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Summary

Sequential Monte Carlo (SMC) methods are a class of importance sampling
and resampling techniques designed to simulate from a sequence of probability
distributions. These approaches have become very popular over the last few
years to solve sequential Bayesian inference problems (e.g. Doucet et al. 2001).
However, in comparison to Markov chain Monte Carlo (MCMC), the applica-
tion of SMC remains limited when, in fact, such methods are also appropriate
in such contexts (e.g. Chopin (2002); Del Moral et al. (2006)). In this paper,
we present a simple unifying framework which allows us to extend both the
SMC methodology and its range of applications. Additionally, reinterpreting
SMC algorithms as an approximation of nonlinear MCMC kernels, we present
alternative SMC and iterative self-interacting approximation (Del Moral and
Miclo 2004; 2006) schemes. We demonstrate the performance of the SMC
methodology on static and sequential Bayesian inference problems.
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Chain Monte Carlo; Probit Regression; Sequential Monte Carlo;
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1. INTRODUCTION

Consider a sequence of probability measures {πn}n∈T where T = {1, . . . , P}. The
distribution πn (dxn) is defined on a measurable space (En, En). For ease of presen-
tation, we will assume that each πn (dxn) admits a density πn (xn) with respect to
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a σ−finite dominating measure denoted dxn and that this density is only known up
to a normalizing constant

πn (xn) =
γn (xn)

Zn

where γn : En → R+ is known pointwise, but Zn might be unknown. We will
refer to n as the time index; this variable is simply a counter and need not have
any relation with ‘real time’. We also denote by Sn the support of πn, i.e. Sn =
{xn ∈ En : πn (xn) > 0}.

In this paper, we focus upon sampling from the distributions {πn}n∈T and es-
timating their normalizing constants {Zn}n∈T sequentially ; i.e. first sampling from
π1 and estimating Z1, then sampling from π2 and estimating Z2 and so on. Many
computational problems in Bayesian statistics, computer science, physics and ap-
plied mathematics can be formulated as sampling from a sequence of probability
distributions and estimating their normalizing constants; see for example Del Moral
(2004), Iba (2001) or Liu (2001).

1.1. Motivating Examples

We now list a few motivating examples.

Optimal filtering for nonlinear non-Gaussian state-space models. Consider an un-
observed Markov process {Xn}n≥1 on space (XN,X N, Pµ) where Pµ has initial dis-

tribution µ and transition density f . The observations {Yn}n≥1 are assumed to be
conditionally independent given {Xn}n≥1 and Yn| (Xn = x) ∼ g ( ·|x). In this case

we define En = Xn, xn = x1:n (x1:n , (x1, . . . , xn)) and

γn (xn) = µ (x1) g (y1|x1)

(
nY

k=2

f (xk|xk−1) g (yk|xk)

)
(1)

This model is appropriate to describe a vast number of practical problems and has
been the main application of SMC methods (Doucet et al. 2001). It should be noted
that MCMC is not appropriate in such contexts. This is because running P MCMC
algorithms, either sequentially (and not using the previous samples in an efficient
way) or in parallel is too computationally expensive for large P . Moreover, one often
has real-time constraints and thus, in this case, MCMC is not a viable alternative
to SMC.

Tempering/annealing. Suppose we are given the problem of simulating from π (x) ∝
γ (x) defined on E and estimating its normalizing constant Z =

R
E

γ (x) dx. If π
is a high-dimensional, non-standard distribution then, to improve the exploration
ability of an algorithm, it is attractive to consider an inhomogeneous sequence of
P distributions to move “smoothly” from a tractable distribution π1 = µ1 to the
target distribution πP = π. In this case we have En = E ∀n ∈ T and, for example,
we could select a geometric path (Gelman and Meng 1996; Neal 2001)

γn (xn) = [γ (xn)]ζn [µ1 (xn)]1−ζn

with 0 ≤ ζ1 < · · · < ζP = 1. Alternatively, to maximize π (x), we could consider

γn (xn) = [γ (xn)]ζn where {ζn} is such that 0 < ζ1 < · · · < ζP and 1 << ζP

to ensure that πP (x) is concentrated around the set of global maxima of π (x).
We will demonstrate that it is possible to perform this task using SMC whereas,
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typically, one samples from these distributions using either an MCMC kernel of
invariant distribution π∗(x1:P ) ∝ γ1(x1) × · · · × γP (xP ) (parallel tempering; see
Jasra et al. (2005b) for a review) or an inhomogeneous sequence of MCMC kernels
(simulated annealing).

Optimal filtering for partially observed point processes. Consider a marked point
process {cn, εn}n≥1 on the real line where cn is the arrival time of the nth point
(cn > cn−1) and εn its associated real-valued mark. We assume the marks {εn}
(resp. the interarrival times Tn = cn − cn−1, T1 = c1 > 0) are i.i.d. of density
fε (resp. fT ). We denote by y1:mt the observations available up to time t and

the associated likelihood g
“

y1:mt | {cn, εn}n≥1

”
= g (y1:mt |c1:kt , ε1:kt) where kt =

arg max {i : ci < t}. We are interested in the sequence of posterior distributions at
times {dn}n≥1 where dn > dn−1. In this case, we have xn =

`
kdn , c1:kdn

, ε1:kdn

´
and

πn(xn) ∝ g
`
y1:mdn

| kdn , c1:dn , ε1:kdn

´ kdnQ
k=1

fε (εk) fT (ck − ck−1)

!
pdn(kdn | c1:dn),

where c0 = 0 by convention. These target distributions are all defined on the same
space En = E =

U∞
k=0{k} × Ak × Rk where Ak = {c1:k : 0 < c1 < · · · < ck < ∞}

but the support Sn of πn (xn) is restricted to
U∞

k=0{k}×Ak,dn ×Rk where Ak,dn =
{c1:k : 0 < c1 < · · · < ck < dn}, i.e. Sn−1 ⊂ Sn. This is a sequential, trans-dimen-
sional Bayesian inference problem (see also Del Moral et al. (2006)).

1.2. Sequential Monte Carlo and Structure of the Article

SMC methods are a set of simulation-based methods developed to solve the prob-
lems listed above, and many more. At a given time n, the basic idea is to ob-

tain a large collection of N weighted random samples
n

W
(i)
n ,X

(i)
n

o
(i = 1, . . . , N,

W
(i)
n > 0;

PN
i=1 W

(i)
n = 1),

n
X

(i)
n

o
being named particles, whose empirical distribu-

tion converges asymptotically (N → ∞) to πn; i.e. for any πn−integrable function
ϕ : En → R

NX
i=1

W (i)
n ϕ

“
X(i)

n

”
−→

Z
En

ϕ (xn) πn (xn) dxn almost surely.

Throughout we will denote
R

En
ϕ (xn) πn (xn) dxn by Eπn

“
ϕ(Xn)

”
. These parti-

cles are carried forward over time using a combination of sequential Importance
Sampling (IS) and resampling ideas. Broadly speaking, when an approximationn

W
(i)
n−1,X

(i)
n−1

o
of πn−1 is available, we seek to move the particles at time n so that

they approximate πn (we will assume that this is not too dissimilar to πn−1), that is,

to obtain
n
X

(i)
n

o
. However, since the

n
X

(i)
n

o
are not distributed according to πn,

it is necessary to reweight them with respect to πn, through IS, to obtain
n

W
(i)
n

o
.

In addition, if the variance of the weights is too high (measured through the effec-
tive sample size (ESS) (Liu, 2001)), then particles with low weights are eliminated
and particles with high weights are multiplied to focus the computational efforts
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in “promising” parts of the space. The resampled particles are approximately dis-
tributed according to πn; this approximation improves as N →∞.

In comparison to MCMC, SMC methods are currently limited, both in terms of
their application and framework. In terms of the former, Resample-Move (Chopin
2002; Gilks and Berzuini 2001) is an SMC algorithm which may be used in the same
context as MCMC but is not, presumably due to the limited exposure, of applied
statisticians, to this algorithm. In terms of the latter, only simple moves have
been previously applied to propagate particles, which has serious consequences on
the performance of such algorithms. We present here a simple generic mechanism
relying on auxiliary variables that allows us to extend the SMC methodology in
a principled manner. Moreover, we also reinterpret SMC algorithms as particle
approximations of nonlinear and nonhomogeneous MCMC algorithms (Del Moral
2004). This allows us to introduce alternative SMC and iterative self-interacting
approximation (Del Moral and Miclo 2004; 2006) schemes. We do not present any
theoretical results here but a survey of precise convergence for SMC algorithms can
be found in Del Moral (2004) whereas the self-interacting algorithms can be studied
using the techniques developed in Del Moral and Miclo (2004; 2006) and Andrieu
et al. (2006).

The rest of the paper is organized as follows. Firstly, in Section 2, we review the
limitations of the current SMC methodology, present some extensions and describe a
generic algorithm to sample from any sequence of distributions {πn}n∈T and estimate
{Zn}n∈T defined in the introduction. Secondly, in Section 3, we reinterpret SMC
as an approximation to nonlinear MCMC and discuss an alternative self-interacting
approximation. Finally, in Section 4, we present three original applications of our
methodology: sequential Bayesian inference for bearings-only tracking (e.g. Gilks
and Berzuini (2001)); Bayesian probit regression (e.g. Albert and Chib (1993)) and
sequential Bayesian inference for stochastic volatility models (Roberts et al. 2004).

