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Abstract

In this paper, we propose an original approach to the solution of Fredholm equations
of the second kind. We interpret the standard von Neumann expansion of the solu-
tion as an expectation with respect to a probability distribution defined on a union
of subspaces of variable dimension. Based on this representation, it is possible to use
trans-dimensional Markov Chain Monte Carlo (MCMC) methods such as Reversible
Jump MCMC to approximate the solution numerically. This can be an attractive
alternative to standard Sequential Importance Sampling (SIS) methods routinely
used in this context. To motivate our approach, we sketch an application to value
function estimation for a Markov decision process. Two computational examples are
also provided.
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1 Fredholm equations and Von Neumann’s Expansion

Fredholm equations of the second kind and their variants appear in many
scientific fields including optimal control [1], molecular population genetics [2]
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and physics [3]. Formally, we are interested in solving the integral equation

f (x0) =
∫

E
K (x0, x1) f (x1) dx1 + g (x0) (1)

where g : E → R and K : E ×E → R are known and f : E → R is unknown.

Let us define K0 (x, y) , 1, K1 (x, y) , K (x, y) and

Kn (x, y) ,

∫
K (x, z) Kn−1 (z, y) dz.

If
∞∑

n=0

∫

E
|Kn (x0, xn) g (xn)| dxn < ∞ (2)

then the solution of the Fredholm equation (1) admits the following Von Neu-
mann series representation; see [4,3] for details:

f (x0) =
∫

E
K (x0, x1) f (x1) dx1 + g (x0)

=
∫

E
K (x0, x1)

[∫

E
K (x1, x2) f (x2) dx2 + g (x1)

]
dx1 + g (x0)

=
∫

E

∫

E
K (x0, x1) K (x1, x2) f (x2) dx1dx2 +

∫

E
K (x0, x1) g (x1) dy + g (x0)

and, by iterating, one obtains

f (x0) = g (x0) +
∞∑

n=1

∫

En

(
n∏

k=1

K (xk−1, xk)

)
g (xn) dx1:n (3)

where xi:j , (xi, . . . , xj) for i ≤ j.

Introducing the notation
f0 (x0) = g (x0) (4)

and, for n ≥ 1,

fn (x0:n) = g (xn)
n∏

k=1

K (xk−1, xk) (5)

it is possible to rewrite (3) as

f (x0) = f0 (x0) +
∞∑

n=1

∫

En

fn (x0:n) dx1:n. (6)

We will address two problems in this paper: how to estimate the function
f (x0) over the set E and how to estimate this function point-wise.

There are few scenarios in which a Fredholm equation of the second kind ad-
mits a closed-form analytic solution. A great deal of effort has been expended
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in the development of numerical techniques for the approximate solution of
such systems. These fall into two broad categories: deterministic techniques
and Monte Carlo techniques. Deterministic techniques typically depend upon
quadrature or explicitly obtaining a finite-dimensional representation of the
system (by discretisation or projection onto a suitable basis, for example) and
then solving that system using numerical techniques. Although good perfor-
mance can be obtained by these methods, they typically rely upon obtaining a
good finite dimensional characterisation of the solution. This remains an active
area of research, see [5,6] and references within. Finding such a representation
is somewhat problem-specific and is unlikely to be practical for problems in
high dimensions or in which the support of the function of interest is not
compact. For this reason, we concentrate on Monte Carlo approaches in the
remainder of this paper.

2 Monte Carlo Methods to Solve Fredholm Equations

Computing (3) is challenging as it involves an infinite sum of integrals of
increasing dimension. Monte Carlo methods provide a mechanism for dealing
with such integrals. A sequential importance sampling strategy arises as a nat-
ural approach to this problem and that is the approach which has been taken
most often in the literature. Section 2.1 summarises this approach and pro-
vides a path-space interpretation of the importance sampling which motivates
the development of a novel approach in section 2.2.

2.1 Sequential Importance Sampling

Section 2.1.1 presents the algorithm most commonly presented in the litera-
ture; section 2.1.2 sketches some techniques for reducing the variance of the
estimator provided by this algorithm and a path-space interpretation illus-
trating the unbiasedness of these techniques is given in section 2.1.3. This
interpretation leads naturally to a different approach to the problem which is
summarised in the next section.

2.1.1 Algorithm

The use of Monte Carlo methods to solve problems of this type can be traced
back 50 years. The standard approach consists of using Sequential Importance
Sampling (SIS) to numerically approximate (3); see for example [4,3]. Consider
a Markov chain with initial distribution/density µ (x) on E and a transition
kernel M (x, y) which gives the probability or probability density of moving
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to state y when the current state is x. We select µ and M such that µ (x) > 0
over E and M (x, y) > 0 if K (x, y) 6= 0. Moreover, M is chosen to have an
absorbing/cemetery state, say † /∈ E, such that M (x, {†}) = Pd for any x ∈ E.

