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A Survey of Convergence Results on Particle
Filtering Methods for Practitioners

Dan Crisan and Arnaud Doucet

Abstract—Optimal filtering problems are ubiquitous in signal
processing and related fields. Except for a restricted class of
models, the optimal filter does not admit a closed-form expression.
Particle filtering methods are a set of flexible and powerful
sequential Monte Carlo methods designed to solve the optimal
filtering problem numerically. The posterior distribution of
the state is approximated by a large set of Dirac-delta masses
(samples/particles) that evolve randomly in time according to the
dynamics of the model and the observations. The particles are
interacting; thus, classical limit theorems relying on statistically
independent samples do not apply. In this paper, our aim is to
present a survey of recent convergence results on this class of
methods to make them accessible to practitioners.

Index Terms—Bayesian estimation, optimal filtering, particle fil-
tering, sequential Monte Carlo, state-space models.

I. INTRODUCTION

M ANY models in signal processing can be cast in a state-
space form. In most applications, prior knowledge of the

system is also available. This knowledge allows us to adopt a
Bayesian approach, that is, to combine a prior distribution for
the unknown quantities with a likelihood function relating these
quantities to the observations. Within this setting, one performs
inference on the unknown state according to the posterior distri-
bution. Often, the observations arrive sequentially in time, and
one is interested inestimating recursively in timethe evolving
posterior distribution. This problem is known as the Bayesian or
optimal filteringproblem. The posterior distribution only admits
an analytical expression for few special models, including linear
Gaussian state-space models (Kalman filter) and finite state-
space hidden Markov models (HMM filters). However, in many
realistic problems, state-space models include elements of non-
linearity and non-Gaussianity that preclude a closed-form ex-
pression for the optimal filter. For over 30 years, many approx-
imation schemes have been proposed to tackle this problem,
such as the extended Kalman filter and approximations using
Gaussian sums; see [1] and [17]. Unfortunately, in many cases,
these suboptimal methods are unreliable. Deterministic numer-
ical integration methods have also been developed. Although
they perform well when the state is low dimensional [20], they
are very difficult to implement if the dimension of the state is,
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say, larger than 4. Moreover, the rate of convergence of the ap-
proximation error decreases as the state dimension increases.
That is, these methods suffer from the so-called curse of dimen-
sionality. Following the seminal paper by Gordon, Salmond, and
Smith introducing the bootstrap filter/sampling importance re-
sampling [19], there has been a surge of interest in particle fil-
tering methods, which are also known as sequential Monte Carlo
(SMC) methods. These methods utilize a large numberof
random samples (or particles) to represent the posterior proba-
bility distributions. The particles are propagated over time using
a combination of sequential importance sampling and resam-
pling steps. The resampling step statistically multiplies and/or
discards particles at each time step to adaptatively concentrate
particles in regions of high posterior probability. These methods
are very flexible and can be easily applied to nonlinear and
non-Gaussian dynamic models.

In particle filtering methods, the particles (samples) interact
and, thus, are statistically dependent. Consequently, classical
convergence results on Monte Carlo methods, based on inde-
pendent and identically distributed (i.i.d.) assumptions, do not
apply. Therefore, it is useful to ask the following questions.

• Does the particle filter converge asymptotically (that is as
) toward the optimal filter and in what sense?

• Do standard Monte Carlo rates for convergence apply?
• Is there an accumulation of error with time?
• Can we give any large deviation results?

To a certain degree, these questions have recently been an-
swered. Of all the algorithms available, the most extensively
studied is the bootstrap filter/SIR, which is also known as the
interacting particle systems/resolution algorithm; see [8]–[10]
for a recent overview of results. In [5] and [6], a rigorous treat-
ment is given to a whole class of SMC methods. However, most
of these results have been published in the probability literature.
They can prove difficult for practitioners to read and, indeed,
are often unknown to them. The aim of this paper is to present
a survey of the results available in the literature to make them
understandable and applicable to “real-life” problems.

