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Finite State-Space Hidden Markov Models

@ Mixture models cannot model dependent data; one straightforward
extension consists of picking for {X,} a finite state-space Markov
chain.

February 2007 2/28



Finite State-Space Hidden Markov Models

@ Mixture models cannot model dependent data; one straightforward
extension consists of picking for {X,} a finite state-space Markov

chain.
e We have say X, € {1, ..., K} with

Yn| Xp ~ 8X, <y>
but Pr(X; = i) =y, and
Pr(Xn+]_ :J| Xn = I) = pi,j-

February 2007 2/28




Finite State-Space Hidden Markov Models

@ Mixture models cannot model dependent data; one straightforward
extension consists of picking for {X,} a finite state-space Markov
chain.

e We have say X, € {1, ..., K} with
Yol Xn ~ gx, (v)
but Pr(X; = i) =y, and
Pr(Xni1=Jj| Xo = 1) = pij.

@ In this case, the probability to stay in a given state is geometric.

February 2007 2/28




Finite State-Space Hidden Markov Models

@ Mixture models cannot model dependent data; one straightforward
extension consists of picking for {X,} a finite state-space Markov
chain.

e We have say X, € {1, ..., K} with
Yol Xn ~ gx, (v)
but Pr(X; = i) =y, and
Pr(Xni1=Jj| Xo = 1) = pij.

@ In this case, the probability to stay in a given state is geometric.

@ Simple model (over)used in speech processing, DNA sequence
analysis, communications etc.
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Figure: Realization of 100 observations for K = 3, y; = —1,(7% =0.1,
gy =0,03 =1p; =103 =0.1with p;; =0.90, p;; = 0.05 for i # j. {Xn} is
displayed in red, {Y,} in blue.
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@ Given T observations y1, ..., y1 then the likelihood of the observations
is given by
p(y, . yT|0)

where 0 includes all the unknown parameters.
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@ Given T observations y1, ..., y1 then the likelihood of the observations

is given by
p(y, . yT|0)

where 0 includes all the unknown parameters.

@ The likelihood can be computed exactly using a simple recursion.

However, we limit ourselves first to the complete likelihood

p(yi.7.xi:7|0) = p(y1.7] 0, x1.7) p (x1:7| 0)
where

p(Y1T| 91X11T) - HZ]—:]_ p()/n| GYXH) ’
p(x1:7|0) = p(xa|0) TT1—o p (Xn| 6, x0-1) .
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@ Typically, one uses the EM algorithm to estimate the maximum
likelihood estimate of the unknown parameter 6.
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@ Typically, one uses the EM algorithm to estimate the maximum
likelihood estimate of the unknown parameter 6.

o Alternatively, given a prior distribution p (6) on 6, then we can
perform Bayesian inference and estimate

p(yi:1|0,x1.:7) p(x1:7|0) p (6)
P(Y1:T)

p (0 x1.7|y1.7) =
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@ Typically, one uses the EM algorithm to estimate the maximum
likelihood estimate of the unknown parameter 6.

o Alternatively, given a prior distribution p (6) on 6, then we can
perform Bayesian inference and estimate

p(yi7] 0. x7) p(x17|0) P (6)
P(}’1:T)

p (0 x1.7|y1.7) =

@ For mixture, there is no closed-form. Hence there is none for HMM.

The Gibbs sampler can be implemented for this class of models by
sampling iteratively from p (0| y1.7, x1.7) and p (x1.7|y1.7.0).

February 2007

5/

28



Extension to General State-Space HMM

@ It is important to realize that this class of models can be significantly
extended by taking a latent process { X, } which is not discrete-valued.
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@ A simple example correspond to the case where
Xy = aXo_140,Ve Vo < N(0,1)

Yn = Xn+0-any Wn Il\(/i (011)
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Extension to General State-Space HMM

@ It is important to realize that this class of models can be significantly
extended by taking a latent process { X, } which is not discrete-valued.

