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A Survey of Convergence Results on Particle
Filtering Methods for Practitioners

Dan Crisan and Arnaud Doucet

Abstract—Optimal filtering problems are ubiquitous in signal ~ say, larger than 4. Moreover, the rate of convergence of the ap-
processing and related fields. Except for a restricted class of proximation error decreases as the state dimension increases.
models, the optimal filter does not admit a closed-form expression. That is. these methods suffer from the so-called curse of dimen-

Particle filtering methods are a set of flexible and powerful . litv. Eollowina th inal bv Gordon. Sal d. and
sequential Monte Carlo methods designed to solve the optimal Sionality. Following the seminal paper by sordon, salmond, an

filtering problem numerically. The posterior distribution of  Smith introducing the bootstrap filter/sampling importance re-

the state is approximated by a large set of Dirac-delta masses sampling [19], there has been a surge of interest in particle fil-
(samples/particles) that evolve randomly in time according to the tering methods, which are also known as sequential Monte Carlo
dynamics of the model and the observations. The particles are (SMC) methods. These methods utilize a large nuniBenf

interacting; thus, classical limit theorems relying on statistically d | ticl ¢ tth teri b
independent samples do not apply. In this paper, our aim is to 'andom samples (or particles) to represent the posterior proba-

present a survey of recent convergence results on this class ofbility distributions. The particles are propagated over time using
methods to make them accessible to practitioners. a combination of sequential importance sampling and resam-

Index Terms—Bayesian estimation, optimal filtering, particle fil- p!ing steps. The resamp"”g step statistically rr_1u|tip|ies and/or
tering, sequential Monte Carlo, state-space models. discards particles at each time step to adaptatively concentrate
particles in regions of high posterior probability. These methods
are very flexible and can be easily applied to nonlinear and
non-Gaussian dynamic models.

ANY models in signal processing can be cast in a state-In particle filtering methods, the particles (samples) interact

space form. In most applications, prior knowledge of thend, thus, are statistically dependent. Consequently, classical
system is also available. This knowledge allows us to adoptanvergence results on Monte Carlo methods, based on inde-
Bayesian approach, that is, to combine a prior distribution fpendent and identically distributed (i.i.d.) assumptions, do not

the unknown quantities with a likelihood function relating thesgpply. Therefore, it is useful to ask the following questions.
guantities to the observations. Within this setting, one performs
inference on the unknown state according to the posterior distri-
bution. Often, the observations arrive sequentially in time, and
one is interested iestimating recursively in timéhe evolving
posterior distribution. This problem is known as the Bayesian or _ .
optimal filteringproblem. The posterior distribution only admits » Can We, give any large deV|at|o.n results?
an analytical expression for few special models, including linear 1© & cértain degree, these questions have recently been an-
Gaussian state-space models (Kalman filter) and finite stafvéred. Of all the algorithms available, the most extensively
space hidden Markov models (HMM filters). However, in man?tudled_ls the pootstrap filter/SIR, WhICh is a_llso known as the
realistic problems, state-space models include elements of r;gqgractmg particle systems/resolution algorithm; see [8]-{10]
linearity and non-Gaussianity that preclude a closed-form ra r_ece_nt overview of results. In [5] and [6], a rigorous treat-
pression for the optimal filter. For over 30 years, many approR1€ntis given to awhole class of SMC methods. However, most
imation schemes have been proposed to tackle this problém,hese results ha_vg been publlshed in the probab|l|tyl|_terature.
such as the extended Kalman filter and approximations usihg€Y €an prove difficult for practitioners to read and, indeed,
Gaussian sums; see [1] and [17]. Unfortunately, in many cas8E Often unknown to them. The aim of this paper is to present
these suboptimal methods are unreliable. Deterministic num@rsUrvey of the results a\{a|lable |r1 the I|.te£ature to make them
ical integration methods have also been developed. AIthouﬁﬂderStandable and app!lcable tq real-life” problems. )
they perform well when the state is low dimensional [20], they 1n€ rest of the paper is organized as follows. In Section I,
are very difficult to implement if the dimension of the state i<Ve SPecify the model and the optimall filtering problem. In Sec-
tion lll, a generic particle filtering algorithm is described, and its
different steps are briefly detailed. Section IV discusses almost
Manuscript received February 24, 2001; revised November 2, 2001. The ﬁme (weak) convergence of the empirical distributions toward

I. INTRODUCTION

» Does the particle filter converge asymptotically (that is as
N — o) toward the optimal filter and in what sense?

» Do standard Monte Carlo rates for convergence apply?

* Is there an accumulation of error with time?
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Il. OPTIMAL FILTERING and the recursion

A. G | State-S Model 70:t)t—1(dTo:¢)
sere] Sateopace 0. e > ) = Toi—1|t—1(dwo:r—1)K(dwi|xs_1) Prediction
Let (2, F, P) be a probability space on which we have de-

fined two real vector-valued stochastic proceskes {X;, t € mostfe Aozt o

N} andY = {Y;, t € N\{0}}. The proces« is usually called _ [/ 9wl oo (daos)

the signal process, and the proceksis called theobservation Rz o ’

process. Let,, andn, be the dimensions of the state space&lof - g(ye|we) Tt -1 (dose) Updating.

andY’, respectively, and lg8(R™) be the Boreb-algebra oriR™.
ThesignalprocessX is a Markov process of initial distribution
Xo ~ wu(dzo) and probability transition kernek (dx|z;—1)