2. SEQUENTIAL MONTE CARLO METHODOLOGY

2.1. Sequential Importance Sampling

At time n− 1, we are interested in estimating πn−1 and Zn−1. Let us introduce an
importance distribution ηn−1. IS is based upon the following identities

πn−1 (xn−1) = Z−1
n−1wn−1 (xn−1) ηn−1 (xn−1) ,

Zn−1 =
R

En−1
wn−1(xn−1)ηn−1(xn−1)dxn−1,

(2)

where the unnormalized importance weight function is equal to

wn−1 (xn−1) =
γn−1 (xn−1)

ηn−1 (xn−1)
. (3)

By sampling N particles
n
X

(i)
n−1

o
(i = 1, . . . , N) from ηn−1 and substituting the

empirical measure

ηN
n−1(dxn−1) =

1

N

NX
i=1

δ
X

(i)
n−1

(dxn−1)

(where δx is Dirac measure) to ηn−1 into (2) we obtain an approximation of πn−1

and Zn−1 given by

πN
n−1 (dxn−1) =

PN
i=1 W

(i)
n−1δX

(i)
n−1

(dxn−1), (4)
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ZN
n−1 = 1

N

PN
i=1 wn−1

“
X

(i)
n−1

”
, (5)

where

W
(i)
n−1 =

wn−1

“
X

(i)
n−1

”
PN

j=1 wn−1

“
X

(j)
n−1

” .

We now seek to estimate πn and Zn. To achieve this we propose to build the
importance distribution ηn based upon the current importance distribution ηn−1 of

the particles
n
X

(i)
n−1

o
. We simulate each new particle X

(i)
n according to a Markov

kernel Kn : En−1 → P(En) (where P(En) is the class of probability measures on

En), i.e. X
(i)
n ∼ Kn

“
x

(i)
n−1, ·

”
so that

ηn (xn) = ηn−1Kn (xn) =

Z
ηn−1 (dxn−1) Kn (xn−1,xn) . (6)

2.2. Selection of Transition Kernels

It is clear that the optimal importance distribution, in the sense of minimizing the
variance of (3), is ηn (xn) = πn (xn). Therefore, the optimal transition kernel is
simply Kn (xn−1,xn) = πn (xn). This choice is typically impossible to use (except
perhaps at time 1) and we have to formulate sub-optimal choices. We first review
conditionally optimal moves and then discuss some alternatives.

2.2.1. Conditionally optimal moves

Suppose that we are interested in moving from xn−1 = (un−1,vn−1) ∈ En−1 =
Un−1 × Vn−1 to xn = (un−1,vn) ∈ En = Un−1 × Vn (Vn 6= ∅). We adopt the
following kernel

Kn (xn−1,xn) = Iun−1(un)qn (xn−1,vn)

where qn (xn−1,vn) is a probability density of moving from xn−1 to vn. Conse-
quently, we have

ηn (xn) =

Z
Vn−1

ηn−1 (un, dvn−1) qn ((un,vn−1) ,vn) .

In order to select qn (xn−1,vn), a sensible strategy consists of using the distribution
minimizing the variance of wn(xn) conditional on un−1. One can easily check that
the optimal distribution for this criterion is given by a Gibbs move

qopt
n (xn−1,vn) = πn (vn|un−1)

and the associated importance weight satisfies (even if Vn = ∅)

wn (xn) =
γn (un−1)

ηn−1 (un−1)
. (7)

Contrary to the Gibbs sampler, the SMC framework not only requires being able to
sample from the full conditional distribution πn (vn|un−1) but also being able to
evaluate γn (un−1) and ηn−1 (un−1).
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In cases where it is possible to sample from πn (vn|un−1) but impossible to
compute γn (un−1) and/or ηn−1 (un−1), we can use an attractive property of IS: we
do not need to compute exactly (7), we can use an unbiased estimate of it. We have
the identity

γn (un−1) = bγn (un−1)

Z
γn (un−1,vn)bγn (un−1,vn)

bπn (vn|un−1) dvn (8)

where bγn (un−1,vn) is selected as an approximation of γn (un−1,vn) such thatR bγn (un−1,vn) dvn can be computed analytically and it is easy to sample from
its associated full conditional bπn (vn|un−1). We can calculate an unbiased estimate
of γn (un−1) using samples from bπn (vn|un−1). We also have

1

ηn−1 (un−1)
=

1bηn−1 (un−1)

Z bηn−1 (un−1,vn−1)

ηn−1 (un−1,vn−1)
ηn−1 (vn−1|un−1) dvn−1 (9)

where bηn−1 (un−1,vn−1) is selected as an approximation of ηn−1 (un−1,vn−1) such
that

R bηn−1 (un−1,vn−1) dvn−1 can be computed analytically. So if we can sample
from ηn−1 (vn−1|un−1), we can calculate an unbiased estimate of (9). This idea has a
limited range of applications as in complex cases we do not necessarily have a closed-
form expression for ηn−1 (xn−1). However, if one has resampled particles at time k ≤
n− 1, then one has (approximately) ηn−1 (xn−1) = πkKk+1Kk+2 · · ·Kn−1 (xn−1).

2.2.2. Approximate Gibbs Moves

In the previous subsection, we have seen that conditionally optimal moves corre-
spond to Gibbs moves. However, in many applications the full conditional distribu-
tion πn (vn|un−1) cannot be sampled from. Even if it is possible to sample from
it, one might not be able to get a closed-form expression for γn (un−1) and we need
an approximation bπn (vn|un−1) of πn (vn|un−1) to compute an unbiased estimate
of it with low variance. Alternatively, we can simply use the following transition
kernel

Kn (xn−1,xn) = Iun−1 (un) bπn (vn|un−1) (10)

and the associated importance weight is given by

wn (xn) =
γn (un−1,vn)

ηn−1 (un−1) bπn (vn|un−1)
. (11)

Proceeding this way, we bypass the estimation of γn (un−1) which appeared in (7).
However, we still need to compute ηn−1 (un−1) or to obtain an unbiased estimate of
its inverse. Unfortunately, this task is very complex except when un−1 = xn−1(i.e.
Vn−1 = ∅) in which case we can rewrite (11) as

wn (xn) = wn−1 (xn−1)
γn (xn−1,vn)

γn (xn−1) bπn (vn|xn−1)
. (12)

This strategy is clearly limited as it can only be used when En = En−1 × Vn.
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2.2.3. MCMC and Adaptive moves

To move from xn−1 = (un−1,vn−1) to xn = (un−1,vn) (via Kn), we can adopt
an MCMC kernel of invariant distribution πn (vn|un−1). Unlike standard MCMC,
there are no (additional) complicated mathematical conditions required to ensure
that the usage of adaptive kernels leads to convergence. This is because SMC relies
upon IS methodology, that is, we correct for sampling from the wrong distribution
via the importance weight. In particular, this allows us to use transition kernels
which at time n depends on πn−1, i.e. the “theoretical” transition kernel is of the
form Kn,πn−1 (xn−1,xn) and is approximated practically by Kn,πN

n−1
(xn−1,xn).

This was proposed and justified theoretically in Crisan and Doucet (2000). An
appealing application is described in Chopin (2002) where the variance of bπN

n−1

is used to scale the proposal distribution of an independent MH step of invariant
distribution πn. In Jasra et al. (2005a), one fits a Gaussian mixture model to the
particles so as to design efficient trans-dimensional moves in the spirit of Green
(2003).

A severe drawback of the strategies mentioned above, is the ability to implement
them. This is because we cannot always compute the resulting marginal importance
distribution ηn (xn) given by (6) and, hence, the importance weight wn (xn) . In
Section 2.3 we discuss how we may solve this problem.

2.2.4. Mixture of moves

For complex MCMC problems, one typically uses a combination of MH steps where
the parameter components are updated by sub-blocks. Similarly, to sample from
high dimensional distributions, a practical SMC sampler will update the components
of xn via sub-blocks; a mixture of transition kernels can be used at each time n.
Let us assume Kn (xn−1,xn) is of the form

Kn (xn−1,xn) =

MX
m=1

αn,m (xn−1) Kn,m (xn−1,xn) (13)

where

αn,m (xn−1) ≥ 0,

MX
m=1

αn,m (xn−1) = 1,

and {Kn,m} is a collection of transition kernels. Unfortunately, the direct calculation
of the importance weight (6) associated to (13) will be impossible in most cases as
ηn−1Kn,m (xn) does not admit a closed-form expression. Moreover, even if this were
the case, (13) would be expensive to compute pointwise if M is large.

2.2.5. Summary

IS, the basis of SMC methods, allows us to consider complex moves including adap-
tive kernels or non-reversible trans-dimensional moves. In this respect, it is much
more flexible than MCMC. However, the major limitation of IS is that it requires
the ability to compute the associated importance weights or unbiased estimates of
them. In all but simple situations, this is impossible and this severely restricts
the application of this methodology. In the following section, we describe a simple
auxiliary variable method that allows us to deal with this problem.
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2.3. Auxiliary Backward Markov Kernels

A simple solution would consist of approximating the importance distribution ηn (xn)
via

ηN
n−1Kn (xn) =

1

N

NX
i=1

Kn

“
X

(i)
n−1,xn

”
.

This approach suffers from two major problems. First, the computational complex-
ity of the resulting algorithm would be in O

`
N2
´

which is prohibitive. Second, it is
impossible to compute Kn (xn−1,xn) pointwise in important scenarios, e.g. when
Kn is an Metropolis-Hastings (MH) kernel of invariant distribution πn.

We present a simple auxiliary variable idea to deal with this problem (Del Moral
et al., 2006). For each forward kernel Kn : En−1 → P(En), we associate a backward
(in time) Markov transition kernel Ln−1 : En → P(En−1) and define a new sequence

of target distributions {eπn (x1:n)} on E1:n , E1 × · · · × En through

eπn (x1:n) =
eγn (x1:n)

Zn

where eγn (x1:n) = γn (xn)
Qn−1

k=1Lk (xk+1,xk) .

