zn) with Z1 ∼ N (0,Σ1)

Zn = AZn−1 +BVn,

Un = CZn +DWn

where Vn
i.i.d.∼ N (0, Inv

), Wn
i.i.d.∼ N (0, Inw

) ; see [2] for generalisations. We make the additional assump-
tion that

g (yn|xn) = g (yn| (un, zn)) = g (yn|un) .

In this case, we are interested in estimating

p (u1:n, z1:n| y1:n) = p (u1:n| y1:n) p (z1:n| y1:n, u1:n)
= p (u1:n| y1:n) p (z1:n|u1:n)

where p (z1:n|u1:n) is a multivariate Gaussian distribution whose statistics can be computed using a
Kalman filter associated with the linear model {Un, Zn}. It follows that we only need to use particle
methods to approximate

γn (u1:n) = p (u1:n, y1:n)
= p (u1:n) p (y1:n|u1:n)

where p (y1:n|u1:n) =
n∏
k=1

g (yk|uk) and p (u1:n) is the marginal Gaussian prior of {Un} which corre-

sponds to the ‘marginal’ likelihood term which can be computed using the Kalman filter associated with
{Un, Zn} . The resulting particle filter is also an interacting bank of Kalman filters but the Kalman filters
are here used to compute the marginal prior p (u1:n).

5 Particle Smoothing

We have seen previously that SMC methods can provide an approximation of the sequence of distributions
{p (x1:n| y1:n)}. Consequently, sampling from a joint distribution p (x1:T | y1:T ) and approximating the
marginals {p (xn| y1:T )} for n = 1, ..., T is straightforward. We just run an SMC algorithm up to time
T and sample from/marginalise our SMC approximation p̂ (x1:T | y1:T ). However, we have seen that this
approach is bound to be inefficient when T is large as the successive resampling steps lead to particle
degeneracy: p̂ (x1:n| y1:T ) is approximated by a single unique particle for n � T. In this section, we
discuss various alternative schemes which do not suffer from these problems. The first method relies on
an simple fixed-lag approximation whereas the other algorithms rely on the forward-backward recursions
presented in Section 2.3.
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5.1 Fixed-lag Approximation

The fixed-lag approximation is the simplest approach. It was proposed in [26]. It relies on the fact that,
for hidden Markov models with “good” forgetting properties, we have

p (x1:n| y1:T ) ≈ p
(
x1:n| y1:min(n+∆,T )

)
(47)

for ∆ large enough; that is observations collected at times k > n + ∆ do not bring any additional
information about x1:n. This suggests a very simple scheme — simply don’t update the estimate at time
k after time k = n+∆. Indeed, in practice we just do not resample the components Xi

1:n of the particles
Xi

1:k at times k > n+ ∆. This algorithm is trivial to implement but the main practical problem is that
we typically do not know ∆. Hence we need to replace ∆ with an estimate of it denoted L. If we select
L < ∆, then p

(
x1:n| y1:min(n+L,T )

)
is a poor approximation of p (x1:n| y1:T ). If we select a large values

of L to ensure that L ≥ ∆ then the degeneracy problem remains substantial. Unfortunately automatic
selection of L is difficult (and, of course, for some poorly-mixing models ∆ is so large that this approach
is impractical). Experiments on various models have shown that good performance were achieved with
L ≈ 20 − 50. Note that such fixed-lag SMC schemes do not converge asymptotically (i.e. as N → ∞)
towards the true smoothing distributions because we do not have p (x1:n| y1:T ) = p

(
x1:n| y1:min(n+L,T )

)
.

However, the bias might be negligible and can be upper bounded under mixing conditions [8]. It should
also be noted that this method does not provide an approximation of the joint p (x1:T | y1:T ) — it
approximates only the marginal distributions.