One typically focuses on the marginal distribution, (dz, ). In
this caser;(dz,) satisfies the recursion

such that Ty)e—1(dwy)
= / Te—1jt—1(dxs—1) K (dwy|xi_1)  Prediction
Pr(X, € A|X\_1 = 21_1) = / K(dz|zi_1), A € BR™). R
A 7rt|t(dxt) (1)
) . . —1
The o_bserv_atlc_)naare conditionally independent &f and have _ U g(yt|$t)7rt|t—1(d$t):|
marginal distribution R7
“g(ye|we)meje—1(dae) Updating.
Pr(Y; € B| X, = x;) = / g(dy|zy), B e B[R™). If v is a measure; is a function, anc is a Markov transition
B kernel! we use the standard notation
For the sake of simplicity, we will assume here that (v, ©) A /<PV
K (dz¢|x—1) andg(dy,|z,) admit densities with respect to the ’ ’
Lebesgue measure. This means tBatX; € duy|X: 1 = - N -
tr1) = K(dz|ri1) = K(z|ws)de, and Pr(Y, € VvE(A) = [ vidz)E(Alr)
dye| Xe = @) = g(dye|we) = g(we|we) dye. oo 2 =4
Example: Let us consider the scalar dynamic model S¢(z) = [ E(dz|z)e(2).
Using this notation, it is easy to see that for any functjan
Xe=f(Xe1) + Vi, R™* — R, the recurrence formula (1) implies that
Yy =g(X:) + Wy (Te)e—1, ©) = (Te—1pp—1, K@) Prediction

= -1 y vy
where{V, };cn and{W, },cn\ 0} are both independent identi- (Tojes ) = (tht—lv_ 9™ (Te—1, 99) Updating. N
cally distributed (i.i.d.) sequences and are mutually independ&rtcept for a very restricted number of dynamic models, it is
with Pr(V; € C) = [. Py(dv) = [.pv(v)dv (C € B(R)) impossible to evaluate equations (1) or (2) in a closed-form ex-
g C C .
andPr(W, € D) = fD Py (dw) = fD pw(w)dw (D € pression.

B(R)). Then, one has Example: For a dynamic model such that,,_;(dx;)
' and 7, (dx,) admit some densities denotgg,|y:..—,) and
K(z|ze1) =py (@ — f(ze_1)) p(z¢|y14), then (1) reads
9(ye|ze) =pw (yr — g(z4)). p(zelyre—1) = / plrea|yra—1) K(z¢|zy_1) doy g,
R=

g(yelze)p(aeyr:e—1)

T R =
B. Bayes' Recursions p(@|yie) /

9(yelze)p(ze|yre—1) da
We will denote byX . 2 (Xk, Xig1, ..., X;) andYi, 2 Rt
(Y, Yit1, ..., Y7) the path of the signal and of the observ
tion process from timé: to time [, respectively. In addition,
A A

T = Ty Thtls ---» 1) ANdyra = (Wi, Y1, - -, 1) are R
generic points in the space of paths of the signal and observa-_ / o { Kz |z =) des | da
tion processes. Define the probability distribution as R7e Pl-1fyi-1) R7e (@elzi—)p(we) dat -t

a@nd (2) reads

P($t|yl:t—1)¢($t) dx,

7rk:l|rn(dxk:l) : P(Xkl S dxk:l|yi:nl = yl:rn)- /p($1|y11)4p($1) dxt
Bayes’ theorem allows us to propagate over time the joint and 9(uelze)p(eelyre—1)o(ze) doy
marginal filtering distributionsro., |, (dzo.:) andmy, (dz ). That = JBre
is, at timet, the joint distributionro..; (dzo., ) satisfies / (el plasyr_i) dory
R

=(-]): (R, B(R™*)) — [0, 1] is a Markov transition kernel oR™= if,
7oe)e(dwo:e) o< p(dxo) H K(dxp|zr—1)9(yslzr) foranyx € R™=, =(.|z) is a probability measure and, for arly € B(R"=),
kel =Z(A[) is a measurable function.
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A particle filtering method is a recursive algorithm that pro!
duces, at each timg a cloud of particles whose empirical mea-
sure closely “follows” the distribution,. In the following sub-
sections, we describe a general algorlthm that generates, at tj
t(forallt > 0), N pamcles/path:{a:t ¥ | with an associated
empirical measure},

PARTICLE FILTERING

N
' Al
al(dwy) = ¥ > 8o (de)
=1

that is “close” tory,; 6. (dx;) denotes the delta-Dirac mass lo-

cated inz. The algorithm is recursive in the sense t{"mif) ieq
is produced using the observation obtained at tiraed the set
of particles{='”, 1% | produced at time — 1 (whose empirical

N “ ”
measurer,” ,, , was close” tor,_yj¢—1).

A. Basics

We present here a slight modification of the standard
bootstrap filter algorithm described in [19]. Given a set of

particles {a:ﬁ)l}’\’ distributed approximately according to
Ti_1j—1(dz,—1), one samplesz, s ~ Wi\illtfl (dry) =
(1/NYXN_ K(dz|z?,).2 The new particlegz/"}Y, are
distributed approximately according tq,_1(dz;) [see (1)].
Their empirical distribution

N
A
INZ<5<>d$t)

is an approximation of,|,_; . If one plugs this measure into (1),
we get the Monte Carlo approximation ofj;_ (dx.)

.

~ N
7rt|t 1(dy)

9(yelz) 7], (de)

~N A
Wi\lt(dxt) =
/R ‘ 9(yelee)T £\|t  (dxe)
N
Zg (ut x§ )) 6i§i)(d$t)
_ =1
= < ‘
> g (yt 579)
i=1
that is
fri\lt (dzy) = Z wt( 8. 3 y(day), Z wtZ =1 3)

wherew” « g(y|3$") are the so-callednportance weights
The distribution7 Y, (dx,) is a weighted sum of delta-Dirac
masses.

The aim of the resampling/selection step is to obtain an “u
weighted” empirical distribution approximation

Z5<> (dxy)

by duplicating particles, $ having high weights and discarding

7rt|t (dxy) =

the others to focus on the zones of high posterior probabilities.

2In the bootstrap filter, one samples fraifi’ ~ K (da,|2",).
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This is typically achieved by resampling times from the em-
pirical dlstrlbutlomr n .(dx.). The resulting particles are approx-
imately distributed according ta;, and one can thus iterate the
procedure to obtain an approximationzQf ;1.

B Algorithm

A
We also assume that we can sample exactly frgm= 1 at
t = 0. The algorithm proceeds as follows.
At time t = 0.

Step Q Initialization
* For¢=1,..., N, sample a:éi)
t=1.
At time t > 1

Step I Importance Sampling step

, N, sample a:()~7rt 1t—1 K(dxy).