The algorithm which approximates the function f proceeds as follows:

• Simulate N independent Markov chain paths
{
X

(i)

0:k(i)+1

}N

i=1
until absorption

(i.e. X
(i)

k(i)+1
= †).

• Calculate the associated importance weights

W1

(
X

(i)

0:k(i)

)
=





1

µ

(
X

(i)
0

)

k(i)∏

k=1

K

(
X

(i)
k−1

,X
(i)
k

)

M

(
X

(i)
k−1

,X
(i)
k

)



g

(
X

(i)

k
(i)

)

Pd

if k(i) ≥ 1,

g

(
X

(i)
0

)

µ

(
X

(i)
0

)
Pd

if k(i) = 0.

(7)

• The empirical measure

f̂ (x0) =
1

N

N∑

i=1

W1

(
X

(i)

0:k(i)

)
δ
(
x0 − X

(i)
0

)
(8)

is an unbiased Monte Carlo approximation of the function f (i.e. for any

set A, E

[∫
A f̂ (x0) dx0

]
=
∫
A f (x0) dx0).

If the objective is the estimation of the function f (x0) at a given point say x0 =

x, then, by simulating paths
{
X

(i)

0:k(i)+1

}N

i=1
starting from X

(i)
0 = x according

to M until absorption/death and using the importance weigts

W2

(
X

(i)

0:k(i)

)
=






k(i)∏

k=1

K

(
X

(i)
k−1

,X
(i)
k

)

M

(
X

(i)
k−1

,X
(i)
k

)



g

(
X

(i)

k
(i)

)

Pd

if k(i) ≥ 1,

g(x)
Pd

if k(i) = 0.

(9)

we obtain the following unbiased estimate of f (x)

f̂ (x) =
1

N

N∑

i=1

W2

(
x,X

(i)

1:k(i)

)
. (10)

2.1.2 Variance Reduction

The following technique applies to both of the algorithms introduced in the
previous section. Notice that, as the probability of death at a given iteration
is independent of the path sampled, it is possible to use all paths of length at

least k to estimate the k-fold integral over Ek. That is, the variance is reduced
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and the estimator remains unbiased if we replace (8) with:

f̃ (x0) =
1

N

N∑

i=1

W̃1

(
X

(i)

0:k(i)

)
δ
(
x0 − X

(i)
0

)
, (11)

where

W̃1(x0:k) = Pd

k∑

i=0

W1(x0:i). (12)

The same considerations lead us to the conclusion that we should replace (10)
with:

f̃ (x) =
1

N

N∑

i=1

W̃2

(
x,X

(i)

1:k(i)

)
, (13)

where

W̃2(x0:k) = Pd

k∑

i=0

W2(x0:i). (14)

Notice that this approach leads to a reduction in the weight associated with
each path by a factor of Pd, but each sample now contributes to k(i) (with
expectation 1/Pd) trajectories rather than one. A related idea is used in the
field of reinforcement learning [7].

Another approach can be used to further reduce the variance of estimator (10).
Here the first term in the Von Neumann expansion is known deterministically:
it is g(x0). As such, there is no benefit in estimating it via Monte Carlo ap-
proximation: it will reduce the variance if one instead estimates the difference
f(x0) − g(x0) using these techniques. In order to do this, one samples X

(i)
1

from the restriction of M to E: X
(i)
1 ∼ M(x0, ·)IE(·)/(1−Pd), and subsequent

states from M as before until the chain to enter † at a time ≥ 2. This leads to
a collection of samples X

(i)

0:k(i) with k(i) ≥ 1, and allows the use of the modified
estimator:

f̄(x) = g(x) +
1

N

N∑

i=1

W̄2

(
x,X

(i)

1:k(i)

)
, (15)

where
W̄2(x,X

(i)

1:k(i)) = (1 − Pd)W̃2(x,X
(i)

1:k(i)). (16)

Note that both of these techniques can be employed simultaneously — and
indeed, both should be used in any real implementation of these algorithms.

2.1.3 Importance Sampling on Path Space

To check the unbiasedness of the estimates (8) and (10), we use a slightly
non-standard argument which will later prove useful.