5.2 Forward Filtering-Backward Smoothing

We have seen previously that it is possible to sample from p (x1:T | y1:T ) and compute the marginals
{p (xn| y1:T )} using forward-backward formulæ. It is possible to obtain an SMC approximation of the
forward filtering-backward sampling procedure directly by noting that for

p̂ (xn| y1:n) =
N∑
i=1

W i
nδXi

n
(xn)

we have

p̂ (xn|Xn+1, y1:n) =
f (Xn+1|xn) p̂ (xn| y1:n)∫
f (Xn+1|xn) p̂ (xn| y1:n) dxn

=
N∑
i=1

W i
nf
(
Xn+1|Xi

n

)
δXi

n
(xn)∑N

j=1W
j
nf
(
Xn+1|Xj

n

) .

Consequently, the following algorithm generates a sample approximately distributed according to p (x1:T | y1:T ):
first sample XT ∼ p̂ (xT | y1:T ) and for n = T − 1, T − 2, ..., 1, sample Xn ∼ p̂ (xn|Xn+1, y1:n).

Similarly, we can also provide an SMC approximation of the forward filtering-backward smoothing pro-
cedure by direct means. If we denote by

p̂(xn|y1:T ) =
N∑
i=1

W i
n|T δXi

n
(xn) (48)

the particle approximation of p(xn|y1:T ) then, by inserting (48) into (15), we obtain

p̂(xn|y1:T ) =
N∑
i=1

W i
n

 N∑
j=1

W j
n+1|T

f
(
Xj
n+1|Xi

n

)
[∑N

l=1W
l
nf
(
Xj
n+1|X l

n

)]
 δXi

n
(xn) (49)

:=
N∑
i=1

W i
n|T δXi

n
(xn).
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The forward filtering-backward sampling approach requires O (NT ) operations to sample one path ap-
proximately distributed according to p (x1:T | y1:T ) whereas the forward filtering-backward smoothing
algorithm requires O

(
N2T

)
operations to approximate {p (xn| y1:T )}. Consequently, these algorithms

are only useful for very long time series in which sample degeneracy prevents computationally-cheaper,
crude methods from working.

5.3 Generalised Two-filter Formula

To obtain an SMC approximation of the generalised two-filter formula (18), we need to approximate
the backward filter {p̃(xn|yn:T )} and to combine the forward filter and the backward filter in a sensible
way. To obtain an approximation of {p̃(xn|yn:T )}, we simply use an SMC algorithm which targets the
sequence of distributions {p̃(xn:T |yn:T )} defined in (17). We run the SMC algorithm “backward in time”
to approximate p̃(xT |yT ) then p̃(xT−1:T |yT−1:T ) and so on. We obtain an SMC approximation denoted

̂̃p(xn:T |yn:T ) =
N∑
i=1

W̃ i
nδXi

n:T
(xn:T ) .

To combine the forward filter and the backward filter, we obviously cannot multiply the SMC approxi-
mations of both p(xn|y1:n−1) and p̃(xn:T |yn:T ) directly, so we first rewrite Eq. (18) as

p (xn| y1:T ) ∝
∫
f (xn|xn−1) p (xn−1| y1:n−1) dxn−1 · p̃(xn|yn:T )

p̃n (xn)
.

By plugging the SMC approximations of p (xn−1| y1:n−1) and p̃(xn|yn:T ) in this equation, we obtain

p̂(xn|y1:T ) =
N∑
i=1

W i
n|T δ eXi

n
(xn)

where

W j
n|T ∝ W̃

j
n

N∑
i=1

W i
n−1

f
(
X̃j
n|Xi

n−1

)
p̃n

(
X̃j
n

) . (50)

Like the SMC implementation of the forward-backward smoothing algorithm, this approach has a com-
putational complexity O(N2T ). However fast computational methods have been developed to address
this problem [27]. Moreover it is possible to reduce this computational complexity to O(NT ) by using
rejection sampling to sample from p (xn| y1:T ) using p (xn−1| y1:n−1) and p̃(xn|yn:T ) as proposal distribu-
tions. More recently, an importance sampling type approach has also been proposed in [19] to reduce the
computational complexity to O (NT ); see [6] for a related idea developed in the context of belief prop-
agation. Compared to the forward-backward formula, it might be expected to substantially outperform
that algorithm in any situation in which the support of the smoothed estimate differs substantially from
that of the filtering estimate. That is, in those situations in which observations obtained at time k > n
provide a significant amount of information about the state at time n6. The improvement arises from
the fact that the SMC implementation of the forward-backward smoother simply reweights a sample
set which targets p(x1:n|y1:n) to account for the information provided by yn+1:k whereas the two filter
approach uses a different sample set with locations appropriate to the smoothing distributions.