By construction, eπn (x1:n) admits πn (xn) as a marginal and Zn as a normalizing
constant. We approximate eπn (x1:n) using IS by using the joint importance distri-
bution

ηn (x1:n) = η1 (x1)
Qn

k=2Kk (xk−1,xk) .

The associated importance weight satisfies

wn (x1:n) = eγn(x1:n)
ηn(x1:n)

= wn−1 (x1:n−1) ewn (xn−1,xn) .
(14)

where the incremental importance weight ewn (xn−1,xn) is given by

ewn (xn−1,xn) =
γn (xn) Ln−1 (xn,xn−1)

γn−1 (xn−1) Kn (xn−1,xn)
.

Given that this Radon-Nikodym derivative is well-defined, the method will produce

asymptotically (N → ∞) consistent estimates of Eeπn

“
ϕ(X1:n)

”
and Zn. How-

ever, the performance of the algorithm will be dependent upon the choice of the
kernels {Lk}.

2.3.1. Optimal backward kernels

Del Moral et al. (2006) establish that the backward kernels which minimize the
variance of the importance weights, wn (x1:n), are given by

L
opt
k (xk+1,xk) =

ηk (xk) Kk+1 (xk,xk+1)

ηk+1 (xk+1)
(15)

for k = 1, ..., n− 1. This can be verified easily by noting that

ηn (x1:n) = ηn (xn)
Qn−1

k=1L
opt
k (xk+1,xk) .
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It is typically impossible, in practice, to use these optimal backward kernels as
they rely on marginal distributions which do not admit any closed-form expression.
However, this suggests that we should select them as an approximation to (15). The
key point is that, even if they are different from (15), the algorithm will still provide
asymptotically consistent estimates.

Compared to a “theoretical” algorithm computing the weights (3), the price

to pay for avoiding to compute ηn (xn) (i.e. not using L
opt
k (xk+1,xk)) is that the

variance of the Monte Carlo estimates based upon (14) will be larger. For example,
even if we set πn (xn) = π (xn) and Kn (xn−1,xn) = K (xn−1,xn) is an ergodic
MCMC kernel of invariant distribution π then the variance of wn (x1:n) will fail
to stabilize (or become infinite in some cases) over time for any backward kernel

Lk (xk+1,xk) 6= L
opt
k (xk+1,xk) whereas the variance of (3) will decrease towards

zero. The resampling step in SMC will deal with this problem by resetting the
weights when their variance is too high.

At time n, the backward kernels {Lk (xk+1,xk)} for k = 1, ..., n−2 have already

been selected and we are interested in some approximations of L
opt
n−1 (xn,xn−1)

controlling the evolution of the variance of wn (x1:n).

2.3.2. Suboptimal backward kernels

• Substituting πn−1 for ηn−1. Equation (15) suggests that a sensible sub-optimal
strategy consists of substituting πn−1 for ηn−1 to obtain

Ln−1 (xn,xn−1) =
πn−1 (xn−1) Kn (xn−1,xn)

πn−1Kn (xn)
(16)

which yields ewn (xn−1,xn) =
γn (xn)R

γn−1 (dxn−1) Kn (xn−1,xn)
. (17)

It is often more convenient to use (17) than (15) as {γn} is known analytically,
whilst {ηn} is not. It should be noted that if particles have been resampled at time
n − 1, then ηn−1 is indeed approximately equal to πn−1 and thus (15) is equal to
(16).

• Gibbs and Approximate Gibbs Moves. Consider the conditionally optimal move
described earlier where

Kn (xn−1,xn) = Iun−1 (un) πn (vn|un−1) (18)

In this case (16) and (17) are given by

Ln−1 (xn,xn−1) = Iun (un−1) πn−1 (vn−1|un−1) ,

ewn (xn−1,xn) =
γn (un−1)

γn−1 (un−1)
.

An unbiased estimate of ewn (xn−1,xn) can also be computed using the techniques
described in 2.2.1. When it is impossible to sample from πn (vn|un−1) and/or com-
pute ewn (xn−1,xn), we may be able to construct an approximation bπn (vn|un−1) of
πn (vn|un−1) to sample the particles and another approximation bπn−1 (vn−1|un−1)
of πn−1 (vn−1|un−1) to obtain

Ln−1 (xn,xn−1) = Iun (un−1) bπn−1 (vn−1|un−1) , (19)
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ewn (xn−1,xn) =
γn (un−1,vn) bπn−1 (vn−1|un−1)

γn−1 (un−1,vn−1) bπn (vn|un−1)
. (20)

• MCMC Kernels. A generic alternative approximation of (16) can also be made
when Kn is an MCMC kernel of invariant distribution πn. This has been proposed
explicitly in (Jarzynski (1997), Neal (2001)) and implicitly in all papers introducing
MCMC moves within SMC, e.g. Chopin (2002), Gilks and Berzuini (2001). It is
given by

Ln−1 (xn,xn−1) =
πn (xn−1) Kn (xn−1,xn)

πn (xn)
(21)

and will be a good approximation of (16) if πn−1 ≈ πn; note that (21) is the reversal
Markov kernel associated with Kn. In this case, the incremental weight satisfies

ewn (xn−1,xn) =
γn (xn−1)

γn−1 (xn−1)
. (22)

This expression (22) is remarkable as it is easy to compute and valid irrespective of
the MCMC kernel adopted. It is also counter-intuitive: if Kn (xn−1,xn) is mixing

quickly so that, approximately, X
(i)
n ∼ πn then the particles would still be weighted.

The use of resampling helps to mitigate this problem; see (Del Moral et al. 2006,
Section 3.5) for a detailed discussion.

Contrary to (16), this approach does not apply in scenarios where En−1 = En

but Sn−1 ⊂ Sn as discussed in Section 1 (optimal filtering for partially observed
processes). Indeed, in this case

Ln−1 (xn,xn−1) =
πn (xn−1) Kn (xn−1,xn)R

Sn−1
πn (xn−1) Kn (xn−1,xn) dxn−1

(23)

but the denominator of this expression is different from πn (xn) as the integration
is over Sn−1 and not Sn.

2.3.3. Mixture of Markov Kernels

When the transition kernel is given by a mixture of M moves as in (13), one should
select Ln−1 (xn,xn−1) as a mixture

Ln−1 (xn,xn−1) =

MX
m=1

βn−1,m (xn) Ln−1,m (xn,xn−1) (24)

where βn−1,m (xn) ≥ 0,
PM

m=1 βn−1,m (xn) = 1 and {Ln−1,m} is a collection of
backward transition kernels. Using (15), it is indeed easy to show that the optimal
backward kernel corresponds to

β
opt
n−1,m (xn) ∝

R
αn,m (xn−1) ηn−1 (xn−1) Kn (xn−1,xn) dxn−1,

L
opt
n−1,m (xn,xn−1) =

αn,m(xn−1)ηn−1(xn−1)Kn(xn−1,xnn)R
αn,m(xn−1)ηn−1(xn−1)Kn(xn−1,xn)dxn−1

.

Various approximations to β
opt
n−1,m (xn) and L

opt
n−1,m (xn,xn−1) have to be made in

practice.
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Moreover, to avoid computing a sum of M terms, we can introduce a discrete
latent variable Mn ∈ M, M = {1, . . . , M} such that P (Mn = m) = αn,m (xn−1)
and perform IS on the extended space. This yields an incremental importance weight
equal to

ewn (xn−1,xn, mn) =
γn (xn) βn−1,mn (xn) Ln−1,mn (xn,xn−1)

γn−1 (xn−1) αn,mn (xn−1) Kn,mn (xn−1,xn)
.

2.4. A Generic SMC Algorithm

We now describe a generic SMC algorithm to approximate the sequence of targets
{πn} based on kernel Kn; the extension to mixture of moves being straightforward.
The particle representation is resampled using an (unbiased) systematic resampling

scheme whenever the ESS at time n given by
hPN

i=1(W
(i)
n )2

i−1

is below a prespec-

ified threshold, say N/2 (Liu, 2001).

• At time n = 1. Sample X
(i)
1 ∼ η1 and compute W

(i)
1 ∝ w1

“
X

(i)
1

”
.

If ESS < Threshold, resample the particle representation
n

W
(i)
1 ,X

(i)
1

o
.

• At time n; n ≥ 2. Sample X
(i)
n ∼ Kn

“
X

(i)
n−1, ·

”
and compute

W
(i)
n ∝ W

(i)
n−1 ewn

“
X

(i)
n−1,X

(i)
n

”
.

If ESS < Threshold, resample the particle representation
n

W
(i)
n ,X

(i)
n

o
.

The target πn is approximated through

πN
n (dxn) =

NX
i=1

W (i)
n δ

X
(i)
n

(dxn) .

In addition, the approximation
n

W
(i)
n−1,X

(i)
n

o
of πn−1 (xn−1) Kn (xn−1,xn) obtained

after the sampling step allows us to approximate

Zn

Zn−1
=

R
γn (xn) dxnR

γn−1 (xn−1) dxn−1
by

Ẑn

Zn−1
=

NX
i=1

W
(i)
n−1 ewn

“
X

(i)
n−1,X

(i)
n

”
. (25)

Alternatively, it is possible to use path sampling (Gelman and Meng, 1998) to
compute this ratio.