The first method to estimate the function f through (8) can be interpreted as
an importance sampling technique using an importance distribution π1 (n, x0:n)
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defined on the path space F1 ,
⊎∞

k=0 {k} × Ek+1 where

π1 (n, x0:n) = p1,nπ1,n (x0:n) (17)

with p1,n the probability that the simulated path is of length n+1 (i.e. X0:n ∈
En+1 and Xn+1 = †) and π1,n (x0:n) the probability or probability density of a
path conditional upon this path being of length n + 1. We have

p1,n = Pr
(
X0:n ∈ En+1, Xn+1 = †

)
= (1 − Pd)

n Pd, (18)

and

π1,n (x0:n) =
µ (x0)

n∏
k=1

M (xk−1, xk)

(1 − Pd)
n . (19)

Now using (6) and importance sampling, this yields

f (x0) =
f0 (x0)

π1 (0, x0)
π1 (0, x0) +

∞∑

n=1

∫

En

fn (x0:n)

π1 (n, x0:n)
π1 (n, x0:n) dx1:n (20)

= Eπ1

[
fk (X0:k)

π1 (k,X0:k)

]

where the expectation is over both k and X0:k which are jointly distributed
according to π1.

By sampling
{
k(i), X

(i)

0:k(i)

}
(i = 1, . . . , N) according to π1, we can obtain the

following approximation

f̂ (x0) =
1

N

N∑

i=1

fk(i)

(
X

(i)

0:k(i)

)

π1

(
k(i), X

(i)

0:k(i)

)δ
X

(i)
0

(x0) . (21)

It is straightforward to check using (4), (5), (7), (17), (18) and (19) that

fk(i)

(
X

(i)

0:k(i)

)

π1

(
k(i), X

(i)

0:k(i)

) = W1

(
X

(i)

0:k(i)

)
,

thus establishing the unbiasedness of (8).

Similarly, the second method (that which estimates f (x) point-wise using
(10)) corresponds to an importance sampling method on the space F2 ,⊎∞

k=0 {k}×Ek. The importance distribution is given by π2 (0, x1:0) , π2 (0) =
Pd and for n ≥ 1

π2 (n, x1:n) = p2,nπ2,n (x1:n)

with
p2,n = Pr (X1:n ∈ En, Xn+1 = {†}) = (1 − Pd)

n Pd, (22)
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and

π2,n (x1:n) =
M (x, x1)

n∏
k=2

M (xk−1, xk)

(1 − Pd)
n . (23)

Using the importance sampling identity

f (x) =
f0 (x)

π2 (0)
π2 (0) +

∞∑

n=1

∫

En

fn (x, x1:n)

π2 (n, x1:n)
π2 (n, x1:n) dx1:n (24)

= Eπ2

[
fk (x,X1::k)

π2 (k,X1:k)

]

then sampling
{
k(i), X

(i)

1:k(i)

}
(i = 1, . . . , N) according to π2, we obtain the

following approximation

f̂ (x) =
1

N

N∑

i=1

fk(i)

(
x,X

(i)

1:k(i)

)

π2

(
k(i), X

(i)

1:k(i)

) . (25)

Using (4), (5), (9), (22) and (23), we have

fn

(
x,X

(i)

1:k(i)

)

π2

(
k(i), X

(i)

1:k(i)

) = W2

(
x,X

(i)

1:k(i)

)

thus establishing the unbiasedness of (10).

Essentially identical arguments hold for (11), (13) and (15) if one considers
estimating the integral of each fn individually, using all available samples and
then takes a linear combination of these estimators.

2.1.4 Limitations of SIS

The estimates (21) and (25) will have a reasonable Monte Carlo variance if the
variance of the absolute value of the weights is small. However, this can be dif-
ficult to ensure using the standard SIS approach. First, it imposes an arbitrary
geometric distribution for the simulated paths length (18), (22) which might

be inappropriate. Second, a product of terms K
(
X

(i)
k−1, X

(i)
k

)
/M

(
X

(i)
k−1, X

(i)
k

)

appears in the expression of the weights if M 6= K 1 ; its variance typically in-
creases approximately exponentially fast with the length of the paths. Third,
if we are interested in estimating the function on E using (21), the initial
distribution µ appears in the denominator of (7). This distribution has to be
selected very carefully to ensure that the variance of the resulting weights will

1 In many applications K is not a Markov kernel and it is impossible to select
M = K.
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be finite. We note that in those rare instances in which one can obtain a rea-
sonable approximation to a time-reversal kernel associated with K one could
imagine sampling the sequence backwards according to this kernel and using
a distributional approximation of g to initialise each chain.

The performance of SIS algorithms can usually be dramatically improved by
introducing a resampling step [8,9]. The basic idea is to monitor the variance
of importance weights over time and, when it becomes too large, to discard
those paths with small weights and multiply those with high weights, while
setting all of the weights to the same value in a principled way which retains
the expectation of the estimator.