@ A simple example correspond to the case where

Xy, = aXp_1+0,Va V, & N(0,1)
Yo = Xp+owW, W, < N(0,1)
o Clearly, we are in the case where {X,} is a Markov process
Xl Xn—1 ~ fy (Xn| Xp—1)
and Y,| X, ~ gp (y¥n| X») where

I(Q(Xn|xnfl) = ./\/‘(Xn;lXanl,U'e),
g (vl %) = N (Ynixa 05) .

and 6 = (06,0'3,0'%‘,) }
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@ Suppose you have
Y, =g (t)) + W, where W, ~ N (0,(72)

with 26 (1) )
g (t)  dB(t .
w2 g where B (t) Wiener process

with B (0) =0 and var (B (t)) = 1.
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@ Suppose you have
Y, =g (t)) + W, where W, ~ N (0,(72)

with )
d°g (t dB (t
g (t) =T () where B (t) Wiener process

dt? dt
with B (0) =0 and var (B (t)) = 1.
e With initial conditions such that (g (t1) dg (t1) /dt) ~ N (0, kh)

Y, = (10)X(ty) + W,,
6373 82/2 ))

1 4,
X (ty) = <0 1 )X(tn1)+V,,, V,,~N(O,<52/2 5

where 6, = t, — t,—1.
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Figure: Bearings-only-tracking data
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@ Consider the coordinates of a target observed through a radar.

Yn

O O O

O O = =

1

—n

tan~! <X

X

O = OO

oy [ N
0 X iid.
1 Xgill + Vi, Vi < N(O'Z‘V)|
n
1 .2
anl

+ Wo, W, N (0,02).

where the process {Y,} is observed but {X,} is unknown.
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Figure: Four stock prices
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Figure: Log-return of a stock price
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o Consider the log-return sequence of a stock then a popular model in
financial econometrics is the stochastic volatility model

X, = aXp_1+0V, where V, < N (0,1)

Y, = Bexp(Xy/2) W, where W, =& A (0,1)

where the process {Y,} is observed but {X,} and 6 = (a,0, B) are
unknown.
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o Consider the log-return sequence of a stock then a popular model in
financial econometrics is the stochastic volatility model

X, = aXp_1+0V, where V, < N (0,1)

Y, = PBexp(X,/2) W, where W, " A (0,1)

where the process {Y,} is observed but {X,} and 6 = (a,0, B) are
unknown.

@ We have

ﬂ?(Xn|Xn—1) = N(Xn;[XXn_l,O"%),

g9(Yn|Xn) = N(yn;O,,Bzexp(xn)).
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@ Many real-world problems can be rewritten as
Xn‘anl ~ fG(Xn’anl)y XlNV(Xl)y
Yol X0 ~ g (¥nlxn)

where 6 ~ p ().
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@ Many real-world problems can be rewritten as
Xn‘ Xn—1 ~ fG (Xn’ anl) , X1~ U (Xl) )
Yol X0 ~ g (¥nlxn)
where 6 ~ p ().

@ In a Bayesian framework, given yi.7, we are interested in estimating
the posterior

p(x1.7,0|y1.7) < p(y1.7|6, x1.7) p (x1:7] 0) p ()

where ;
p(yi:7] 0, x1:7) = TTo=1 80 (¥n| Xn)
p(x7|0) =1 () TT =2 fo (Xn| Xn-1) -
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@ Assume you have
Xy = aXp_1+0, Vi V, < N(0,1)
Yo = Xo+0wWe W, < N(0,1)
where X; ~ N (0,1), a ~ N (0,03), 02 ~ZG (%,12) and
o ~IG (3. %)
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@ Assume you have

Xy = aXp_1+0, Vi V, < N(0,1)

Yo = Xo+0wWe W, < N(0,1)
Y

(
where X; ~ N (0,1), NN(O,U%)v oy, ~1IG (02*0 70) and
o ~IG (3. %).
@ Gibbs sampler based on
p (Xk‘YI:T:X—k:“vO'\%vU-Ev) P (‘73"73})’137')(117'“) '
P(“|Y1:T:X1:Tv0'3v0-a/) .
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@ Wehaveforl < k< T

p (x| y1.7. Xk, &0, 05, 05,

) X g(yk|xk,(73,)f(xk|xk,1,oc,(7€)
Xf(Xk+1|Xk,Dé,0’3)

N (Xk; mk,O’i)

where
2 y,f Xk+1 + Xk—1
mg = 0 724—0672 ,
oy o?
1 a’+1
2 T 2 T
oy oz, o’
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@ Wehaveforl < k< T

p (x| yrr xo 00, 0%) o g (vi|xk o) £ (x| X—1, 2, 07)

X f (Xk+1|Xk,Dé,0’3)

= N (Xk; mk,O’i)

where

2 y,f Xk+1 + Xk—1

mg = |l tae——F— |,

oy o?