The rest of the paper is organized as follows. In Section II,
we specify the model and the optimal filtering problem. In Sec-
tion III, a generic particle filtering algorithm is described, and its
different steps are briefly detailed. Section IV discusses almost
sure (weak) convergence of the empirical distributions toward
the true ones. In Section V, we give simple sufficient conditions
to ensure asymptotic convergence of mean square error to zero.
We then discuss a few conditions to ensure uniform convergence
in time. Finally, in Section VI, we present a few large deviation
results.
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II. OPTIMAL FILTERING

A. General State-Space Models

Let be a probability space on which we have de-
fined two real vector-valued stochastic processes

and . The process is usually called
thesignalprocess, and the processis called theobservation
process. Let and be the dimensions of the state space of
and , respectively, and let be the Borel -algebra on .
Thesignalprocess is a Markov process of initial distribution

and probability transition kernel
such that

Theobservationsare conditionally independent of and have
marginal distribution

For the sake of simplicity, we will assume here that
and admit densities with respect to the

Lebesgue measure. This means that
, and

.
Example: Let us consider the scalar dynamic model

where and are both independent identi-
cally distributed (i.i.d.) sequences and are mutually independent
with
and

. Then, one has

B. Bayes’ Recursions

We will denote by and
the path of the signal and of the observa-

tion process from time to time , respectively. In addition,
and are

generic points in the space of paths of the signal and observa-
tion processes. Define the probability distribution as

Bayes’ theorem allows us to propagate over time the joint and
marginal filtering distributions and . That
is, at time , the joint distribution satisfies

and the recursion

Prediction

Updating

One typically focuses on the marginal distribution . In
this case, satisfies the recursion

Prediction

Updating

(1)

If is a measure, is a function, and is a Markov transition
kernel,1 we use the standard notation

Using this notation, it is easy to see that for any function:
, the recurrence formula (1) implies that

Prediction

Updating
(2)

Except for a very restricted number of dynamic models, it is
impossible to evaluate equations (1) or (2) in a closed-form ex-
pression.

Example: For a dynamic model such that
and admit some densities denoted and

, then (1) reads

and (2) reads

1�(�j�): ( ; B( )) ! [0; 1] is a Markov transition kernel on if,
for anyx 2 , �(�jx) is a probability measure and, for anyA 2 B( ),
�(Aj�) is a measurable function.
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III. PARTICLE FILTERING

A particle filtering method is a recursive algorithm that pro-
duces, at each time, a cloud of particles whose empirical mea-
sure closely “follows” the distribution . In the following sub-
sections, we describe a general algorithm that generates, at time

(for all ), particles/paths with an associated
empirical measure

that is “close” to ; denotes the delta-Dirac mass lo-

cated in . The algorithm is recursive in the sense that
is produced using the observation obtained at timeand the set
of particles produced at time (whose empirical
measure was “close” to ).

A. Basics

We present here a slight modification of the standard
bootstrap filter algorithm described in [19]. Given a set of
particles distributed approximately according to

, one samples

.2 The new particles are
distributed approximately according to [see (1)].
Their empirical distribution

is an approximation of . If one plugs this measure into (1),
we get the Monte Carlo approximation of

that is

(3)

where are the so-calledimportance weights.
The distribution is a weighted sum of delta-Dirac
masses.

The aim of the resampling/selection step is to obtain an “un-
weighted” empirical distribution approximation

by duplicating particles having high weights and discarding
the others to focus on the zones of high posterior probabilities.

2In the bootstrap filter, one samples from~x � K(dx jx ).

This is typically achieved by resampling times from the em-
pirical distribution . The resulting particles are approx-
imately distributed according to , and one can thus iterate the
procedure to obtain an approximation of .

B. Algorithm

We also assume that we can sample exactly from at
. The algorithm proceeds as follows.

.

Step 0: Initialization

• ,
.

Step 1: Importance Sampling step

• , .
• ,

(4)

Step 2: Resampling step

• , .
This particle filter is thus nothing but a simulation-based

approximation of the recursion (1). In the sampling step, one
obtains a set of particles whose “unweighted” empir-
ical distribution is a Monte Carlo approximation
of . The weighted empirical distribution
approximates . The resampling step is a (crucial)
algorithmic step that produces an unweighted approximation

of .