3. NONLINEAR MCMC, SMC AND SELF-INTERACTING
APPROXIMATIONS

For standard Markov chains, the transition kernel, say Qn, is a linear operator
in the space of probability measures, i.e., we have Xn ∼ Qn (Xn−1, ·) and the
distribution µn of Xn satisfies µn = µn−1Qn. Nonlinear Markov chains are such
that Xn ∼ Qµn−1,n (Xn−1, ·), i.e. the transition of Xn depends not only on Xn−1

but also on µn−1 and we have

µn = µn−1Qn,µn−1 . (26)
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In a similar fashion to MCMC, it is possible to design nonlinear Markov chain
kernels admitting a fixed target π (Del Moral and Doucet 2003). Such a procedure
is attractive as one can design nonlinear kernels with theoretically better mixing
properties than linear kernels. Unfortunately, it is often impossible to simulate
exactly such nonlinear Markov chains as we do not have a closed-form expression
for µn−1. We now describe a general collection of nonlinear kernels and how to
produce approximations of them.

3.1. Nonlinear MCMC Kernels to Simulate from a Sequence of Distributions

Suppose that we can construct a collection of nonlinear Markov kernels such that

eπn = eπn−1Qn,eπn−1

where {eπn} is the sequence of auxiliary target distributions (on (E1:n, E1:n)) asso-
ciated to {πn} and Qn,µ : P (E1:n−1) × En−1 → P (E1:n). The simplest transition
kernel is given by

Qn,µ

`
x1:n−1,x

′
1:n

´
= Ψn (µ×Kn)

`
x′1:n

´
(27)

where Ψn : P(E1:n) → P(E1:n)

Ψn (ν)
`
dx′1:n

´
=

ν (dx′1:n) ewn (x′n−1,x
′
n)R

ν (dx1:n) ewn (xn−1,xn)
.

is a Boltzmann-Gibbs distribution.
If ewn (xn−1,xn) ≤ Cn for any (xn−1,xn), we can also consider an alternative

kernel given by

Qn,µ(x1:n−1, dx
′
1:n) = Kn(xn−1, dx

′
n)
ewn(xn−1,x

′
n)

Cn
δx1:n−1

`
dx′1:n−1

´
+

 
1−

Z
E1:n

Kn(xn−1, dx
′
n)
ewn(xn−1,x

′
n)

Cn
δx1:n−1

`
dx′1:n−1

´!
× Ψn(µ×Kn)(dx′1:n). (28)

This algorithm can be interpreted as a nonlinear version of the MH algorithm. Given
x1:n−1 we sample x′n ∼ Kn(xn−1, ·) and with probability ewn(xn−1,x

′
n)/Cn we let

x′1:n = (x1:n−1,x
′
n), otherwise we sample a new x′1:n from the Boltzmann-Gibbs

distribution.

3.2. SMC and Self-Interacting Approximations

In order to simulate the nonlinear kernel, we need to approximate (26) given here
by (27) or (28). The SMC algorithm described in Section 2 can be interpreted as
a simple Monte Carlo implementation of (27). Whenever ewn (xn−1,xn) ≤ Cn, it
is also possible to approximate (28) instead. Under regularity assumptions, it can
be shown that this alternative Monte Carlo approximation has a lower asymptotic
variance than (27) if multinomial resampling is used to sample from the Boltzmann-
Gibbs distribution (Chapter 9 of Del Moral, 2004).
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In cases where one does not have real-time constraints and the number P of
target distributions {πn} is fixed it is possible to develop an alternative itera-
tive approach. The idea consists of initializing the algorithm with some Monte
Carlo estimates

˘eπN0
n

¯
of the targets consisting of empirical measures (that is

1
N0

PN0
i=1 δ

X
(i)
n,1:n

) of N0 samples. For the sake of simplicity, we assume it is pos-

sible to sample exactly from eπ1 = π1. Then the algorithm proceeds as follows at
iteration i; the first iteration being indexed by i = N0 + 1.

• At time n = 1. Sample X
(i)
1,1 ∼ eπ1 and set eπi

1 =
`
1− 1

i

´ eπi−1
1 + 1

i
δ
X

(i)
1,1

.

• At time n; n = 2, ..., P. Sample X
(i)
n,1:n ∼ Qn,eπi

n−1

“
X

(i)
n−1,1:n−1, ·

”
and set eπi

n =
`
1− 1

i

´ eπi−1
n + 1

i
δ
X

(i)
n,1:n

.

In practice, we are interested only in {πn} and not {eπn} so we only need to

store at time n the samples
n
X

(i)
n,n−1:n

o
asymptotically distributed according to

πn (xn) Ln−1 (xn, xn−1). We note that such stochastic processes, described above,
are self-interacting ; see Del Moral and Miclo (2004; 2006), Andrieu et al. (2006) and
Brockwell and Doucet (2006) in the context of Monte Carlo simulation.

4. APPLICATIONS

4.1. Block Sampling for Optimal Filtering

4.1.1. SMC Sampler

We consider the class of nonlinear non-Gaussian state-space models discussed in
Section 1. In this case the sequence of target distribution defined on En = Xn is
given by (1). In the context where one has real-time constraints, we need to design
a transition kernel Kn which updates only a fixed number of components of xn to
maintain a computational complexity independent of n.

The standard approach consists of moving from xn−1 = un−1 to xn = (xn−1, xn) =
(un−1,vn) using

πn (vn|un−1) = p (xn| yn, xn−1) ∝ f (xn|xn−1) g (yn|xn) .

This distribution is often referred to (abusively) as the optimal importance distri-
bution in the literature, e.g. Doucet et al. (2001); this should be understood as
optimal conditional upon xn−1. In this case we can rewrite (7) as

wn (xn) = wn−1 (xn−1) p (yn|xn−1) ∝ wn−1 (xn−1)
p (xn−1| y1:n)

p (xn−1| y1:n−1)
(29)

If one can sample from p (xn| yn, xn−1) but cannot compute (29) in closed-form
then we can obtain an unbiased estimate of it using an easy to sample distribution
approximating it

bπn (vn|un−1) = bp (xn| yn, xn−1) =
bf (xn|xn−1) bg (yn|xn)R bf (xn|xn−1) bg (yn|xn) dxn

and the identity

p (yn|xn−1) =
R bf (xn|xn−1) bg (yn|xn) dxn

×
R f(xn|xn−1)g( yn|xn)bf(xn|xn−1)bg( yn|xn)

bp (xn| yn, xn−1) dxn.
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An alternative consists of moving using bp (xn| yn, xn−1) -see (10)- and computing
the weights using (12)

wn (xn) = wn−1 (xn−1)
f (xn|xn−1) g (yn|xn)bp (xn| yn, xn−1)

We want to emphasize that such sampling strategies can perform poorly even if one
can sample from p (xn| yn, xn−1) and compute exactly the associated importance
weight. Indeed, in situations where the discrepancy between p (xn−1| y1:n−1) and
p (xn−1| y1:n) is high, then the weights (29) will have a large variance. An alternative
strategy consists not only of sampling Xn at time n but also of updating the block
of variables Xn−R+1:n−1 where R > 1. In this case we seek to move from xn−1 =
(un−1,vn−1) = (x1:n−R, xn−R+1:n−1) to xn = (un−1,vn) = (x1:n−R, x′n−R+1:n) and
the conditionally optimal distribution is given by

πn (vn|un−1) = p
`
x′n−R+1:n

˛̨
yn−R+1:n, xn−R

´
.

Although attractive, this strategy is difficult to apply, as sampling from
p (x′n−R+1:n| yn−R+1:n, xn−R) becomes more difficult as R increases. Moreover, it re-
quires the ability to compute or obtain unbiased estimates of both p (yn−R+1:n|xn−R)
and 1/ηn−1 (x1:n−R) to calculate (7). If we use an approximation bπn (vn|un−1) of
πn (vn|un−1) to move the particles, it remains difficult to compute (11) as we
still require an unbiased estimate of 1/ηn−1 (x1:n−R). The discussion of Section
2.3.2 indicates that, alternatively, we can simply weight the particles sampled usingbπn (vn|un−1) by (20); this only requires us being able to derive an approximation
of πn−1 (vn−1|un−1).

4.1.2. Model and Simulation details

We now present numerical results for a bearings-only-tracking example (Gilks and
Berzuini, 2001). The target is modelled using a standard constant velocity model

Xn =

0B@ 1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

1CAXn−1 + Vn,

with Vn i.i.d.N4 (0, Σ) (Nr(a, b) is the r−dimensional normal distribution with mean
a and covariance b) and

Σ = 5

0B@ 1/3 1/2 0 0
1/2 1 0 0
0 0 1/3 1/2
0 0 1/2 1

1CA .

The state vector Xn =
`
X1

n, X2
n, X3

n, X4
n

´T
is such that X1

n (resp. X3
n) corresponds

to the horizontal (resp. vertical) position of the target whereas X2
n (resp. X4

n) cor-
responds to the horizontal (resp. vertical) velocity. One only receives observations
of the bearings of the target

Yn = tan−1

„
X3

n

X1
n

«
+ Wn
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where Wn is i.i.d. N
`
0, 10−4

´
; i.e. the observations are almost noiseless. This is

representative of real-world tracking scenarios.
We build an approximation bπn (vn|un−1) (respectively bπn−1 (vn−1|un−1)) of

πn (vn|un−1) (respectively bπn−1 (vn−1|un−1)) using the forward-backward sam-
pling formula for a linear Gaussian approximation of the model based on the Ex-
tended Kalman Filter (EKF); see Doucet et al. (2006) for details. We compare

• The block sampling SMC algorithms denoted SMC(R) for R = 1, 2, 5 and 10
which are using the EKF proposal.

• Two Resample-Move algorithms as described in (Gilks and Berzuini, 2001),
where the SMC(1) is used followed by: (i) one at a time MH moves using an approx-
imation of p (xk| yk, xk−1, xk+1) as a proposal (RML(10)) over a lag L = 10; and
(ii) using the EKF proposal for L = 10 (RMFL(10)). The acceptance probabilities
of those moves were in all cases between (0.5,0.6).

Systematic resampling is performed whenever the ESS goes below N/2. The
results are displayed in Table 1.