1 a’+1

2 T 2 2

oy o2, o’

@ We have

p (0’3.0’%‘ )/1:T,X1:T,(X) =P ((73‘ Xl:T.‘X) p (0124/|YI:T:X1:T)
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@ We have

p(od|xur o) < p (xur|a,o7) p(07)
X

2
1 _ Liluwac1)’) 1 %
ol exF’( 27 o0 &P T 2oy
2
— 2. v+T-1 '70+ZZ:2(Xk—tXXk,1)
=1G |(0oy; 25—, >
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@ We have

v

p(oy|xuT,a) < p(xurla,o})p(07)
X

2
1 Yo O—axi—1) 1 _
711 €XP ( 202 70 XP\ 7202
2
_ 2. 0o+ T—1 YotLio(xk—axc_1)
=1G |(0oy; 25—, >

@ We have

p (02| yir. x.7) < p (y.7| x:7.0%) p (02,)

w
T 2
1 _ koo W=xi)” | 1 o
o S exp ( 202 70 P T 207

_ 2. v+ T Yot iiey (k—xi)
76 (o3 g7, sy
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o Finally we have
p(a|xiT,07) o« p (xuT|a,07) p(a)

P(“|)/1T X1:T (72\,,0' )

2
1 T a—axk ) _ e
202 exp 203
:N(zx;ma,ai)
where
T—1_2
1 1 Y1 Xk
2 2 2
(7'0é 0'0 oy
T
2
my = 0, ZXka,1
k=2
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Figure: 100,000 samples after 10,000 burn in with « =0.9, 0y, =1land o, =1
for T = 100. Approximations of p (a|y1.7), p (02| y1.7) and p (02| y1.7)
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@ We have

Xn = AXn 1+an VnNN(O,Z),

Xl
Y, = tan~ (X2>+W,,, W, ~ /\/(O(T)
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@ We have
X, = AX,—1+V,, VHNN(O,Z),

Xl

Y, = tan~ (X2>+W,,,W N(OO’)

@ Assume for sake of simplicity that only x;.7 are unknown, we want to
estimate

P(XlzT\)/LT)-
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@ We sample from the full conditional distributions

p (] yim o xk) o< p(x] xk) & (il xx)
o (X1 | xk) (x| xk—-1) & (yi| xic) -
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@ We sample from the full conditional distributions

p (Xl yrT o xk) o p(xlx—k) & (yk|xk)

o f (x| xi) £ O] xk—1) & (yk| xx) -

o We have
p(Xk|X_k> X f(Xk+1|Xk) f(Xk’Xk_l) :N(xk;mk,Zk)
where

o= AR A
me = Ty (Z7 A% 1+ ATE )

February 2007
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@ To sample from

p(Xk‘)/LTyka) S P(Xk|X7k)g ()/k| Xk)

we can use rejection sampling as you can sample from p ( xx| x_x) and

) )

g (yilxk)

IN

1

\ 2o

NoY

exp <— (yk —tan~! <X
X

1
Zk

2
k
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@ To sample from

p(Xk‘)/LTyka) S P(Xk|X7k)g ()/k| Xk)

we can use rejection sampling as you can sample from p ( xx| x_x) and

1 N
g (yk|xk) = Nors exp <— (yk —tan™! <§%>) / (2(72)>
1
2mo

<

@ Gibbs sampling can be implemented even for non-linear models
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Figure: MCMC for state estimation using bearings-only-tracking data. Mean and
credible intervals for p (xp| Y1:n) .
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o We have
X, = aX,_1+0V, where V, = A (0,1)

Bexp (Xn/2) W, where W, " N (0,1)