C. Extensions

The algorithm we have described is very intuitive and easy to
use. As we will show later, it produces an approximation that
converges (in a given sense) toward the “true” optimal filter
under minimal assumptions. However, this algorithm suffers
from several drawbacks in practice.

1) Variation of the Importance Weights: It can be inefficient
if the distribution of the particles , given approx-
imately by , is “far” from in the
sense that the ratio (i.e., the Radon–Nykodym derivative)
of these two distributions

generates importance weights
with a high variance.

2) Variation in the Resampling Step: To produce the
unweighted measure approximation from

, the algorithm proposed above samples

times from . In effect, it generates copies

of the th particle, where the are distributed ac-
cording to a multinomial distribution with parameters

. Consequently,
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and var . Although this pro-
duces an “unbiased” approximation of , i.e., for
any function

it also introduces a large Monte Carlo variation.
We now present the sequential importance sampling/resam-

pling algorithm described in [14]. This algorithm addresses both
problems.

1) Alternative Sampling Distributions:To address the first
problem, one idea is to sample the particles from

instead of , i.e.,

where the new kernel is chosen such that the distribution of
these particles (which approximates ) is “closer” to

than is . Several choices are discussed in [15]
and [16]. To account for the effect of the discrepancy between

and , we use the expression

(5)

where

(6)

Thus, replacing in (5) by its em-
pirical approximation

and, marginalizing over , we get the expression (3) for
, where .

A different interpretation of this algorithm that aids under-
standing why some particular algorithms perform better than
others can be obtained by defining anew dynamic modelsuch
that and

(7)

(8)

In (7), is a Markov transition kernel de-
pendent on , whereas in (8), is given by

(6) [where we assume that this ratio is well defined and that
]. Let us define

At time , the joint distribution satisfies

from (6)

Thus, although , one has for
any , and thus, in particular, one has . We will give
a number of proofs for the standard algorithm involving condi-
tions on and . The above shows that they
are valid for the algorithm presented here if similar conditions
are imposed on and .3

If and have “better” theo-
retical properties than and , such as better
mixing properties of or flatter likelihood

, then the algorithm will perform better. That
is, designing efficient particle filtering methods is equivalent to
finding an appropriate dynamic model that has good theoretical
properties while keeping the same filtering distributions. The
resampling step is a generic step that is independent of the
dynamic model considered.

Remark 1: Recently, the introduction of Markov chain
Monte Carlo steps in particle filtering algorithms has been
suggested; see [18]. This fits in this framework as it can simply
be interpreted as the introduction of a new evolution equation
in the dynamic model; see [3] for details.

2) Resampling Schemes:To address the second problem,
we note that the aim of the resampling/selection step is just to
obtain an “unweighted” empirical distribution approximation

of the weighted measure by associating

a number of copies/offspring with each particle
. That is, one wants

with . Recently, many schemes have been pro-
posed in the literature to deal with these problems. Most of these

3This is true because we assume the observations to be fixed in this paper. For
random observations, further integrability assumptions need to be imposed on
~K(dx jx ; y ) andw(x ; x ; y ).
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algorithms ensure that , as for the multino-
mial sampling procedure, but have a lower variance var .
Algorithms achieving the minimum variance are presented in
[4], [6], and [21]. It also possible to use a deterministic algo-
rithm such at the one described in [21].

IV. A LMOST SURE CONVERGENCE

From now on, we will assume that the observation process
is fixed to a given observation record , . All the
convergence results will be given under this condition.

A. Preliminary Remark

Before we analyze the convergence of the algorithms pre-
sented previously, we make a few preliminary remarks that will
enable us to understand very quickly why they converge and
what conditions need to be imposed. We start with an abstract
formulation, but gradually, we identify its elements with those
comprising the filtering problem. Let be a metric space,
and on this space, let and be two sequences of
continuous functions , : . In addition, let and
be two other sequences of functions defined as

where the operation “” denotes the composition of functions,
i.e., . Obviously, both and are
continuous.