Table 1: Average number of resampling steps for 100 simulations, 100
time instances per simulations using N = 1000 particles.

Filter # Time Resampled
SMC(1) 44.6
RML(10) 45.2
RMFL(10) 43.3
SMC(2) 34.9
SMC(5) 4.6
SMC(10) 1.3

The standard algorithms -namely, SMC(1), RML(10) and RMFL(10) - need to

resample very often as the ESS drop below N/2; see the 2nd column of Table 1.
In particular, the Resample-Move algorithms resample as much as SMC(1) despite
their computational complexity being similar to SMC(10); this is because MCMC
steps are only introduced after an SMC(1) step has been performed. Conversely, as
R increases, the number of resampling steps required by SMC(R) methods decreases

dramatically. Consequently, the number of unique particles
n

X
(i)
1

o
approximating

the final target p (x1| y1:100) remains large whereas it is close to 1 for standard
methods.

4.2. Binary Probit Regression

Our second application, related to the tempering example in Section 1, is the
Bayesian binary regression model in (for example) Albert and Chib (1993). The
analysis of binary data via generalized linear models often occurs in applied Bayesian
statistics and the most commonly used technique to draw inference is the auxiliary
variable Gibbs sampler (Albert and Chib 1993). It is well known (e.g. Holmes and
Held 2006) that such a simulation method can perform poorly, due to the strong
posterior dependency between the regression and auxiliary variables. In this ex-
ample we illustrate that SMC samplers can provide significant improvements over
the auxiliary variable Gibbs sampler with little extra coding effort and compara-
ble CPU times. Further, we demonstrate that the SMC algorithm based on (18)
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can greatly improve the performance of Resample-Move (Chopin, 2002; Gilks and
Berzuini, 2001) based on (21).

4.2.1. Model

The model assumes that we observe binary data Y1, . . . , Yu, with associated r−dimen-
sional covariates X1, . . . , Xu and that the Yi, i = 1, . . . , u are i.i.d.:

Yi|β ∼ B(Φ(x′iβ))

where B is the Bernoulli distribution, β is a r−dimensional vector and Φ is the
standard normal CDF. We denote by x the u× r design matrix (we do not consider
models with an intercept).

Albert and Chib (1993) introduced an auxiliary variable Zi to facilitate appli-
cation of the Gibbs sampler. That is, we have:

Yi|Zi =


1 if Zi > 0
0 otherwise

Zi = x′iβ + εi

εi ∼ N (0, 1).

In addition, we assume β ∼ Nr(b, v). Standard manipulations establish that the
marginal posterior π(β|y1:u, x1:u) concides with that of the original model.

4.2.2. Performance of the MCMC algorithm

To illustrate that MCMC-based inference for binary probit regression does not al-
ways perform well, we consider the following example. We simulated 200 data points,
with r = 20 covariates. We set the priors as b = 0 and v = diag(100). Recall that
the Gibbs sampler of Albert and Chib (1993) generates from full conditionals:

β| · · · ∼ Nr(B, V )
B = V (v−1b + x′z)
V = (v−1 + x′x)−1

π(zi| · · ·) ∼


φ(zi; x
′
iβ, 1)I{zi>0}(zi) if yi = 1

φ(zi; x
′
iβ, 1)I{zi≤0}(zi) otherwise

where | · · · denotes conditioning on all other random variables in the model and φ(·)
is the normal density. It should be noted that there are more advanced MCMC
methods for these class of models (e.g. Holmes and Held (2006)), but we only con-
sider the method of Albert and Chib (1993) as it forms a building block of the
SMC sampler below. We ran the MCMC sampler for 100000 iterations, thinning
the samples to every 100. The CPU time was approximately 421 seconds.

In Figure 1 (top row) we can observe two of the traces of the twenty sampled
regression coefficients. These plots indicate very slow mixing, due to the clear auto-
correlations and the thinning of the Markov chain. Whilst we might run the sampler
for an excessive period of time (that is, enough to substantially reduce the auto-
correlations of the samples), it is preferable to construct an alternative simulation
procedure. This is to ensure that we are representing all of the regions of high
posterior probability that may not occur using this MCMC sampler.
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Figure 1: Sampled coefficients from the binary regression example. For
the MCMC (top row), we ran the Gibbs sampler of Albert and Chib (1993)
for 100000 iterations and stored every 100th (CPU time 421 sec). For the
reversal SMC (middle row) we ran 1000 particles for 200 time steps (CPU
681 sec). For the Gibbs SMC (bottom row) we did the same except the CPU
was 677.

4.2.3. SMC Sampler

We now develop an SMC approach to draw inference from the binary logistic model.
We consider a sequence of densities induced by the following error at time n:

εi ∼ N (0, ζn).

with 1 < ζ1 > · · · > ζP = 1.
To sample the particles, we adopt the MCMC kernel above, associated to the

density at time n. At time n we sample new z1:u, β from:

Kn((z1:u, β), (z′1:u, β′)) = πn(z′1:u|β, y1:u, x1:u)Iβ(β′).

We then sample β from the full conditional (since this kernel admits πn as an
invariant measure we can adopt backward kernel (21) and so the incremental weight
is 1). For the corresponding backward kernel, Ln−1, we consider two options (21)
and (18). Since (18) is closer to the optimal kernel, we would expect that the
performance under the second kernel to be better than the first (in terms of weight
degeneracy).
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4.2.4. Performance of SMC Sampler

We ran the two SMC samplers above for 50, 100 and 200 time points. We sampled
1000 particles and resampled upon the basis of the ESS dropping to N/2 using sys-
tematic resampling. The initial importance distribution was a multivariate normal
centered at a point simulated from an MCMC sampler and the full conditional den-
sity for z1:u. We found that this performed noticeably better than using the prior
for β.

It should be noted that we did not have to store N , u−dimensional vectors.
This is possible due to the fact that we can simulate from πn(z1:u| · · ·) and that
the incremental weights can be either computed at time n for time n + 1 and are
independent of z1:u.

As in Del Moral et al. (2006), we adopted a piecewise linear cooling scheme
that had, for 50 time points, 1/ζn increase uniformly to 0.05 for the first 10 time
points, then uniformly to 0.3 for the next 20 and then uniformly to 1. All other
time specifications had the same cooling schedule, in time proportion.

In Figures 1, 2, 3, 4 and Table 2 we can observe our results. Figures 2, 3, 4
and Table 2 provide a comparison of the performance for the two backward kernels.
As expected, (18) provides substantial improvements over the reversal kernel (21)
with significantly lower weight degeneracy and thus fewer resampling steps. This is
manifested in Figure 1 with slighly less dependence (of the samples) for the Gibbs
kernel. The CPU times of the two SMC samplers are comparable to MCMC (Table
2 final column) which shows that SMC can markedly improve upon MCMC for
similar computational cost (and programming effort).
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Figure 2: ESS plots from the binary regression example; 50 time points.
The top graph is for reversal kernel (18). We sampled 1000 particles and
resampled when the ESS dropped below 500 particles,
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Figure 3: ESS plots from the binary regression example; 100 time points.
The top graph is for reversal kernel (18). We sampled 1000 particles and
resampled when the ESS dropped below 500 particles,

Table 2: Results from Binary regression example. The first entry is for
the reversal (i.e. the first column row entry is the reversal kernel for 50 time
points). The CPU time is in seconds.

Time points 50 100 200
CPU Time 115.33 251.70 681.33
CPU Time 118.93 263.61 677.65

# Times Resampled 29 29 28
# Times Resampled 7 6 8

4.2.5. Summary

In this example we have established that SMC samplers are an alternative to MCMC
for a binary regression example. This was only at a slight increase in CPU time
and programming effort. As a result, we may be able to investigate more chal-
lenging problems, especially since we have not utilized all of the SMC strategies
(e.g. adaptive methods, in Section 2.2).

We also saw that the adoption of the Gibbs backward kernel (18) provided
significant improvements over Resample-Move. This is of interest when the full
conditionals are not available, but good approximations of them are. In this case
it would be of interest to see if similar results hold, that is, in comparison with
the reversal kernel (21). We note that this is not meaningless in the context of
artifical distributions, where the rate of resampling may be controlled by ensuring
πn−1 ≈ πn. This is because we will obtain better performance for the Gibbs kernel
for shorter time specifications (and particle number) and hence lower CPU time.
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Figure 4: ESS plots from the binary regression example; 200 time points.
The top graph is for reversal kernel (18). We sampled 1000 particles and
resampled when the ESS dropped below 500 particles,

4.3. Filtering for Partially Observed Processes

In the following example we consider SMC samplers applied to filtering for partially
observed processes. In particular, we extend the approach of Del Moral et al. (2006)
for cases with Sn−1 ⊂ Sn, that is, a sequence of densities with nested supports.

4.3.1. Model

We focus upon the Bayesian Ornstein-Uhlenbeck stochastic volatility model (Barndoff-
Nielsen and Shepard 2001) found in Roberts et al. (2004). That is, the log-return
of an asset Xt at time t ∈ [0, T ] is modelled via the stochastic differential equation
(SDE):

dXt = σ
1/2
t dWt

where {Wt}t∈[0,T ] is a standard Wiener process. The volatility σt is assumed to
satisfy the following (Ornstein-Uhlenbeck equation) SDE:

dσt = −µσtdt + dZt (30)

where {Zt}t∈[0,T ] is assumed to be a pure jump Lévy process; see Applebaum (2004)
for a nice introduction.

It is well known (Barndoff-Nielsen and Shephard 2001; Applebaum 2004) that
for any self-decomposable random variable, there exists a unique Lévy process that
satisfies (30); we assume that σt has a Gamma marginal, Ga(ν, θ). In this case Zt
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is a compound Poisson process:

Zt =

KtX
j=1

εj

where Kt is a Poisson process of rate νµ and the εj are i.i.d. according to Ex(θ)
(where Ex is the exponential distribution). Denote the jump times of the compound
Poisson process as 0 < c1 < · · · < ckt < t.