However, even with an incorporated resampling step, SIS might still be in-
efficient in the integral-equation context as we are interested in estimating a
function which depends upon the beginning of each trajectory. Each time it is
used, the resampling step decreases the diversity in the number of paths left
from time 0 to the current time index. In contrast to many other applications
in which SIS-type algorithms are employed, the present application is most
interested in the initial rather than final element of the path: due to this elim-
ination of trajectories, resampling is an effective technique only when it is the
final location(s) that are of interest.

2.2 Importance Sampling using Trans-dimensional MCMC

In this paper, we propose an alternative approach in which we do not limit
ourselves to simulating paths sequentially. The importance sampling iden-
tity (20) is valid for any distribution π1 such that

∫
En fn (x0:n) dx1:n 6= 0 ⇒

p1,n > 0 and fn (x0:n) 6= 0 ⇒ π1,n (x0:n) 6= 0. Similarly (24) is valid when∫
En fn (x, x1:n) dx1:n 6= 0 ⇒ p2,n > 0 and fn (x, x1:n) 6= 0 ⇒ π2,n (x1:n) 6= 0.

We now show how it is possible to construct efficient importance distributions
which can be sampled from using trans-dimensional MCMC methods.

2.2.1 Optimal Importance Distributions

When doing importance sampling in settings in which one is interested in ap-
proximating the probability distribution itself, rather than the expectation of
a single function with respect to that distribution, it is usual to define the opti-
mal proposal as that which minimises the variance of the importance weights.
As our “target measure” is signed, we consider minimising the variance of the
absolute value of the importance weights.

In detail, we propose selecting importance distributions π1 (n, x0:n) [resp. π2 (n, x1:n)]
which minimize the variance of the absolute value of the importance weights in

8



(21) [resp. (25)] in order to reduce the Monte Carlo variance of these estimates.

Let us first consider the case (21). We define π1 (n, x0:n) on F1 as follows. The
renormalized version of the absolute value of fn (x0:n) is given by

π1,n (x0:n) = c−1
1,n |fn (x0:n)| (26)

with
c1,n =

∫

En+1
|fn (x0:n)| dx0:n.

Note that if g (x) ≥ 0 and K (x, y) ≥ 0 for any x, y ∈ E, then assumption (2)
ensures that c1,n < ∞. However, in the more general case, we need to make
the additional assumption that c1,n < ∞ for any n. We also consider

p1,n = c−1
1 c1,n (27)

where

c1 =
∞∑

n=0

c1,n. (28)

It is assumed here that c1 < ∞; this is true if (2) holds. In this case,

f (x0) = c1,0 sgn (f0 (x0)) π1,0 (x0) +
∞∑

n=1

c1,n

∫

En

sgn (fn (x0:n)) π1,n (x0:n) dx1:n

= c1 sgn (f0 (x0)) π1 (0, x0) + c1

∞∑

n=1

∫

En

sgn (fn (x0:n)) π1 (n, x0:n) dx1:n

where

sgn (u) =





1 if u ≥ 0,

−1 if u < 0.

Given N ≫ 1 random samples
{
k(i), X

(i)

0:k(i)

}
distributed according to π1, it is

possible to approximate (3) by

f̂ (x0) =
c1

N

N∑

i=1

sgn
(
fk(i)

(
X

(i)

0:k(i)

))
δ
(
x0 − X

(i)
0

)
. (29)

This is clearly the optimal importance distribution as the variance of the
absolute values of the importance weights is equal to zero. However, it is
usually impossible to sample from π1 (n, x0:n) exactly and to compute c1 in
closed-form.

We claim that these two problems can be satisfactorily solved in most cases
using trans-dimensional MCMC. To sample from π1, which is a distribution
defined on a union of subspaces of different dimensions, we can use any trans-
dimensional MCMC method such as the popular Reversible Jump MCMC
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(RJMCMC) algorithm [10,11]. This idea involves building an F1-valued er-

godic Markov chain
{
k(i), X

(i)

0:k(i)

}
i≥1

which admits π1 as an invariant distribu-

tion. This is a generalization of the standard Metropolis-Hastings algorithm.
As i → ∞, one obtains (correlated) samples distributed according to π1. More-
over, under the standard and realistic assumption that

c1,0 =
∫

E
|g (x)| dx

is known or can be estimated numerically we can obtain the following estimate
of c1 namely

ĉ1 =
c1,0

p̂1,0

where p̂1,0 is the proportion of random samples such that k(i) = 0; i.e.

p̂1,0 =
1

N

N∑

i=1

δ0

(
k(i)

)
. (30)