For the stochastic filtering setup, the spacewill be ,
the space of all probability measures over the-dimensional
Euclidean space , will be the map that takes into

, and the map that takes into . Thus, will
be the transformation , and will be the
transformation .

We perturb and using a (not necessarily continuous)
function , in the following way.

In the context of stochastic filtering, will be the map that
takes a measure to a random sample of sizeof the measure.
We next assume that as increases, the perturbations become
increasingly smaller. In other words, we assume thatcon-
verges to , which is the identity function on [ , for
all ]. A natural question to ask is whether converges
to and converges to ? It turns out that the answer is
“no,” as the following example clearly demonstrates.

Example 1: Let and be the usual metric on
, . Let and be equal to the identity

function on , . Hence, is the identity function
as well. We modify as above using the following continuous
piecewise linear perturbation .

if

if

if .

It is easy to check that although , for all
, one has

Hence, it is not true that successive small perturbations of a
function still amount to a small perturbation. In order to have

, we need a stronger type of convergence
for . We need to converge in a uniform manner4 to the
identity function . In particular, we need to satisfy

For all such that

(9)

Condition (9) is equivalent to

For all such that

(10)

Hence, we have the following lemma.
Lemma 1: Let , , , , and be defined as above.

Then, if satisfies (9), we have

and (11)

Moreover, both and satisfy

(12)

Proof: Since (12) implies (11) [take for all in
(12)], we only need to prove (12). As is continuous, we have

(13)

Then, using (9), we get that

(14)

and, since is continuous

(15)

and, again using (9), we get that

(16)

Finally, by putting together (13)–(16), we prove that
, which, in turn, implies by in-

duction (over ) that .

4c converges uniformly to the identity functioni if, by definition, for all
" > 0 there existsN(") such thatd(c (e); i(e)) < " for all N � N(").
Uniform convergence is stronger than (9), but we only need (9) for Lemma 1 to
be valid.
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B. Application to Optimal Filtering

In the following, we will relate the previous proof to the sto-
chastic filtering problem. The convergence of the particle filter
algorithm will be shown to be a direct corollary of Lemma 1.

1) Space of Probability Measures Over : Let
be the set of probability measures over the

-dimensional Euclidean space endowed with the
topology of weak convergence. In this topology, if is
a sequence of probability measures, then we say thatcon-
verges (weakly) to and write
if, for any

where is the set of all continuous bounded functions
on . One can choose a countable subset

of continuous bounded functions that completely de-
termines convergence. In other words

weakly

Using this set, we can define the following distance on ,
which generates the weak topology.

where is the supremum norm on ,
. It is easy to prove that

weakly

Hence, generates the weak topology on . Of course,
depends on the choice of the set. However, the topology itself
is independent of .

2) Continuous Functions Over : We define :
to be the mapping

for arbitrary . Hence, for

(17)

We have

(18)

We want to ensure that is continuous. This is quite natural. In
the context of filtering, it simply means (heuristically) that the
signal moves in a continuous manner and that two realizations of
the signal that start from “close” positions will remain “close” at
subsequent times. Mathematically, one way to ensure this hap-
pening is to assume that the transition kernel of the signal is

Feller, i.e., it has the property that fora continuous bounded
function, is also a continuous bounded function

(19)

If , then, by definition,
, . Hence,

, and

We now define the application . Let :
be a mapping such that for arbitrary , is a
probability measure defined as

for any (20)

Then

(21)

Again, in the context of filtering, it is natural to assume that
is continuous. This means (heuristically) that a slight variation
in the (starting) conditional distribution of the signal will
not result in a big variation in the conditional distribution of
the signal when the new observationis taken into account.
Mathematically, one of the ways to ensure that this happens is
to assume that is a continuous bounded strictly positive
function

(22)

The positivity assumption is necessary to ensure that
is never 0 and thereby allowing division by it in (20). In-
deed, if satisfies (22), then from (20), we have that

implies

for all test functions . Hence,
, and therefore, is continuous. Obviously, if and

are continuous, so are and , and

(23)

3) Perturbation: In the context of particle filtering, the per-
turbation will be a random one. However, with probability 1,
it will still have all the properties required by the general setup.
Let , , be the following (random) perturba-
tion. For all , is equal to

(24)

where : are i.i.d. random variables with common
distribution .
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Lemma 2: If is defined as above, then for almost all
, satisfies (9).