1 . N,‘ evaluate the normalized
importance weights wt(Z

(v ‘ ) Zw@)_l

Step 2  Resampling step

~ 7olo(dzo) and set

e Fori=1,.

e For 1+ =

5 e

w g

4)

s Fori=1,..., N,sample x( D tht(dxt)

This particle fllter is thus nothing but a simulation-based
approximation of the recursion (1). In the sampling step, one
obtains a set of particle{si'f)]»ﬁ\;1 whose “unweighted” empir-
ical distribution#}, ,(dx) is a Monte Carlo approximation
of my,—1(dz,). The weighted empirical distributiof), e (de)
approximatesr,(dz;). The resampling step is a (crucial)
algorithmic step that produces an unweighted approximation

t|t(d37f) of tht(dx,)

C. Extensions

The algorithm we have described is very intuitive and easy to
use. As we will show later, it produces an approximation that
converges (in a given sense) toward the “true” optimal filter
under minimal assumptions. However, this algorithm suffers
from several drawbacks in practice.

1) Variation of the Importance We|ghﬂ$ can be inefficient
ifthe distribution of the particle&z\” } V., , given approx-
imately bym,,_y = m_q:—1 K, is “far” from m,, in the
sense that the ratio (i.e., the Radon—Nykodym derivative)
of these two distributions

tht(dxt)

—— x g(y|x
7Tt|t—1(d37t) g( t| t)

generates importance weightgw/ 1Y, (w!”
g(yt|a~:§i))) with a high variance.

2) Variation in the Resampling Steplo produce the
unweighted measure approximati t|t(dxt) from
tl‘t(da:t) the algorithm proposed above samplds

times fromwi\lt(da:t). In effect, it generatei:\ft(i) copies

of the ith particle, where theNf” are distributed ac-
cording to a multinomial distribution with parameters
(N; wP, L w™). ConsequentlyE(N) = Nw®

x
n-
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and va(Nt(i)) = Nwt(i)(l - wt(i)). Although this pro- (6) [where we assume that this ratio is well defined and that
duces an “unbiased” approximationbfl’t(da:t), i.e., for  [w(zi_1, ¢, y)dy: < o). Let us define

any functiony
FYL ] = (o)

E [(Wﬁ;, o)

it also introduces a large Monte Carlo variation.
We now present the sequential importance sampling/resam- po:t|t(do:t)

pk:l|rn(dxk:l) é Pr(Xk:l S dxk:l|yi:nl = yl:rn)-

At time ¢, the joint distributionpg., |, (dxo..) satisfies

pling algorithm described in [14]. This algorithm addresses both o
problems. o p(dxo) H K(dzy|owp—1, yr)w(Tr—1, Tr, Yr)
1) Alternative Sampling DistributionsTo agggess the first ’“fl
problem, one idea is to sample the particles”’}Y, from :
Wi\ilh—lK instead Ohtj\ilh—lK’ ie. o p(do) H K (dzk|zk—1)9(yk|zr) [from (6)).
k=1
3651) ~ Wt]\im_lf( Thus, althougtpg.i—1 # 7o:tt—1, ON€ hagg.¢¢ = 7o.4pe fOr

anyt, and thus, in particular, one hag, = ;. We will give
where the new kemnek is chosen such that the distribution oft NUMber of proofs for the standard algorithm involving condi-
these particles (which approximates. ;,_, K) is “closer” to  0NS ONK (dx¢|z—1) andg(y|x¢). The above shows that they
. than ism,_1;,_, K. Several choices are discussed in [157e valid for the algorithm presented here if similar conditions
and [16]. To account for the effect of the discrepancy betwe@h® imposed o (dz; |z:—1, yi) andw(z,—1, ¢, yr).3

m_1r—1 K andm,;, we use the expression If K (ds|wi—1, yr) @ndw(a—1, x4, y) have “better” theo-
retical properties thai (dz;|x;—1) andg(y: |z ), such as better
mixing properties OfK(dxt|xt_1, ye) or flatter likelihood
. w(z—1, x1, y¢), then the algorithm will perform better. That
_ W@y, 2 o) K(dwefe1)me1-1(d2e-1) (5) s, designing efficient particle filtering methods is equivalent to
/w(a:t_h 20, y) K (dw| a1 )y 11 (dwi_y) finding an app.ropriate.dynamic modell thgt has: gqod Fheoretical
properties while keeping the same filtering distributions. The
resampling step is a generic step that is independent of the
dynamic model considered.
9yl K (de|ae_1) Remark 1: Recen_tly, the_ intrpdu_ction of _Markov chain
(6) Monte Carlo steps in particle filtering algorithms has been
suggested; see [18]. This fits in this framework as it can simply
be interpreted as the introduction of a new evolution equation
in the dynamic model; see [3] for detalils.
2) Resampling Schemedo address the second problem,
we note that the aim of the resampling/selection step is just to
obtain an “unweighted” empirical distribution approximation

) (dz,) of the weighted measurg,}, (dz,) by associating

a number of copies/offsprin@ft("’) € N with each particle
and, marginalizing over, ;, we get the expression (3) for{jti)}g\;l, That is, one wants
ﬁﬁ;(dxt), Wherewt(”) % w(azggl, 5757’), Y ).
A different interpretation of this algorithm that aids under- N
standing why some particular algorithms perform better than Wﬁ;(dwt) =Nt Z 6 i (dxy)
others can be obtained by definingraw dynamic modeduch =1
that Xo ~ p(dzo) and

7Tt—1:t|t(d3?t—1:t)

where

w(Xp_1, T, ) X -
T K(d$t|$t—1a yt)

Thus, replacingf((da:t|a:t_1)7rt_1|t_1(da:t_l) in (5) by its em-
pirical approximation

N
1
N Z 630&{_)17505{)(6&1}_1, d.’L’t)

i=1

N
:N_l Z Nt(z)éiii) (d.’L’t)
Pr(X, € Al Xy 1 =21, Yo =) N =
— [ Koo w. A€BRY) @) 3 w80 (de) = 7 (dee)

A i=1

Pr(Y, € BIX,—1 = 2121, Xo = a4)