Now consider the case (25). The importance distribution is defined on F ′
2 =⊎∞

k=1 {k} × Ek with
π2 (n, x1:n) = p2,nπ2,n (x1:n) (31)

where

π2,n (x1:n) = c−1
2,n |fn (x, x1:n)| , (32)

c2,n =
∫

En

|fn (x, x1:n)| dx1:n

and
p2,n = c−1

2 c2,n, (33)

c2 =
∞∑

n=1

c2,n. (34)

It is assumed that c2 < ∞; this is true if (2) holds. In this case,

f (x) = f0 (x) +
∞∑

n=1

c2,n

∫

En

sgn (fn (x, x1:n)) πn (x1:n) dx1:n

= f0 (x) + c2

∞∑

n=1

∫

En

sgn (fn (x, x1:n)) π (n, x1:n) dx1:n.

Given N ≫ 1 random samples
{(

k(i), X
(i)

1:k(i)

)}N

i=1
distributed according to π2,

it is possible to approximate (3) with

f̂ (x) = f0 (x) +
c2

N

N∑

i=1

sgn
(
fk(i)

(
x,X

(i)

1:k(i)

))
. (35)
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To sample from π2, we can use trans-dimensional MCMC. To estimate c2, we
use the fact that if

c2,1 =
∫

E
|f1 (x, x1)| dx1 =

∫

E
|g (x1) K (x, x1)| dx1

is known or can be estimated numerically then we can obtain the following
estimate of c2

ĉ2 =
c2,1

p̂2,1

where p̂2,1 is the proportion of random samples such that k(i) = 1; i.e.

p̂2,1 =
1

N

N∑

i=1

δ1

(
k(i)

)
. (36)

2.2.2 A Reversible Jump Markov chain Monte Carlo algorithm

For the sake of completeness, we describe here a simple RJMCMC algorithm
to sample from π1 as defined by (26), (27) and (28). A very similar algorithm
could be propose to sample from π2 as defined by (31), (32), (33) and (34).
More elaborate algorithms are discussed in [11].

This algorithm is based on update, birth and death moves. Each move is
selected with probability uk(i) , bk(i) or dk(i) , respectively, with uk(i)+bk(i)+dk(i) =
1, at iteration i. We also introduce two proposal distributions on E denoted
by qu (x, ·) and qb (·) . We denote the uniform distribution on A by U (A).

Initialization.

• Set
(
k(1), X

(1)

0:k(1)

)
randomly or deterministically.

Iteration i ≥ 2.

• Sample U ∼ U [0, 1] .
If U ≤ uk(i−1)

Update move

· Set k(i) = k(i−1), sample J ∼ U
({

0, 1, . . . , k(i)
})

and X∗
J ∼ qu

(
X

(i−1)
J , ·

)
.

· With probability

min



1,

π1

(
k(i),

(
X

(i−1)
0:J−1, X

∗
J , X

(i−1)

J+1:k(i)

))
qu

(
X∗

J , X
(i−1)
J

)

π1

(
k(i), X

(i−1)

0:k(i)

)
qu

(
X

(i−1)
J , X∗

J

)



 (37)

set X
(i)

0:k(i) =
(
X

(i−1)
0:J−1, X

∗
J , X

(i−1)

J+1:k(i)

)
, otherwise set X

(i)

0:k(i) = X
(i−1)

0:k(i−1) .
Else If U ≤ uk(i−1) + bk(i−1) ,
Birth move

· Sample J ∼ U
{
0, 1, . . . , k(i−1)

}
, sample X∗

J ∼ qb (·).
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· With probability

min



1,

π1

(
k(i−1) + 1,

(
X

(i−1)
0:J−1, X

∗
J , X

(i−1)

J :k(i−1)

))
dk(i−1)+1

π1

(
k(i−1), X

(i−1)

0:k(i−1)

)
qb (X∗

J) bk(i−1)



 (38)

set k(i) = k(i−1) + 1, X
(i)
0:k =

(
X

(i−1)
0:J−1, X

∗
J , X

(i−1)

J :k(i−1)

)
, otherwise set k(i) =

k(i−1), X
(i)

0:k(i) = X
(i−1)

0:k(i−1) .
Else
Death move

· Sample J ∼ U
{
0, 1, . . . , k(i−1)

}
.

· With probability

min



1,

π1

(
k(i−1) − 1,

(
X

(i−1)
0:J−1, X

(i−1)

J+1:k(i−1)

))
qb

(
X

(i−1)
J

)
bk(i−1)−1

π1

(
k(i−1), X

(i−1)

0:k(i−1)

)
dk(i−1)



 (39)

set k(i) = k(i−1) − 1, X
(i)

0:k(i) =
(
X

(i−1)
0:J−1, X

(i−1)

J+1:k(i−1)

)
, otherwise set k(i) =

k(i−1), X
(i)

0:k(i) = X
(i−1)

0:k(i−1) .