Since Xt ∼ N (0, σ∗t ), where σ∗t =
R t

0
σsds is the integrated volatility, it is easily

seen that Yti ∼ N (0, σ∗i ) with Yti = Xti−Xti−1 , 0 < t1 < · · · < tu = T are regularly
spaced observation times and σ∗i = σ∗ti

−σ∗ti−1 . Additionally, the integrated volatility
is:

σ∗t =
1

µ

“ KtX
j=1

[1− exp{−µ(t− cj)}]εj − σ0[exp{−µt} − 1]
”

The likelihood at time t is

g(yt1:mt |{σ
∗
t }) =

nY
i=1

φ(yti ; σ
∗
i )I{ti<t}(ti)

with φ(·; a) the density of normal distribution of mean zero and variance a and
mt = max{ti : ti ≤ t}. The priors are exactly as Roberts et al. (2004):

σ0|θ, ν ∼ Ga(ν, θ), ν ∼ Ga(αν , βν),
µ ∼ Ga(αµ, βµ), θ ∼ Ga(αθ, βθ)

where Ga(a, b) is the Gamma distribution of mean a/b. We take the density, at time
t, of the stochastic process, with respect to (the product of) Lebesgue and counting
measures:

pt(c1:kt , ε1:kt , kt) = kt!

nkt
I{0<c1<···<ckt

<t}(c1:kt)θ
kt exp{−θ

Pkt
j=1 εj} ×

(tµν)kt

kt!
exp{−tµν}.

4.3.2. Simulation Details

We are thus interested in simulating from a sequence of densities, which at time n
(of the sampler) and corresponding dn ∈ (0, T ] (of the stochastic process) is defined
as:

πn(c1:kdn
, ε1:kdn

, kdn , σ0, ν, µ, θ|yt1:mdn
) ∝ g(yt1:mdn

|{σ∗dn
})π(σ0, ν, µ, θ)×

pdn(c1:kdn
, ε1:kdn

, kdn).

As in example 2 of Del Moral et al. (2006) this is a sequence of densities on trans-
dimensional, nested spaces. However, the problem is significantly more difficult as
the full conditional densities are not available in closed form. To simulate this
sequence, we adopted the following technique.

If kdn = 0 we select a birth move which is the same as Roberts et al. (2004).
Otherwise, we extend the space by adopting a random walk kernel:

q((ckdn−1−1, ckdn−1
), ckdn

) ∝ exp{−λ|ckdn
− ckdn−1

|}I(ckdn−1
−1,n)(ckdn

).
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The backward kernel is identical if ckdn
∈ (0, dn−1) otherwise it is uniform. The

incremental weight is then much like a Hastings ratio, but standard manipulations
establish that it has finite supremum norm, which means that it has finite variance.
However, we found that the ESS could drop, when very informative observations
arrive and thus we used the following idea: If the ESS drops, we return to the
original particles at time n− 1 and we perform an SMC sampler which heats up to
a very simple (related) density and then make the space extension (much like the
tempered transitions method of Neal (1996)). We then use SMC to return to the
density we were interested in sampling from.

After this step we perform an MCMC step (the centered algorithm of Roberts
et al. (2004)) which leaves πn invariant allowing with probability 1/2 a Dirac step
to reduce the CPU time spent on updating the particles.

4.3.3. Illustration

For illustration purposes we simulated u = 500 data points from the prior and ran
10000 particles with systematic resampling (threshold 3000 particles). The priors
were αν = 1.0, βν = 0.5, αµ = 1.0, βµ = 1.0, αθ = 1.0, βθ = 0.1. We defined the
target densities at the observation times 1, 2, . . . , 500 and set λ = 10.

If the ESS drops we perform the algorithm with respect to:

πζ
n(c1:kdn

, ε1:kdn
, kdn , σ0, ν, µ, θ|yt1:mdn

) ∝ g(yt1:mdn
|{σ∗dn

})ζπ(σ0, ν, µ, θ)×
pdn(c1:kdn

, ε1:kdn
, kdn)

for some temperatures {ζ}. We used a uniform heating/cooling schedule to ζ = 0.005
and 100 densities and performed this if the ESS dropped to 5% of the particle
number.
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Figure 5: ESS plot for simulated data from the stochastic volatility exam-
ple. We ran 10000 particles with resampling threshold (−−) 3000 particles.

We can see in Figure 5 that we are able to extend the state-space in an efficient
manner and then estimate (Figure 6) the filtered and smoothed actual volatility σ∗i
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which, to our knowledge, has not ever been performed for such complex models. It
should be noted that we only had to apply the procedure above, for when the ESS
drops, 7 times; which illustrates that our original incremental weight does not have
extremely high variance. For this example, the MCMC moves can operate upon
the entire state-space, which we recommend, unless a faster mixing MCMC sampler
is constructed. That is, the computational complexity is dependent upon u (the
number of data points). Additionally, due to the required, extra, SMC sampler, this
approach is not useful for high frequency data, but is more appropriate for daily
returns type data.
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Figure 6: Actual volatility for simulated data from the stochastic volatility
example. We plotted the actual volatility for the final density (full line) filtered
(esimated at each timepoint, dot) and smoothed (estimated at each timepoint,
lag 5, dash)

5. CONCLUSION

It is well-known that SMC algorithms can solve, numerically, sequential Bayesian in-
ference problems for nonlinear, non-Gaussian state-space models (Doucet et al. 2001).
We have demonstrated (in addition to the work of Chopin, 2002; Del Moral et al.,
2006; Gilks and Berzuini, 2001; Neal, 2001) that SMC methods are not limited
to this class of applications and can be used to solve, efficiently, a wide variety of
problems arising in Bayesian statistics.

We remark that, as for MCMC, SMC methods are not black-boxes and require
some expertise to achieve good performance. Nevertheless, contrary to MCMC, as
SMC is essentially based upon IS, its validity does not rely on ergodic properties of
any Markov chain. Consequently, the type of strategies that may be applied by the
user is far richer, that is, time-adaptive proposals and even non-Markov transition
kernels can be used without any theoretical difficulties. Such schemes are presented
in Jasra et al. (2005a) for trans-dimensional problems.

We also believe that it is fruitful to interpret SMC as a particle approximation of
nonlinear MCMC kernels. This provides us with alternative SMC and iterative self-
interacting approximation schemes as well as opening the avenue for new nonlinear
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algorithms. The key to these procedures is being able to design nonlinear MCMC
kernels admitting fixed target distributions; see Andrieu et al. (2006) and Brockwell
and Doucet (2006) for such algorithms.
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DISCUSSION

HEDIBERT FREITAS LOPES (University of Chicago, USA)

I would like to start by congratulating the authors on this very important con-
tribution to a growing literature on sequential Monte Carlo (SMC) methods. The
authors run the extra mile and show how SMC methods, when combined with well
established MCMC tools, can be used to entertain not only optimal filtering prob-
lems or, as the authors refer to, sequential Bayesian inference problems, but also for
posterior inference in general parametric statistical models.

The paper, similarly to several others in this area, builds upon the simple and
neat idea behind sampling importance resampling (SIR) algorithms, in which parti-
cles from a (sequence of) importance density are appropriately reweighed in order to
obtain (sequences of) approximate draws from a target distribution (see, Smith and
Gelfand, 1990, and Gordon, Salmond and Smith, 1995, for a few seminal references).

However, unlike in filtering problems where the nature of the state-space evo-
lution suggests updating schemes for the set of particles, there is no natural rule
for sequentially, optimally reweighing the particles that would also be practically
feasible. Here lies the main contribution of the paper, where the authors introduce
the idea of auxiliary backward Markov kernels. SMC methods can then be seen as
an alternative to MCMC methods when dealing with sequences of probability dis-
tributions that avoids, and to a certain extent eliminates, convergence issues, one
of the most cumbersome practical problems in the MCMC literature. Additionally,
parallelization of the computation comes as a natural by-product of SMC methods.

I would like to hear (or read) what the authors have to say about a few points
that I believe will be in the SMC agenda for the next few years: (i) choice of
Markov kernels K for (increasingly) high dimensional state vectorsxn, such as in
modern highly structure stochastic systems; (ii) situations where both fixed param-
eters and state variables are present, how this distinction helps or makes it difficult
to propose kernels? (iii) How to accurately compute and use the variance of weights
sequentially when resampling, in principle, makes it more difficult to derive general
limiting results? (iv) How does the previous issue relate to the problem of sample
impoverishment?

In summary, I humbly anticipate that the next few years will witness a great
interaction between MCMCers and SMCers, both theoretically and empirically.
Thanks the authors for writing such an interesting paper.
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DAVID R. BICKEL (Pioneer Hi-Bred Intl., Johnston, Iowa, USA)

The authors added promising innovations in sequential Monte Carlo methodol-
ogy to the arsenal of the Bayesian community. Most notably, their backward-kernel
framework obviates the evaluation of the importance density function, enabling
greater flexibility in the choice of algorithms. They also set their work on posterior
inference in a more general context by citing results of the observation that parti-
cle filters approximate the path integrals studied in theoretical physics (Del Moral
2004).

My first question concerns another recent advance in SMC, the use of the mixture
transition kernel

Kn (xn−1,xn) =

MX
m=1

αn,mκm (xn−1,xn) ,

where αn,m equals the sum of normalized weights over all particle values that were
drawn from the mth mixture component at time n − 1, and κm (xn−1,xn) is an
element of the set of M predetermined mixture components (Douc et al. 2007). For
example, if the possible transition kernels correspond to Metropolis-Hastings ran-
dom walk kernels of M different scales chosen by the statistician, then the mixture
automatically adapts to the ones most appropriate for the target distribution (Douc
et al. 2007). Is there a class of static inference problems for which the backward-
kernel approach is better suited, or is it too early to predict which method may
perform better in a particular situation?