_ / w(z, 1, 7, dyy) B € BR™). 8) with Zf\;l Nt(i) = N. Recently, many schemes have been pro-
B T ’ posed in the literature to deal with these problems. Most of these

| 7 f( d . Mark t iti k | d 3This is true because we assume the observations to be fixed in this paper. For
n (7), ( xt|xt—lv yt) Is a Markov transition Kernel de- ,nqom observations, further integrability assumptions need to be imposed on

pendent ony,, whereas in (8)w(xi—1, xt, y) IS given by K(dw|r.—1, y.) andw (w1, 2, ys).
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algorithms ensure th£(Nt(i)) = Nwt(i), as for the multino- It is easy to check that althoughny . ¢V («) = «, for all

mial sampling procedure, but have a lower varianceéNé?). a € [0, 1], one has

Algorithms achieving the minimum variance are presented in . F N
g g P lim EN (%) lim ¢ (c]\ (%))

[4], [6], and [21]. It also possible to use a deterministic algo- Noo N oo
rithm such at the one described in [21]. ) N1 1
= lim ¢ | =+ —
N—oo <2 2N>
IV. ALMOST SURE CONVERGENCE —1+4 % —k (%) )

From now on, we will assume that the observation process
is fixed to a given observation recol§ = ;, ¢t > 0. All the
convergence results will be given under this condition.

Hence, it is not true that successive small perturbations of a
function still amount to a small perturbation. In order to have
limpy_ o0 k{\t = k1.4, we need a stronger type of convergence
A. Preliminary Remark for ¢¥. We need-" to converge in a uniform manrfeto the

. identity functions. In particular, we need” to satis
Before we analyze the convergence of the algorithms pre- y tinp fy

sented previously, we make a few preliminary remarks that will Foralley, e € E such that
enable us to understand very quickly why they converge and
what conditions need to be imposed. We start with an abstract
formulation, but gradually, we identify its elements with thosg yngition (9) is equivalent to

comprising the filtering problem. L&t=, d) be a metric space,

and on this space, I€t;)2, and(b;)72,; be two sequences of Foralley, e € E such that
continuous functions,, b;: £ — FE. In addition, lett; andk;.;
be two other sequences of functions defined as

lim ey =e= lim c(ey)=c. 9)
N—oo N—oo

Alim ey = e = Alim d(c™(en), exn) =0.  (10)

Hence, we have the following lemma.
Lemma 1: Let as, by, kt, k1., ande™ be defined as above.
Then, if¢" satisfies (9), we have

ktéatObh kl:téktokt—lo"'okl

where the operationc” denotes the composition of functions,
i.e., ar o by(e) = a(b(e)). Obviously, bothk; and %y, are lim kY =k and lim &Y, = ki (11)
continuous. Nooo oo '
For the stochastic filtering setup, the sp&ewill be P(R™ ), M N N .
oreover, bothk;" andky), satis
the space of all probability measures over thedimensional ¢ Lt fy

Euclidean spacg™, b, will be the map that takes, _;;_; into lim ey =ec= lim kN (en) =ki(e)
H i N—oo N—oo
7t|t—1, anda, the map that takes,,_; into 7,. Thus,k; will ] N
be the transformation, _y;,_; — m;, andk., will be the Jim A(en) =kie). (12)

transformationrg g — 7.

We perturbk; andk:., using a (not necessarily continuous) __Proof: Since (12) implies (11) [takey = ¢ for all V' in
functionc, ¢¥ E — E in the following way. (12)], we only need to prove (12). Ag is continuous, we have

EN =N oagoc oby, BN, = kN okN o okl 15%0 N =¢6= J\llféo bi(en) = bu(e)- (13)
In the context of stochastic filtering;™ will be the map that Then, using (9), we get that
takes a measure to a random sample of 8izef the measure. . . N
We next assume that @6 increases, the perturbations become i be(en) =bi(e) = lim ™ (bilen)) = bile) (14)
increasingly smaller. In other words, we assume thatcon-

verges ta;, which is the identity function o’ [i(«) = «, for and, sincay, is continuous

all o« € FJ]. A natural question to ask is whethkef’ converges lim ™ (by(en)) = bile)
to k; andk®Y, converges td:;.,? It turns out that the answer is - Neoeo N
“no,” as the following example clearly demonstrates. = L ay(c” (be(en))) = ar(bi(e)) (15)

Example 1: Let E = [0, 1] andd be the usual metric on ) )
[0, 1], d(c, 8) = |o — A]. Leta, andb, be equal to the identity @1d, @gain using (9), we get that

functioni on E, a;, = b, = i. Hencek, is the identity function . N
| ) . . l bi(en))) = a(b
as well. We modifyk, as above using the following continuous ainax(e (Bi(en))) = ai(bi(e))
piecewise linear perturbatiar . = lim N (a(N (belen)))) = a(be(e)).  (16)
( a4 27 if v € [07 1} Finally, by putting together (13)—(16), we prove that
N 2 lmy—oo &Y (en) = ki(e), which, in turn, implies by in-
, 11 . 11 1 duction (overt) thatlimpy_.o. k1%, (en) = k1.e(e). [ ]
CA (Oé) = 1—(N—1)‘§+W—Oé s if v € <§7§+N> ( ) - 1.t(61\) 1.t(6)
4e™ converges uniformly to the identity functianif, by definition, for all
a—1 ) 1 1 e > 0 there existsV () such thatd(c¢™(e), i(e)) < ¢ forall N > N(e).
o+ N_2’ if € [— + —, 1} . Uniform convergence is stronger than (9), but we only need (9) for Lemma 1 to
. - be valid.
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B. Application to Optimal Filtering Feller, i.e., it has the property that fgra continuous bounded

In the following, we will relate the previous proof to the stofunction, K¢ is also a continuous bounded function

chastic filtering problem. The convergence of the particle filter
algorithm will be shown to be a direct corollary of Lemma 1.
1) Space of Probability Measures OveR™=: Let
E = P(R"™) be the set of probability measures over th
ng-dimensional Euclidean spac®"» endowed with the
topology of weak convergence. In this topologyify )37_, is
a sequence of probability measures, then we sayithaton- . o
verges (weakly) tq, € P(R™=) and writelimpy_co uny = 1 Algréo(bt(]/Ar)’ v) = Algréo(l/Ar7 K¢)