To compute (37), (38) and (39), one needs to be able to compute ratios of the
form

π1 (l, x0:l)

π1 (k, x0:k)
=

clπ1,l (x0:l)

ckπ1,k (x0:k)
=

∣∣∣∣∣
fl (x0:l)

fk (x0:k)

∣∣∣∣∣ .

This can be performed easily as fl (x0:l) and fk (x0:k) are given by (5). It is easy
to check that the invariant distribution of this Markov chain is π1. Ergodicity
must be established on a case-by-case basis.

It is not our intention to suggest that this precise algorithm will work well in
all circumstances. Indeed, this is certainly not the case: it is always necessary
to design MCMC algorithms which are appropriate for the target distribution
and this is no exception. However, this simple approach works adequately in
the examples presented below and there is a great deal of literature on the
design of efficient MCMC algorithms which can be employed when dealing
with more challenging problems.

3 Examples

We begin by motivating the MCMC approach with a simple example in which
the optimal importance distribution can be obtained analytically but for which
the straightforward SIS estimator could easily have infinite variance. This is
followed with a toy example for which the solution can be obtained analytically
and a realistic example taken from the econometrics literature.
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3.1 Motivation: An Application to Value Function Estimation

Our motivating application is related to control. We consider a Markov process
{Xk}k≥0 on E with transition kernel P . Let us introduce a reward function
r : E → R

+ and a discount factor γ ∈ (0, 1). When the process is in state x
at time k it accumulates a reward γkr (x). Thus the expected reward starting
from X0 = x is given by

V (x) = EX0=x

[ ∞∑

k=0

γkr (Xk)

]
.

The expected reward is called the value function in the optimal control liter-
ature [1]. Under standard regularity assumptions, it can be established that
the value function satisfies

V (x) = γ
∫

E
P (x, y) V (y) dy + r (x) ;

that is a Fredholm equation of the second kind (1) with f (x) = V (x),
K (x, y) = γP (x, y) and g (x) = r (x).

We present here a simple example for which all calculations can be performed
analytically that emphasizes the limitations of SIS in this context. We denote
by N (m,σ2) the Gaussian distribution of mean m and variance σ2 and

N
(
x; m,σ2

)
=

1√
2πσ

exp

(
−(x − m)2

2σ2

)
.

We set P (x, y) = N (y; αx, σ2
1) (with |α| < 1) and r (x) = N (x; 0, σ2

r). In this
case, one has

Xk| (X0 = x) ∼ N
(
mk (x) , σ2

k

)

with m0 (x) = x, σ2
0 = 0 and for k ≥ 1

mk (x) = αkx, σ2
k =

(
k∑

i=1

α2(i−1)

)
σ2

1.

It follows that

f (x) =
∞∑

k=0

γkN
(
mk (x) ; 0, σ2

k + σ2
r

)
.

Considers using an SIS method to solve this problem. A sensible choice for M
is

M (x, y) = (1 − Pd) P (x, y) + Pdδ (x − α) .

If one is interested in estimating the function at a given point x0 = x, then

13



the importance weights are given by (9); that is

W2

(
X

(i)

0:k(i)

)
=





(
γ

(1−Pd)

)k(i) g

(
X

(i)

k
(i)

)

Pd

if k(i) ≥ 1,

g(x)
Pd

if k(i) = 0.

The variance of the importance weights is given by

var
[
W2

(
x,X

(i)

1:k(i)

)]
=

1

2Pd

√
πσr

∞∑

k=0

(
γ2

1 − Pd

)k

N
(
mk (x) ; 0, σ2

k + σ2
r/2

)
−f 2 (x) .

(40)

This variance (40) will be finite only if γ2

1−Pd

< 1. In this case, the optimal
importance function π1,n can easily be computed in closed-form as p1,n is
known and π1,n (x0:n) is a Gaussian; the variance of the associated estimate is
zero.

When estimating the function f (x0), we consider the importance weights (7)
given by

W1

(
X

(i)

0:k(i)

)
=





1

µ

(
X

(i)
0

)
(

γ

(1−Pd)

)k(i) g

(
X

(i)

k
(i)

)

Pd

if k(i) ≥ 1,

g

(
X

(i)
0

)

µ

(
X

(i)
0

)
Pd

if k(i) = 0.