In his discussion, Hedibert Lopes suggested some opportunities for further SMC
research. What areas of mathematical and applied work seem most worthwhile?

I thank the authors for their highly interesting and informative paper.

NICOLAS CHOPIN (University of Bristol, UK )

As the authors know already, I am quite enthusiastic about the general SMC
framework they developed, and more generally the idea that SMC can outperform
MCMC in a variety of ‘complex’ Bayesian problems. By ‘complex’, I refer informally
to typical difficulties such as: polymodality, large dimensionality (of the parame-
ter, of the observations, or both), strong correlations between components of the
considered posterior distribution, etc.

My discussion focuses on the probit example, and particularly the artificial se-
quence (γn) specifically chosen in this application, which I find both intriguing and
exciting. As the authors have certainly realised, all the distributions γn are equal
to the posterior distribution of interest, up to scaling factor ςn. For a sequence of
Gaussian distributions, rescaling with factor ςn is the same thing as tempering with
exponent ς−2

n ; therefore, for standard, well-behaved Bayesian problems both ap-
proaches can be considered as roughly equivalent. But rescaling is more convenient
here for a number of reasons. First, this means that all the Gibbs steps performed
within the SMC algorithm are identical to the Gibbs update implemented in the
corresponding MCMC algorithm. Thus a clear case is made that, even if update
kernels have the same ergodicity properties in both implementations, the SMC im-
plementation provides better estimates (i.e. with smaller variance) than the MCMC
one, for the same computational cost.

Second, the fact that all πn are equivalent, up to appropriate scaling, means that
one can combine results from all or part of the iterations, rather than retaining only
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the output of the last iteration. I wonder if the authors have some guidance on how
this can be done in an optimal way. Third, and more generally, I am excited about
the idea of defining a sequence of artificial models in order to derive the sequence
(γn). This should make it easier to derive kernels Kn (typically Gibbs like) that
allows for efficient MCMC step within the SMC algorithm. I think this is a very
promising line of research. My only concern is that some models involving latent
variables may be more difficult to handle, because, in contrast with this probit
example, N simulations of the vector of latent variables would need to be carried
forward across iterations, which seems memory demanding.

YANAN FAN, DAVID S. LESLIE and MATTHEW P. WAND
(University of New South Wales, Australia and University of Bristol, UK )

We would like to congratulate the authors on their efforts in presenting a uni-
fied approached to the use of sequential Monte Carlo (SMC) samplers in Bayesian
computation. In this, and the companion publication (Del Moral et al. 2006), the
authors illustrate the use of SMC as an alternative to Markov chain Monte Carlo
(MCMC).

These methods have several advantages over traditional MCMC methods. Firstly,
unlike MCMC, SMC methods do not face the sometimes contentious issue of di-
agnosing convergence of a Markov chain. Secondly, in problems where mixing is
chronically slow, this method appear to offer a more efficient alternative, see Sis-
son et al (2006) for example. Finally, as the authors point out, adaptive proposals
for transition kernels can easily be applied since the validity of SMC does not rely
on ergodic properties of any Markov chain. This last property may give the SMC
approach more scope for improving algorithm efficiency than MCMC.

In reference to the binary probit regression model presented in Section 4.2, the
authors chose to use a multivariate normal distribution as the initial importance
distribution, with parameter value given by simulated estimates from an MCMC
sampler. An alternative, more efficient strategy may be to estimate the parame-
ters of the multivariate normal distribution by fitting the frequentist binary probit
regression model. One can obtain maximum likelihood and the associated variance-
covariance estimates for this, and many other, models using standard statistical
software packages. We are currently designing a SMC method to fit a general de-
sign generalized linear mixed model (GLMM) (Zhao et al. 2006) and find this
approach to work well.

The authors adopt an MCMC kernel, and update the coefficients of the covari-
ates β from its full conditional distribution. If one cannot sample directly from the
full conditional distributions, a Metropolis-Hastings kernel may be used. The choice
of scaling parameters in such kernels can greatly influence the performance of the
sampler, and it is not clear if optimal scaling techniques developed in the MCMC
literature are immediately applicable here. In our current work to use these tech-
niques for GLMMs we have found that using the variance-covariance estimate from
the frequentist model as a guide for scaling the MH proposal variance works well.
In general, can the authors offer any guidance on the properties of optimal MCMC
kernels for use with SMC samplers?

PAUL FEARNHEAD (Lancaster University, UK )

I would like to congratulate the authors on describing an exciting development in
Sequential Monte Carlo (SMC) methods: extending both the range of applications
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and the flexibility of the algorithm. It will be interesting to see how popular and
useful these ideas will be in years to come.

The ideas in the paper introduce more choice into the design of SMC algorithms,
and it is thus necessary to gain practical insights into how to design efficient algo-
rithms. I would thus like to ask for some further details on the examples.

Firstly I would have liked to see more details about the bearings-only tracking
example in Section 4.1. For example, how informative were the priors used, and what
did a typical path of the target look like? The choice of prior can have a substantial
impact on the efficiency of the standard SMC algorithms that you compare with,
with them being very inefficient for relatively diffuse priors (there can be simple
ways round this by sampling your first set of particles conditional on the first or
first two observations). While the efficiency of EKF approximations to the model
can depend on the amount of non-linearity in the observation equation, which in
turn depends on the path of the target (with the non-linearity being extreme if the
target passes close to the observer). The EKF has a reputation for being unstable
on the bearings-only tracking problem (e.g. Gordon et al. 1993), so it is somewhat
suprising that this block sampler works so well on this problem. (Perhaps the EKF
approximation works well because of the informative initial conditions - i.e. a known
position and velocity for each particle?)

Also, there are better ways of implementing a SMC algorithm than those that
you compare to. In particular, the proposal distribution can be chosen to take into
account the information in the most recent observation (Carpenter et al. 1999) -
which is of particular importance here as the observations are very accurate. How
much more efficient is using information from 10 observations as compared to this
simpler scheme which uses information from a single observation?

Finally, a comment on your last example (Section 4.3). This is a very challenging
problem, and your results are very encouraging, but I have a slight concern about
your method whereby if the ESS of the particles drops significantly at an iteration
you go back and re-propose the particles from a different proposal. The text reads
as though you throw away the particles you initially proposed. If so, does this not
introduce a bias into the algorithm (as you will have fewer particles in areas where
their importance sampling weight will be large - as these particles will tend to get
discarded at such a step)? For batch problems, a simple (and closely related) alter-
native would be to just let the amount of CPU time/number of particles generated
vary with iteration of your algorithm - spending more effort on iterations where the
ESS would otherwise drop significantly, and less on iterations where ESS is more
robust. For example, this could be done by generating enough particles until the
ESS rises above some threshold.

STEVEN L. SCOTT (University of Southern California, USA)

Congratulations to Del Moral, Doucet, and Jasra for an informative paper sum-
marizing the current state of the art in sequential Monte Carlo (SMC) methods.
SMC has become the tool of choice for Bayesian analysis of nonlinear dynamic
models with continuous state spaces. Particularly welcome in the paper are ideas
drawn from the MCMC literature. Auxiliary variables and kernel based proposals
broaden the SMC toolkit for an audience already comfortable with MCMC.

One goal of the article is to demonstrate SMC as an alternative to MCMC for
non-dynamic problems. I wish to make two points regarding the probit regression
example from Section 4.2, the only example in Section 4 that is a non-dynamic
problem. The first is a clarification about the poor performance of Albert and Chib’s



SMC for Bayesian computation 29

method, which would not be so widely used if its typical performance were as bad as
suggested. When Albert and Chib’s method mixes slowly, its poor performance can
usually be attributed to a “nearly-separating” hyperplane, where most observations
have success probabilities very close to 0 or 1. The authors’ simulation appears to
involve such a phenomenon. If x20 ≈ x2 ≈ 1.0 then β20 adds about 30 units to
the linear predictor, while β2 subtracts about 15, leaving the latent probit about
15 standard deviations from zero. There is no information in the paper about the
values of the covariates, but a value of 1 is reasonable if the covariates were simulated
from standard Gaussian or uniform distributions.

The second point is that the comparison between the authors’ SMC algorithm
and Albert and Chib is not quite fair because SMC uses a “trick” withheld from
its competitor. SMC achieves its efficiency by manipulating the variance of the
latent data. Several authors have used this device in a computationally trivial
improvement to Albert and Chib’s method. The improvement assumes the latent
variables have variance ζ, where Albert and Chib assume ζ = 1 for identifiability.
To introduce this improvement in the MCMC algorithm one need only modify the
variance of the truncated normal distribution for z and replace the draw from p(β|z)
with a draw from p(β, ζ|z). Thus computing times for the improved and standard
algorithms are virturally identical. Identifiability is restored during post processing
by dividing each β by the

√
ζ from the same Gibbs iteration. Mathematical results

due to Meng and van Dyk (1999), Liu and Wu (1999), and Lavine (2003) guarantee
that the post processed β’s have the desired stationary distribution and mix at
least as rapidly as those from the identified model. van Dyk and Meng (2001)
illustrate the effects of increased mixing on a variety of examples from the canon
of models amenable to data augmentation, including probit regression. Liu and
Wu (1999) compare the performance of the improved and standard Albert and
Chib algorithms and find substantial mixing improvements in the presence of nearly
separating hyperplanes similar to the simulation described by the current paper. The
authors carefully acknowledge other Monte Carlo samplers for probit regression but
limit their comparison to Albert and Chib (1993) because of its prevalence in applied
work. However, given the nature of this particular SMC algorithm and the minimal
burden imposed by the method described above, it would seem more appropriate to
compare SMC to “improved” rather than “standard” Albert and Chib.