Vo€ Cb(RnI) = Ky € Cb(RnI). (29)

If imy ..o vy = v, then, by definitionlimy .. (Vn, @) =
?l/ <p Vo € Cu(R™). Hence, limy_oo(vy, Kp) =
(v, K), Yo € Cp(R™) and

if, for any ¢ € Cy(R™) =(v, Ko) = (be(r), ), Vo€ C(R™).
Algréo(“Ar’ ©) = (1, ¢ We now define the applicatiom,. Let a;: P(R"*) — P(R"*)

be a mapping such that for arbitrarye P(R™*), a,(v) is a

whereC,(R") is the set of all continuous bounded functiongrobability measure defined as
on R™. One can choose a countable suhdet {¢;};~¢ € 1 .
Cy(R™) of continuous bounded functions that completely de-(%(¥); ¥) = (v, 9)7"(v; ¢g), foranyy € C,(R™). (20)

termines convergence. In other words
Then

lim puy =pweakly<—= lim (pn, @i) = (1, ©;)
N—oo N—oo
V(pi, e A

Tt = at(ﬂﬂtfl) =0t © bt(ﬂtflhfl)- (21)

Again, in the context of filtering, it is natural to assume that
Using this set, we can define the following distanceR{i®"=), is continuous. This means (heuristically) that a slight variation

which generates the weak topology. in the (starting) conditional distribution of the sign&}, will
not result in a big variation in the conditional distribution of
— (e, i) — (v, 0i)] the signal when the new observatignis taken into account.
A, v) Z 21||<pz|| Mathematically, one of the ways to ensure that this happens is
=t to assume thajf(y:|-) is a continuous bounded strictly positive
where ||-|| is the supremum norm o/, (R"*), ||¢|| 2 function
sup,.cgn. [@(2)]. Itis easy to prove that

glye|) € Cu(R™), gy|ae) >0, VYV, € R™. (22)
Mim oy = pweakly <= lim d(puy, p) = 0. The positivity assumption is necessary to ensure hay)

. is never 0 and thereby allowing division by it in (20). In-
Hence,l generates the weak topology B1iR"~). Of coursed  geeq if ¢(y,|) satisfies (22), then from (20), we have that
depends on the choice of the sktHowever, the topology itself limy vy = v implies

is independent ofd.

2) Continuous Functions OveP(R"=): We define b;: A}im (vn,09) (v, ¢9)
P(R™) — P(R") to be the mapping Jim (a(v), ) = T 7,9 =g - (at(v), ¥)
bt(l/)(dxt) é I/K(dxt) = K(d$t|$t_1)l/(d$t_1)

for all test functionsy € C,(R™=). Hence limy —.oc a:(vn) =

R7«
. a:(v), and thereforeg, is continuous. Obviously, if; andb,
for arbitrary: € P(R"+). Hence, forp € Cy(R™) are continuous, so aig andk;.;, and
(be(v) / / oz K (dre|ze1)v(de, 1) o = ke(me—1)e—1) = Kr.e(pe). (23)
R"e JR"=
(v, Kg). (17) 3) Perturbation: In the context of particle filtering, the per-
turbationc™ will be a random one. However, with probability 1,
We have it will still have all the properties required by the general setup.
Letc™“, N > 0, w € Q be the following (random) perturba-
Mefe—1 = be(me-yje—1). (18)  tion. For allv e P(R™), c™(v) is equal to
We want to ensure that is continuous. This is quite natural. In N
the context of filtering, it simply means (heuristically) that the New) = % Z 8(vi(w)) (24)

signal moves in a continuous manner and that two realizations of

the signal that start from “close” positions will remain “close” at

subsequent times. Mathematically, one way to ensure this hagereV;: & — R¢ are i.i.d. random variables with common
pening is to assume that the transition kernel of the signaldsstributiony.
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Lemma 2:If ¢« is defined as above, then for almost all Theorem 1: Assuming that the transition kernél is Feller
w € Q, N« satisfies (9). and that the likelihood functiop is bounded, continuous, and
Proof: Letvy, v € P(R™ ) be such thalimy_... vx =  strictly positive, thefimy_... 7, = 7, almost surely.
v.Y ¢ € A, we have, using the independence of ¥)s Proof: This result follows from Lemma 1 and (23) since
) . limpy oo Y = p; then
E (¥ x), 91) — (ox, 90) ]

4 e = i kL (0) = k(i) = e

1 |
“pal z_:l (piVy) = (v, @0)) Let us consider the case where resampling is achieved by an
= algorithm different other than multinomial sampling. Then, the
1 X [ ] algorithm has the form
= E {(¢i(Vy) — (vn, 9i . . ,
N4]Z::1 (pilV3) = ) EN =eNoa;oc oy
6 N wherez is the perturbation introduced by the resampling step,
N4 o Z ' for example, stratified sampling [21] or minimum variance sam-
g 2=l i #z ) ) pling [6]. In this case, we need to apply the same condition (9)
B [(@i(Vy) = (vn, i) (@i(Vy) = (v, 9i))7] toc™ as tocV.
< 2leill*N + 24l@ill* x BN(N — 1) A way to ensure that the resampling procedure satisfies the
= Nt required condition is to check that it satisfies
4l s q_c
S TN E[(E¥ 00 0) = 9)'] < 1
It follows that for all arbitrary bounded functions. If this is not possible, one
00 can ask for
E N(wn), @) = (vw, @i ! Vs ? ¢
]\Zz:l(( ( ) ) ( )) E[((CA’ (l/), 4,0)_(1’, 90)) :| SN
< 484 1 _ . butinthis case, one has to take a subsequeneg/ofr,* so
- = NP that
— Ny, - 2 1
and hence E [((c ko (v), <p) — (v, <p)) } <C zk: N < o0.
Z (M (vn), i) = (vn, 9i))* < oo, foralmostallw € 2 The approximationart’\l‘; introduced in [5] are not necessarily
N=1 probability measures. However, the same analysis applies, only
which implies now, one takes as the underlying spagewhich is the set

. M(R™) of finite measures oveR™, and one defines a dis-
lm (™ (), i) = (vn, i) = 0 for almost allo € 2. tanced similar to that defined above.
_ _ Reference [6] makes the point that the conditiong 8nand
Thus, there exists a subsetC € of full measureP(2) = 1 ¢V are, in some sense, not only sufficient but also necessarily.

such that It is proved that the following two assertions are equivalent.
— Ty i T N = ] T N =
YV w c Q’ Vi c I, Aliln |(CA7L~(V]\T), ¢7) _ (l’]\f, ¢7)| =0 1) IN:OI‘ a”t > 0, llln]\ 00 7rt|t 7rt|t andllln]\ 00 7rt|t
— 00 7rt|t.