The variance of the importance weights is equal to

var
[
W1

(
X

(i)

0:k(i)

)]
=

1

2Pd

√
πσr




∞∑

k=1

(
γ2

1 − Pd

)k ∫ 1

µ (x0)
N
(
mk (x0) ; 0, σ2

k + σ2
r/2

)
dx0




−
(∫

f (x0) dx0

)2

. (41)

Assume we consider µ (x0) = N (x0; 0, σ
2), then to ensure that the variance

(41) is finite, it requires γ2

1−Pd

< 1 and

σ2 >
σ2

1

1 − α2
+

σ2
r

2
.

In this case, the optimal importance function π2,n admits a closed-form and
the variance of the associated estimate is zero.

For more complex problems, it could be impossible to obtain necessary con-
ditions on µ to ensure the variance is finite by analytic means.
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Fig. 1. Histogram of 250,000 samples scaled by the estimated normalising constant
(estimate 1), smooth estimate of the same (estimate 2) and the analytic solution
for the toy example.

3.2 Analytically Tractable Example

To verify the proposed technique, it is useful to consider a simple, analytically-
tractable model. The MCMC algorithm described above was applied to the
solution of:

f(x) =

1∫

0

1

3
exp(x − y)f(y)dy +

2

3
exp(x), (42)

which has the solution f(x) = exp(x).

For simplicity the birth, death and update probabilities were set to 1/3 and a
uniform distribution over the unit interval was used for all proposals. Note that
previously it has been mentioned that an empirical measure approximates the
solution to the Fredholm equation in a weak sense. This approach amounts to
using the empirical measure associated with a sample from a related distribu-
tion as an approximation of that distribution. In order to recover a continuous
representation of the solution it is possible to use standard density estimation
techniques. There is much literature in this field: the details of such estimation
pose no great technical difficulties and are outside the scope of this paper.

Figure 1 illustrates that even a simple histogram provides a reasonable rep-
resentation of the solution. The large number of samples (250,000) used to
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N = 100 N = 1, 000 N = 10, 000

x f(x) Mean Variance Mean Variance Mean Var. / 10−4

0 1 1.0516 0.1207 1.0026 0.0006 1.0002 0.4

0.1 1.1052 1.1081 0.0060 1.1047 0.0005 1.1038 0.4

0.2 1.2214 1.2259 0.0103 1.2199 0.0006 1.2214 0.7

0.3 1.3499 1.3864 0.0281 1.3483 0.0008 1.3508 0.9

0.4 1.4918 1.5232 0.0193 1.4893 0.0009 1.4909 1.0

0.5 1.6487 1.6706 0.0430 1.6418 0.0009 1.6488 1.0

0.6 1.8221 1.8277 0.0376 1.8164 0.0019 1.8206 1.2

0.7 2.0138 2.0340 0.0259 2.0178 0.0018 2.0148 2.2

0.8 2.2255 2.2482 0.0471 2.2354 0.0021 2.2245 2.0

0.9 2.4596 2.5316 0.1117 2.4634 0.0034 2.4623 2.7

1 2.7183 2.7693 0.0964 2.7232 0.0037 2.7192 3.4

Table 1
Performance of MCMC point-wise-estimation. Figures are obtained from 100 inde-
pendent instances of the algorithm.

generate this histogram were required only to produce a reasonably high-
resolution depiction of the function of interest using a crude density-estimation
technique: many fewer samples would suffice if a more sophisticated density
estimation strategy was employed, or integrals with respect to the associated
measure were the objects of interest.

The figure also illustrates one particularly appealing approach, and the one
which we would recommend. The Fredholm equation itself provides a natu-
ral device for obtaining smooth approximations to the solution of Fredholm
equations (with smooth kernels and potentials) from a sample approximation:
such an estimate can be obtained by approximating the right hand side of (1)
using the sample approximation to the integral on the right hand side. That
is, rather than using (21) directly, we use it to approximate the right hand
side of the Fredholm equation, obtaining the estimator:

ˆ̂
f(x0) =

∫
K(x0, y)


 1

N

N∑

i=1

fk(i)(X
(i)

0:k(i))

π1(k(i), X
(i)

1:k(i))
δ
X

(i)
0

(y)


 dy + g(x0) (43)

=
1

N

N∑

i=1

fk(i)(X
(i)

0:k(i))

π1(k(i), X
(i)

1:k(i))
K(x0, X

(i)
0 ) + g(x0) (44)

which, of course, takes a particularly simple form when the optimal π1 is
chosen. It is clear that this produces a smooth curve in good agreement with
the analytic solution (indeed, we cannot distinguish this estimate from the
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truth).

Table 1 shows the performance of the second MCMC estimator when used
for estimating f point-wise. Figures obtained are consistent with an estima-
tor variance proportional to the square of the value being estimated and the
reciprocal of the number of samples used.