REPLY TO THE DISCUSSION

Firstly we thank the discussants for a set of both stimulating and useful comments.
We hope that our work and the comments of the discussants will encourage future
research in this developing field of research.

Convergence Diagnosis

As noted in the paper and outlined by Lopes and Fan, Leslie and Wand, SMC
methods do not rely upon the ergodicity properties of any Markov kernel and as such
do not require convergence checks as for MCMC. However, we feel that we should
point out that the performance of the algorithm needs to be monitored closely. For
example, the ESS needs to be tracked (to ensure the algorithm does not ‘crash’ to a
single particle) and it is advisable to observe the sampled parameters, running the
algorithm a few times to check consistent answers; see also Chopin (2004) for more
advice.
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Optimal MCMC kernels

Fan, Leslie and Wand and Lopes ask about constructing optimal MCMC kernels. We
discuss potential strategies that may add to the ideas of the discussants. We clarify
that, on observation of the expression of the asymptotic variance in the central limit
theorem (Del Moral et al. (2006), Proposition 2), it can be deduced that the faster
the kernel mixes the smaller the variance, the better algorithm (in this sense). One
way to construct optimal MCMC kernels, i.e. close to iid sampling from πn, might
be to adopt the following adaptive strategy. We will assume that πn−1 ≈ πn, (which
can be achieved, by construction, in problems where MCMC will typically be used)
thus we can seek to use the particles at time n − 1 to adapt an MCMC kernel at
time n. Two strategies that might be used are:

(i) To adopt Robbins Monro type procedures so that the kernel is optimal in
some sense. For example, via the optimal scaling of Roberts et al. (1997)
for random walk Metropolis. That is, optimal scaling can be useful as it can
attempt to improve the efficiency of the MCMC kernel.

(ii) Attempting to approximate the posterior at time n using the particles at time
n−1; e.g. by using a mixture approximation in the MH independence sampler,
as proposed by Andrieu and Moulines (2006) for adaptive MCMC.

To reply to Lopes’ point (ii), the problem he mentions is quite difficult. In the
context of state-space models, the introduction of MCMC steps of fixed computa-
tional complexity at each time step is not sufficient to reduce the accumulation of
errors (i.e. does not make the dynamic model ergodic). Two algorithms combining
SMC and stochastic approximation procedures have been proposed to solve this
problem; see Andrieu, Doucet and Tadić (2005) and Poyadjis, Doucet and Singh
(2005).

The Backward Kernel

In response to Bickel’s comment on the use of the D−kernel procedure of Douc et
al. (2006) against the backward kernel procedure. In the context that the discussant
mentions, it would not be possible (except for toy problems) to use the D−kernel
procedure; it is typically impossible to compute pointwise a MH kernel and thus the
importance weights.

Variance of the weights

Lopes, in point (iii) and (iv) asks about the calculation of the variance of the weights.
Typically the variance of particle algorithms is estimated (even in the presence of
resampling) via the coefficient of variation (e.g. Liu (2001)) of the unnormalized
weight (suppressing the time index):

Cv =
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This is related, to the easier to interpret ESS, estimated as:
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which is a proxy for the number of independent samples. These are simply indicators
of the variance, and the latter quantity is used as a criterion to judge the degeneracy
of the algorithm; that is, a low ESS suggests that the algorithm does not contain
many diverse samples and that resampling should be performed. Note, the ESS
can be misleading; see the discussion in Chopin (2002). In theory, the resampling
step can make the analysis of the algorithm more challenging. The mathematical
techniques are based upon measure-valued processes; see Del Moral (2004) and the
references therein.

The Tracking Example

In response to Fearnhead’s comment about our prior. We selected a reasonably
informative prior; i.e. a Gaussian of mean equal to the true initial values and
covariance equal to the identity matrix. However, we believe that performance would
not degrade drastically if a more diffuse (but not very vague) prior was used. Indeed,
in the block sampling strategy described in Section 4.1, the particles at the time
origin would be eventually sampled according to an approximation of p (x1| y1:R) at
time R. In the scenarios considered here, the EKF diverged for a small percentage
of the simulated paths of length 100. However, this divergence never occurred on a
path of length R ≤ 10 which partly explains why it was possible to use it to build
efficient importance sampling densities. In scenarios with an extreme nonlinearity,
we do agree with Fearnhead that it is unlikely that such an importance sampling
distribution would work well. An importance sampling distribution based on the
Unscented Kalman filter might prove more robust.

The Probit Example

We begin firstly, by stating the objectives of this example explicitly and then to
address the points of the discussants one-by-one. The intention of presenting the
simulations were two-fold:

• To illustrate, in a static setting, that even when MCMC kernels fail to mix
quickly, that the combination of:

(i) A large population of samples.

(ii) Tempered densities.

(iii) Interaction of the particles.

can significantly improve upon MCMC for similar coding effort and CPU time.

• That the usage of the backward kernel (17) can substantially improve upon
the reversal kernel (20) in terms of variance of the importance weights.

In response to Chopin’s point on scaling. It seems that, given the scale param-
eters, using the idea of reweighting the tempered densities could be used, in order
to use the samples targeting those densities other than that of interest. However, in
this case, it is clear that this is not a sensible strategy for those densities far away, in
some sense (e.g. high variance models, as will be required to induce the tempering
effect in the algorithm), as importance weights will have high variance. In the case
that the scale parameters are to be determined, the problem of obtaining optimal
parameters (in terms of minimizing the variance of importance weights, functionals
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of interest etc) is very difficult as noted in Section 6 of Del Moral et al. (2006); some
practical strategies are outlined there.

Chopin’s point on artificial models is quite insightful and he has identified a
particular extension of the sequence of densities idea. We note that such procedures
have appeared previously, for example in (Hodgson, 1999). Such references may
provide further ideas in developing artificial models in different contexts and hence
new sequences of densities to improve the exploration ability of the sampler.

We hope that we have clarified, with our second point, to Fan, Leslie and Wand,
that indeed MH kernels could be used, but we were more interested in exploring
a different part of the methodology. As Fan, Leslie and Wand note, the initial
importance distribution could be improved, and they suggest a better approach
than we adopted; however, from a practical point of view it can be much easier to
implement our strategy (that is, the code has already been written for the MCMC
steps).

In response to Scott’s thorough comments on our probit example. The first
point, which is accurate is not so relevant, in terms of what we set out to achieve
with this example. One objective of SMC samplers, in static contexts, is somehow
to try to remove some of the difficulties of considering how and why MCMC kernels
do not mix. In essence, for many statistical problems (e.g. stochastic volatility
modelling (Kim et al. 1998; Roberts et al. 2004)) it can be very difficult to design
specific MCMC samplers, such that we have identified the difficulties of the ‘vanilla’
sampler and then dealt with them. As a result, SMC methods are an attempt to
produce generic methodology, which can improve over standard MCMC methods
without needing too much target specific design (although clearly, this can improve
the simulations), but also more freedom in sampler design. We hope that this was
demonstrated in our example.

The second point of Scott on the comparison with MCMC is not quite accurate.
As noted above, but perhaps not clearly enough in the paper, we wanted to demon-
strate that slowly mixing kernels can be improved upon using sequences of densities,
resampling and a population of samples. As a result, the ‘trick’ comment does not
take into account that the population and resampling steps allow the algorithm to
consider a vast amount of information simultaneously to improve the exploration of
the target. Whilst, if we wanted a realistic comparison we could have used a supe-
rior MCMC method; however, there can be examples where more advanced MCMC
techniques do not work well (see for instance Neal (1996) for examples with both
tempered transitions and simulated tempering). More simply put, if the algorithm
outlined by Scott mixes poorly, the intention is to use SMC to improve upon it. In
Scott’s example, we might achieve this via using sequences of densities with pseudo
prior distributions {pn(ζ)} converging close to Dirac measure on the set {1}.

The Stochastic Volatility Example

We respond to the comment of Fearnhead concerning the bias of our scheme involv-
ing re-proposing the particles. We begin by clarifying exactly what we do:

• If the ESS drops below 5% of the particle number, after a transition at time
n, we return to the particles (and weights) before the transition.

• We change (increase) the sequence of densities so that we perform SMC sam-
plers on increasingly more simple densities. Then we extend the state-space
and use SMC samplers to return the particles to the density of which we were
interested in sampling.
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In view of the above comments, the bias of this procedure can be thought of
as similar to ordinary, dynamic resampling SMC techniques. That is, resampling
upon the basis of the ESS. Whilst we do not have a theoretical justification for
this method (however, we anticipate that we can use the methods of Douc and
Moulines (2006) as in dynamic resampling) it provides a simple way to deal with
the problem of consecutive densities with regions of high probability in different
parts of the state-space - for a fixed O(N) complexity. It is not clear then, that we
would have fewer particles where the importance weight is large: firstly, the weight
is now different from the first scheme, secondly we would expect that our particle
approximation of πn to be fairly accurate, given the tempering procedure adopted;
there is no restriction upon the regions of the space that the particles are allowed
to visit.

In response to the suggested idea of adding particles to ensure that the ESS
does not drop too far. The first difficulty is when the consecutive densities are so
different that it may take a large number of particles (e.g. 10N) to ensure that our
algorithm does not degenerate; this may not be feasible in complex problems due
to storage costs. The second drawback that we feel that this procedure has, is that
it is not explicitly trying to solve the problem at hand; in effect it is a brute force
approach which may not work for feasible computational costs.
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