2) For allt > 0, limy o d(cN(el), ) = 0 [where

. = : ] )
which implies, for all w € Q, that limpn_ _ bt(ﬂﬁ;)] andd(@N (@), &) = 0 [wherezy —

d(cN“(vn), vn) = 0, and hence¢™:« satisfies (9) for all N N
w € 1. In the following section, we will ignore the dependence  #° ¢ ° be(myi)]-
on w. However, all the results stated should be regarded asThe sampling perturbatiosl’ can be replaced to include the
being true with probability 1, i.e., for almost all € €. m case of the bootstrap filter [19].

4) Particle Filter: Letus now consider?),, which is the em-

.. . . t t’ . .
pirical measure associated with the set of particles obtained at V. CONVERGENCE OF THEMEAN SQUARE ERROR

the end of the resampling step in the bootstrap filter describedye have given conditions to ensure weak convergence of the
in Section ll. Itis easy to see that after the resampling step [1djpirical distributions toward their true values. Now, let us as-

(1 is the initial distribution of the signal) sume now that we still keeff = P(R"=), but instead of using
N _ N N N O UN/N weak convergence, we use the following(}f{,)%_, is a se-
”tlf = cN o at]\cj Vo btg\irt_w_l) =k (M) quence of (random) probability measures, then we saytfiat
Toe = kit 0 ™ () = k() converges tq. € P(R™) if, for any ¢ € B(R"™) (the set of
N N . N N Borel bounded measurable functionsiitr)
wherep™ = ¢ (u). In addition, observe that,;, , = ¢ o

be(m Y 1 y)- Jdim B [((uns 9) = (1 9))] =0
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where the expectation is over all the realizations of the randomLemma 4: Let us assume that for agy € B(R"=)
particle method. We not only show that this result hOldS’l‘fff);l‘,

but we also show that the rate of convergence toward zero of this E r _ 2 < w
quantity is proportional td /N. It is independent of the state ((W”t—l’ <p) (meje—1, ¢)) = Gle-1 Ty
dimensionn,,.
Then, for anyy € B(R™)
A. Simple Convergence
. . . 2 2

In this subsection, we give a short proof for convergence of E [((wflt, <,0) — (e <P)) } < Gt llell”,

the particle filters described in Section . N

1) Bootstrap Filter: We make the following assumption.

Assumption: g(y:|-) is a bounded function in argument €
R™=,i.e.,||g|]| < oo. The following lemmas essentially state that
at each step of the particle filtering algorithm, the approximation
admits a mean square error of ordgdV.

Lemma 3: Let us assume that for any € B(R")

Proof: One has

(’fri\(tv 90) - (7rt|t7 90)

N
(tht—l’ g(p) (7Tt|t71’ 9¢)

. 2 ||<P||2 (Wﬁ;—l’ g) (7rt|t—17 g)
E | ((m] —( )) | <c
t—1t—1> ¥ T—11t—1, ¥ > C-1)t—-1 N (7rN g<p) (7rN g<p) (7rN g<p)
tlt—17 tlt—17 tlt—17
then, afterStep 1of the algorithm, for any, € B((R"=)) (Wﬁ;_p g) (Tej—15 9) )
2 2
B [((Wﬁt—lv <P) — (Tp—1, <P)) } < Cji—1 % — (Zr”t—l’ g(p;)
Ttt—1, 9
Proof: One has where
‘(7&171717 <P) — (meje—1, <P)‘ (7rN g<p) (7rN g<p)
tlt—17 tt—17
N N _
<[ (s 0) = (s K| (rifsg) (9
+ ‘(Wt]\ilh—lv K<P) — (Te—1ft—1, KSO)‘ . N ~
(Wﬂtfla g‘P) ‘(Wﬂtfla g) - (Wﬂt,la g)‘
- (D AN . - ;
LetG,_1 be thes-field generated byz,;”, }1 | ; then (Wt]\rtfh g) (Fejr—1> 9)
E [(Wﬁ;—p <P)‘ gt—1:| = (ij\ilh—p K‘P) < 7”90” (7r )— (7rN )
b o = (mepe—r, g) 10 7 -1 9)

and, ag|K¢| < [l¢l],

g {((Wﬁt—l’ ) =B [ (s w)‘ gtflbz

Thus, one obtains, using Minkowski’s inequality again

B[ ¢) ~ o)’ |

gt1:|

1/2

= & [ (s 0) = (i 9)) o) -
N N
= % <(7rt]\i1|t—17 K<P2) - (Wt]\illt—lv K‘P)2> <E (E:;\l’ g(p)) B (?:t::;,g:;)
el e 12
STy N
Thus, using Minkowski’s inequality, one obtains +FE (Z:ltl’ W)) - (Er;lt_l’ gq;)
| e tlt—1, g tit—1, 9
£ ((rhor ) - s ) S Y G )
< [(hor ) - (e 1)) e o
) — AT _p—1
< ((m|t_1 ¥ t—1]t—1 ¥ o P [((Wﬁ;_l, g(p) B (7rt|t—17 g(p))?
+ E [((Wt]\im_l, K<P) - (7rt—1|t—17 K<P)) } * (7rt|t—17 )
lell < 2\/%—*1”9H llell
< \/m—N = (mp-1,9) VN