3.3 An Asset-Pricing Problem

The rational expectation pricing model (see, for example, [12]) requires that
the price of an asset in some state s ∈ E, V (s) must satisfy

V (s) = π(s) + β
∫

E
V (t)p(t|s)dt. (45)

In this equation π(s) denotes the return on investment (or the perceived utility
of that return), β is a suitable discount factor and p(t|s) is a Markov kernel
which models the evolution of the asset’s state. E is generally taken to be
some compact subset of R

n.

For simplicity, we consider E = [0, 1], although there is no difficulty in using
the proposed method in the multivariate case, and employ the risk-seeking
utility function π(s) = exp(s2) − 1. As suggested by [12], we take p(t|s) a
truncated normal distribution, which leads to the following Fredholm equation:

V (s) =
β√
2πλ

1∫

0

exp
(
− 1

2λ
(t − [as + b])2

)

Φ
(

1−[as+b]√
λ

)
− Φ

(
−as+b√

λ

)V (t)dt + (exp(s2) − 1), (46)

with Φ denoting the standard normal distribution function (which has asso-
ciated density φ).Thus the potential is g(s) = exp(s2)− 1 and the kernel may
be written in the form

K(s, t) =
βφ

(
t−[as+b]√

λ

)

Φ
(

1−[as+b]√
λ

)
− Φ

(
−as+b√

λ

) .

For the purposes of this paper we will use the following parameter values:
a = 0.05, b = 0.9, β = 0.85 and λ = 100. Note that using such a large value
for λ has the effect of making the distribution of Xt almost independent of
Xt−1. This has been done to demonstrate that even in such a simple scenario,
it can be impossible for the SIS algorithm to use a good approximation of the
optimal importance distribution. Details are provided below.

Within the literature, it is common to compare residuals to assess the per-
formance of an algorithm which provides numerical solutions to Fredholm
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Fig. 2. Histogram and our smooth estimate of V obtained with 100,000.

equations for which no analytic solution is available. Figure 2 shows a his-
togram estimate of V obtained using (35) as well as an estimate obtained by
approximating the right hand side of (45) using the same sample to approx-
imate the integral (i.e. the approach proposed in the previous section). This
shows two things: the agreement is good, suggesting that a valid solution to
the equation has indeed been found and a smooth estimate is obtained by the
second technique.

Figure 3 illustrates the distribution of path lengths for samples with values
of X0 close to 0 and 1. Notice that even in this situation, the distribution is
very different for the two regimes. As the length of chains has a distribution
independent of their starting points in the SIS case, it would not be possible
for such an algorithm to approximate both of these regimes well. It is the non-
uniform potential, g, which is responsible for this phenomenon: if the initial
sample lies somewhere with a large value of g, then there is little advantage
in extending the chain; if the initial value has a very small value of g asso-
ciated with it then there is a large expected gain. The near-independence of
consecutive samples ensures that the distribution of chain length conditional
upon the length exceeding 1 is approximately the same for the two regimes,
but this would not be true for a more general model.

It would be straightforward to employ the algorithms developed here for more
challenging models, although some effort may be required to design good
MCMC moves in the case of complex models.
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Fig. 3. Distribution of path lengths for two ranges of X0.

4 Discussion

We have demonstrated that it is possible to solve Fredholm (and by exten-
sion, Volterra and other related) equations of the second kind by using trans-
dimensional MCMC and an appropriately defined distribution. It is clear that
other methods for sampling from such distributions could also be used. The
principal rôle of this paper has been to introduce a novel approach and to
provide a “proof of concept”.

The proposed method is qualitatively different to the Monte Carlo methods
which have previously been developed for the solution of integral equations.
Existing techniques almost all depend upon SIS techniques or closely-related
importance sampling strategies. The approach proposed here operates by ex-
plicitly defining a distribution over a trans-dimensional space and obtaining
samples from that distribution using MCMC (other sampling strategies could
also be adopted within the same framework). The one existing approach which
appears to be related to the method developed here is described by [13]. This
is a specialised technique used to solve a particular problem which arises in
ray tracing. It is not clear how the method developed in this context relates
to the solution of more general integral equations.

As discussed previously, SIS-based approaches to the solution of integral equa-
tions have certain limitations, which the proposed approach avoids. The ex-
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amples presented above are simple ones, with regular transition kernels in
low-dimensional spaces. This choice was made to allow the paper to focus
upon methodological developments, but should not be taken as an indication
that these are the most sophisticated problems which could be addressed by
the above method. Indeed, it is well known that MCMC methods are able to
provide samples from extremely complex distributions on spaces of high di-
mension, albeit at the cost of some design effort and computational time. It is
our belief that the proposed technique extends the range of integral equations
which can be addressed using Monte Carlo techniques.
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