6 Summary

We have provided a review of particle methods for filtering, marginal likelihood computation and smooth-
ing. Having introduced a simple SMC algorithm, we have shown how essentially all of the particle-based

6This situation occurs, for example, whenever observations are only weakly informative and the state evolution involves
relatively little stochastic variability. An illustrative example provided in [5] shows that this technique can dramatically
outperform all of the other approaches detailed above.
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methods introduced in the literature to solve these problems can be interpreted as a combination of two
operations: sampling and resampling. By considering an appropriate sequence of target distributions,
defined on appropriate spaces, it is possible to interpret all of these algorithms as particular cases of the
general algorithm.

This interpretation has two primary advantages:

1. The standard algorithm may be viewed as a particle interpretation of a Feynman-Kac model (see
[11]) and hence strong, sharp theoretical results can be applied to all algorithms within this common
formulation.

2. By considering all algorithms within the same framework is is possible to develop a common under-
standing and intuition allowing meaningful comparisons to be drawn and sensible implementation
decisions to be made.

Although much progress has been made over the past fifteen years, and the algorithms described above
provide good estimates in many complex, realistic settings, there remain a number of limitations and
open problems:

• As with any scheme for numerical integration, be it deterministic or stochastic, there exist problems
which exist on sufficiently high-dimensional spaces and involving sufficiently complex distributions
that it is not possible to obtain an accurate characterisation in a reasonable amount of time.

• In many settings of interest the likelihood and state transition density are only known up to a
vector of unknown parameters. It is typically of interest to estimate this vector of parameters
at the same time as (or in preference to) the vector of states. Formally, such situations can be
described as directly as a state space model with a degenerate transition kernel. However, this
degeneracy prevents the algorithms described above from working in practice.

• Several algorithms intended specifically for parameter estimation have been developed in recent
years. Unfortunately, space constraints prevent us from discussing these methods within the current
tutorial. Although progress has been made, this is a difficult problem and it cannot be considered
to have been solved in full generality. These issues will be discussed in further depth in an extended
version of this tutorial which is currently in preparation.

It should also be mentioned that the SMC algorithm presented in this tutorial can be adapted to perform
much more general Monte Carlo simulation: it is not restricted to problems of the filtering type, or even
to problems with a sequential character. It has recently been established that it is also possible to employ
SMC within MCMC and to obtain a variety of related algorithms.

References

[1] Anderson, B. D. O. and Moore, J. B. (1979) Optimal Filtering, Prentice Hall, Englewood Cliffs, New Jersey.

[2] Andrieu, C. and Doucet, A. (2002) Particle filtering for partially observed Gaussian state space models.

Journal of the Royal Statistical Society B, 64(4), 827-836.

[3] Arulampalam, S., Maskell, S., Gordon, N. and Clapp, T. (2002) A tutorial on particle filters for on-line

nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2):174–188.

[4] Bresler, Y. (1986) Two-filter formula for discrete-time non-linear Bayesian smoothing. International Journal

of Control, 43(2), 629–641.

[5] Briers, M., Doucet, A. and Maskell, S. (2008) Smoothing algorithms for state-space models, Annals of the

Institute of Statistical Mathematics, to appear.

35



[6] Briers, M., Doucet, A. and Singh, S.S. (2005) Sequential auxiliary particle belief propagation, Proceedings

Conference Fusion.

[7] Carpenter, J., Clifford, P. and Fearnhead, P. (1999) An improved particle filter for non-linear problems. IEE

proceedings — Radar, Sonar and Navigation, 146, 2–7.
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