Whel’ect“_l = (1 + A /Ct—1|t—1)2-

B as||g|| < oo by assumption.
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Lemma 5: Let us assume that for any € B(R"*) must be replaced biyw|| < ~o. Similarly, if one uses a resam-
) ol pling scheme oth(e)r than the multinomial resampling, one needs
E 2N — < &, e to ensure tha{ v, })¥ | are integer-valued random variables
{((tht’ ) (T <P)) } = N such that -
Then, afterStep 2of the algorithm, there exists a constant / @ O\ 2 .
Moo T _ — (7 7 < A 7
such that for any> € B(R™) E z_; (Nt Nw, )q < C,N Jmax ‘q
el(( 2| o, el | ,
Tojer © ) = (Tege, ©) it N for all N- dlmenS|onaI vectorg = (¢, ¢@, ..., ¢™) ¢
RN andY Y, N = N. This assumption is satisfied by the
Proof: One has resampling schemes described in [4], [6], and [21].
N To sum up, as long as the importance weights are upper
(Wmv <P) — (Tepes ) bounded and one uses a standard resampling scheme, then

N N N convergence of the mean square error toward zero is ensured,
= (Wflt’ ‘p) (Wflt’ ) + (Wflt’ ) (™62 9)- and the rate of convergence is AN
3) Uniform ConvergenceTheorem 2 ensures that under
minimal condmons(wtlt, @) converges towardr,,, ¢) in the
1/ mean square sense for apye B(R"*) and that the rate of con-
E [((wﬁt, <p) — (7ot <,0)) } vergence of the approximation erdi((w}),, ¢) — (w4, ¢))’]
isin1/N. However, we have not paid attention to the growth of

Then, Minkowski's inequality gives

<E [((Mu (p) _ (”i\l;v ))1 1z the sequence, ;. Indeed, there is no reason wyy, should not
increase over time. Actually, without any additional assump-
271/2 tion, it does. Assuming that the “true” optimal filter associated
+E [((Wﬂﬁ ) = (411 <P)) } . with the dynamic model one simulates does not forget its initial

condition, then the (approximation) errors committed at any
time ¢ accumulate over time. As a consequengg,increases
over time. This implies that to ensure a given precision of the
estimate(wﬁ;, ), one needs an increasingly larger number of
E [(W )‘]_—} _ (WN ) particles as time increases. This is not really satisfactory in
t|tr ¥ t tjtr ¢ S
applications where one faces a large number of data.
and To ensure that,; does not increase over time, one needs to
have some mixing assumptions on the dynamic model (and thus
E [(( N ) _ (WJ\ Ft:| < Zlel? the “true” pptimal_ fiIt_er) that ensure that any error is forgot_ten
ter @ (exponentially) with time. Several results have been established
- recently in the literature after the pioneering work in [11]. A
gving general overview of this problem and new results are presented
12 /O \/~—“ in [22]. We present here a result established in [22].

E N — < VET Ve Let us consider the kernel
[((thtv <P) (Tt <P)) } = N lll|- .
Ri(dee|zi—1) = g(ye|z) K(dzy|xe—1)-

Let 7, be theo-field generated by #” 1Y, . It is easy to see
that the multinomial procedure is such that

By putting together Lemmas 3-5, we obtain the following the-
orem. Assumption (Mixing Kernel)There exist= and a positive
Theorem 2: Under assumption 1, for atl > 0, there exists measure\ such that

¢ independent ofV such that for any € B(R"*) Adey) < Ru(dislze 1) < e~ Ads)
t t t|bt—1 t

2
E |:((7Tﬁ;, <p) — (e, <p)) } < e ||<]<|7| (25) foranyz; ;1 € R™.
This assumption means that the kernel is very weakly depen-

In other words, particle filtering methods beat therse of denton the past value_;. This is a strong assumption. It can
dimensionalityas the rate of convergence is independent of tigrically only be established whe¥, lies in a compact subset
state dimension.,.. However, to ensure a given precision on thef R"=. However, it might be possible to relax this strong as-
mean square error given by (25), the number of partibledso Sumption.
depends frona,|;, which can depend om,.. Note that the result Assumption: One has
has only been established for bounded functions. This excludes sup g(ye|z)
¢(z) = z and, thus, the standard minimum mean square esti- P zERm e
mate (MMSE) of the stat&[X;|Y1.: = y1:]- inf (K, g(y]))

2) Extensions:Assume the general sequential importance HCP(Rme)
sampling/resampling algorithm described previously. It is clear Then, under these two assumptions, the following uniform (in
that if one uses a kernédl # K, the assumptiofijg|| < oo time) convergence result holds.

< p <00
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Theorem 3 [22]: For allt > 0, there exists a constaate) Then,q" converges almost surely @ 2 (Toj0s To:110> T1:2|15
independent ofV such that for any € B(R"=) Cey T Lite—1s Te—1)t—1), Where

. 2 2 ~ N A .
E |:((7Tﬁt, (p) — (7rt|t7 (p)) :| S C(E) % 71'571:5|571(d$5—1a dxs) = 71'5,1|5,1(d$5_1)K(d{L'5|.’L’5_1).
) . . . Obviously, the first marginal of ,_;.5;—1 IS 7,_1js—1, @and the

This result roughly means that if the “true” optimal filter issecond marginal OF 4 _1.afs1 IS Tajs_1
quickly mixing, then uniform convergence in time of the par- ’
ticle filtering method is ensured. On the contrary, it is expected T Lisls—1/1 = Ta 1ls—1,  Ts lisls—1]2 = Ts|s—1-
that if the optimal filter has a “long memory,” then there will bq_et 4 andw be two probability measures. We defif 1i|1/) to
an accumulation of errors over time that prevents uniform cogg the relative entropy of with respect tos
vergence.