<
I
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@ We have

Xy = &Xo_1+0V, where V, <& N (0,1)
Y, = Bexp(Xa/2) W, where W, =& A (0,1)

e Prior model: & ~ U (—1,1), 0> ~ZG (%, 22) and B~ ZG (L. ).
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@ We want to sample from

p (Xk|X—k,y1:Tr‘Xv02uB) x f (Xk|Xk—ly€K,02)
xF (xes1| xe &, 0%) g (yie| Xk, B)

where

p(Xk|X,k,Dé,0'2) X f(Xk|Xk,1,lX,0'2)f(Xk+1|Xk,Dé,0'2)

2
N N(Xk:mk:“(xk_1+xk+l),0i_ it )

1+ a2
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@ We want to sample from

p (Xk|X—k,y1:Tr‘Xv02uB) x f (Xk|Xk—ly€K,02)
xF (xes1| xe &, 0%) g (yie| Xk, B)

where

p (x| x_k a,0%) o< (x| xu—1, &, 0%) F (xup1| xk, o, 02)

. ] _OC(Xk—1+Xk+1) 2 o?
= N(xk,mk— 1—}-062 Ok .

@ We have

log g (yi| Xk, B) = =% — 24 exp (—xk)

2
Xk Yk

< % 2 (exp (—my) (14 my) — xexp (—my)) [as exp (u) > 1+ u
= log g" (k| xk. B)
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@ We propose to sample from p (xk| Xk—1, Xk41: Vi, &, 02, ,B) using
rejection by sampling from where

q(x) o p (x| xow 2, 0%) g% (yiel x, ,3)
= /\/(Xk;mk-|-2"[’3 1},(7%().
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@ We propose to sample from p (xk| Xk—1, Xk41: Vi, &, 02, ,B) using
rejection by sampling from where

q(xk) o p(xklxka,0%) g (yk|x B)
2

2
= N(xk mk—i—a [yexp( mi) —1} ,(7,%) .
B,
@ Then we accept the proposal with probability

g (yx|x. B)
g (yklxk, B)
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@ We propose to sample from p (xk| Xk—1, Xk41: Vi, &, 02, ,B) using
rejection by sampling from where

q(xk) o p(xklxka,0%) g (yk|x B)
2

2
= N(xk mk—i—a [yexp( mi) —1} ,(7,%) .
B,
@ Then we accept the proposal with probability

g (yx|x. B)
g (yklxk, B)

@ Update of the hypeparameters are straightforward.
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Figure: UK Sterling/US dollar exhange rates from 1/10/81 to 28/6,/85: 200,000
samples after 20,000 burn-in. Approximations of p (&|y;.7), p (02})/1:7—) and

p(Blyi.T)-
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@ These Gibbs sampling algorithms are simple but once more they are
not very efficient as we sample typically p (x| y1.7,x_k, @) then
p (O] yr.T,x1.T) -
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@ These Gibbs sampling algorithms are simple but once more they are
not very efficient as we sample typically p (x| y1.7,x_k, @) then
p(0lyr.7 x.7)-

@ We would like to be able to sample all the states variables jointly; i.e.
sampling iteratively from p (x1.7|y1.7,6) then p (0] y1.7, x1.7).
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@ These Gibbs sampling algorithms are simple but once more they are
not very efficient as we sample typically p (x| y1.7,x_k, @) then
p (O] yr.T,x1.T) -

@ We would like to be able to sample all the states variables jointly; i.e.
sampling iteratively from p (x1.7|y1.7,6) then p (0] y1.7, x1.7).

o Generally sampling exactly from p (x1.7| y1.7,0) is impossible except
for HMM and linear Gaussian models.
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@ All the models we have seen rely on the ability to sample from some
full conditional distribution 7t (6, |6_x).
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@ All the models we have seen rely on the ability to sample from some
full conditional distribution 7t (6, |6_x).

o Although it is possible in numerous models, there are also numerous
models where one CANNOT do it.
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@ All the models we have seen rely on the ability to sample from some
full conditional distribution 7t (6, |6_x).

o Although it is possible in numerous models, there are also numerous
models where one CANNOT do it.

@ In such cases, alternative methods relying on the Metropolis-Hastings
algorithm have to be developed.
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