Remark 2: In the case where a (random) fixed parameter is H(u|v) 2 /1Og dp du
part of the state, the dynamic model is not ergodic, and it is d
thus expected that whatever the particle filtering one uses, dfg; is absolutely continuous with respectitpy < v; other-
cannot obtain uniform convergence results. In practice, it hgse H (/) = co. We also defind;

A .
. . . . bootstrap(p; I/) :H(V|p5)’
been observed that as time increases, such algorithms mdecad o . ~ A _
diverge [2]. Where g, is the measure given by, (dz,) = §,(zs)p(dz;)

andgt(zs) = (g(yslzs)/(p, 9(ysl"))) and.y,;, (p; v) to be the

function
VI. LARGE DEVIATIONS

- At (P )
We state here a result concerning the large deviations analyls#l‘.tzf1 ’

of two types of particle filters (for details, see [7] and [12]). We /65(1/) dp, if v < pand [@} = [g7(x,)] p-a.s.
start with the definition of a large deviation principle (LDP) [13, = ’ dp 2
p. 35]. 00, otherwise
Definition 1: Let X be a separable metric space equipp&fhere
with the Borelo-field B(X), and let{xn } neny be @ sequence dv
of probability measures oB(X). We say that the sequence dv - {d—}
{1~} ven satisfies a full LDP with theate function/: X —  §°(v) 2 <1 — {_}> In %
[0, o] if the following conditions hold. dp 1—{g&(xs)}
o The rate functionI is lower semi-continuous, that {@}
is, for every sequencey — x € X, we have I {@} In dp
liminfy oo I(zy) > I(z) or, equivalently, that d {g4(zs)}
{{ < a} C X isaclosed set for every > 0. Then, we have the following theorem.
o Forevery open sdtf C X, we have the lower bound Theorem 4:1f ¢ is obtained using the bootstrap filter, then
1 the law ofg satisfies a full LDP with the good rate function
—inf I(z) < liminf — In uy (V).
z€U N—oo N It(l/Ov Hiy - -y Ht, pf)
o Forevery closed sdf' ¢ X, we have the upper bound t t
. = H(volmop) + > I*(ttsl2; pragr ) + Y H{pslfta) (26)
11]151 SUp Inpn(F) < — ;Ielﬁ“ I(z). 5=0 s=1

) . ) for all o, Pt € P(Rn“‘), M1, o.Mt € P(Rnl X Rnl) In
If, in addition, {I < «} C X is a compact set for every (26), we t00kio 2 éﬂmo, R 2 andji, (dz,_1, d,) A

> i - ] 3
%nai(())h—\;ve say that the LDP holds with ttgood rate Ns|1(dxs—1')K(rd.xs|xs—'l) and'I (p, 1) = Ibootsmp(p’ .1/)'.
) Moreover, ifg" is obtained using an algorithm with a minimal

The probability measuregy are usually the laws of a se-yariance resampling scheme, then the law/¥fsatisfies a full
quence of random variablesy that converge to a certain value| pp with the good rate functioh (vo, i1, .. ., s, p¢), where
x. Heuristically, the rate functiofitells us how quicklyz x- con-  the functionZ* in (26) is given byI*(p, v) = I?

- 1 (p7 V)'
. . . min
verges tor. The higher the value af is on a certain sedl (for  As corollaries to the above theorem, one can obtain large de-
whichz ¢ A), the quicker the sequence leaves that set

viation results for more convenient path spaces. Since we have
Pzy € A) = ¢~ Vinfuca IW),

. ) dv )\’
Inin(p’ ]‘/) - IbOOtStT{l]’)(p? ]‘/) Z / <d_ - gf) dp (27)
Using the notation introduced in the previous sections, let P

Wi\il:ﬂtfl’ qY be the measures the minimal variance resampling scheme converges faster than
the bootstrap filter on the set of probability measures.
N N N However, in the above theorem, we refer to a variant of the
Te—Litlt—1 = 7 Z 5(mgf_>1,5;§f>)? minimal variance resampling scheme described in[7, Sec. 3.3.1]
i=1 for which wﬁ, has a random number of particles (though very

T T

N N N N ‘ N I .
g = (7r0|0, To:1000 F1:2110 -+ > Tp—1)t—1s Te—1j¢—1 ) - close toN). Henceyrt’Tt is no longer a probability measure. As a
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result,f’; (p, v) is finite on some measures for which the mass[12] —, “Large deviations for interacting particle systems. applications to
is not necessarily 1, Whereﬁ&()ﬁﬁﬂp@7 v) is oo on nonprob- non linear filtering problems,Stochast. Process. Applicatol. 78, pp.
ability measures 69-95, 1998. -
: [13] J. Deuschel and D. W. Stroockarge Deviations Boston, MA: Aca-
demic, 1989.
VII. DISCUSSION [14] A.Doucet, J. F. G. de Freitas, and N. J. Gord®eguential Monte Carlo

Methods in Practice New York: Springer-Verlag, 2001.

In this survey, we have reviewed a few convergence resultgs) a. boucet, “On sequential simulation-based methods for Bayesian fil-
on particle filtering methods. This is by no way an exhaustive  tering,” Tech. Rep., Cambridge Univ., CUED/F-INFENG TR310, Cam-
list of results; see, for example, [10] for further detailed results__ Pridge, UK., 1998.

and their proofs. Under weak assumptions, we have shown that!

A. Doucet, S. J. Godsill, and C. Andrieu, “On sequential Monte Carlo
sampling methods for Bayesian filteringstatist. Computvol. 10, pp.

it is possible to ensure (almost sure) convergence of the em-  197-208, 2000.
pirical distributions generated by particle filtering methods to-[17] A. Gelb, Applied Optimal Estimation Cambridge, MA: MIT Press,

ward the true ones, some bounds on the mean square errors, Z{]gq
some large deviations results. However, there are still many re-

1974.
W. R. Gilks and C. Berzuini, “Following a moving target—Monte Carlo
inference for dynamic Bayesian modeld,’R. Statist. Soc.,B/ol. 63,

sults to establish. In particular, from a practitioner viewpoint, it pp. 127-146, 2001.
seems unsatisfactory to have to assyrie) bounded above to [19] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach

obtain some convergence results. Similarly, the crucial uniform
convergence results rely on strong assumptions on the dynamjig,

to nonlinear/non-Gaussian Bayesian state estimatinog. Inst. Elect.
Eng. F, vol. 140, pp. 107-113, 1993.
G. Kitagawa, “Non-Gaussian state-space modeling of nonstationary

models that make them unapplicable for most real-world prob-  time series,”. Amer. Statist. Assqaol. 82, pp. 1032-1063, 1987.
lems. Nevertheless, this is a very new field, and it is likely thaf21] — “Monte Carlo filter and smoother for non-Gaussian nonlinear state

in the near future, stronger results will be established.
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