Proof: Let be such that
. , we have, using the independence of thes

It follows that

and hence

for almost all

which implies

for almost all

Thus, there exists a subset of full measure
such that

which implies, for all , that
, and hence, satisfies (9) for all

. In the following section, we will ignore the dependence
on . However, all the results stated should be regarded as
being true with probability 1, i.e., for almost all .

4) Particle Filter: Let us now consider , which is the em-
pirical measure associated with the set of particles obtained at
the end of the resampling step in the bootstrap filter described
in Section III. It is easy to see that after the resampling step [11]
( is the initial distribution of the signal)

where . In addition, observe that
.

Theorem 1: Assuming that the transition kernel is Feller
and that the likelihood function is bounded, continuous, and
strictly positive, then almost surely.

Proof: This result follows from Lemma 1 and (23) since
; then

Let us consider the case where resampling is achieved by an
algorithm different other than multinomial sampling. Then, the
algorithm has the form

where is the perturbation introduced by the resampling step,
for example, stratified sampling [21] or minimum variance sam-
pling [6]. In this case, we need to apply the same condition (9)
to as to .

A way to ensure that the resampling procedure satisfies the
required condition is to check that it satisfies

for all arbitrary bounded functions. If this is not possible, one
can ask for

but in this case, one has to take a subsequence of, so
that

The approximations introduced in [5] are not necessarily
probability measures. However, the same analysis applies, only
now, one takes as the underlying space, which is the set

of finite measures over , and one defines a dis-
tance similar to that defined above.

Reference [6] makes the point that the conditions onand
are, in some sense, not only sufficient but also necessarily.

It is proved that the following two assertions are equivalent.

1) For all , and
.

2) For all , [where
] and [where

].

The sampling perturbation can be replaced to include the
case of the bootstrap filter [19].

V. CONVERGENCE OF THEMEAN SQUARE ERROR

We have given conditions to ensure weak convergence of the
empirical distributions toward their true values. Now, let us as-
sume now that we still keep , but instead of using
weak convergence, we use the following: If is a se-
quence of (random) probability measures, then we say that
converges to if, for any (the set of
Borel bounded measurable functions on )
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where the expectation is over all the realizations of the random
particle method. We not only show that this result holds for,
but we also show that the rate of convergence toward zero of this
quantity is proportional to . It is independent of the state
dimension .

A. Simple Convergence

In this subsection, we give a short proof for convergence of
the particle filters described in Section III.

1) Bootstrap Filter: We make the following assumption.
Assumption: is a bounded function in argument

, i.e., . The following lemmas essentially state that
at each step of the particle filtering algorithm, the approximation
admits a mean square error of order .

Lemma 3: Let us assume that for any

then, afterStep 1of the algorithm, for any

Proof: One has

Let be the -field generated by ; then

and, as ,

Thus, using Minkowski’s inequality, one obtains

where .

Lemma 4: Let us assume that for any

Then, for any

Proof: One has

where

Thus, one obtains, using Minkowski’s inequality again

as by assumption.
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Lemma 5: Let us assume that for any

Then, afterStep 2of the algorithm, there exists a constant
such that for any

Proof: One has

Then, Minkowski’s inequality gives

Let be the -field generated by . It is easy to see
that the multinomial procedure is such that

and

giving

By putting together Lemmas 3–5, we obtain the following the-
orem.

Theorem 2: Under assumption 1, for all , there exists
independent of such that for any

(25)

In other words, particle filtering methods beat thecurse of
dimensionalityas the rate of convergence is independent of the
state dimension . However, to ensure a given precision on the
mean square error given by (25), the number of particlesalso
depends from , which can depend on . Note that the result
has only been established for bounded functions. This excludes

and, thus, the standard minimum mean square esti-
mate (MMSE) of the state .

2) Extensions:Assume the general sequential importance
sampling/resampling algorithm described previously. It is clear
that if one uses a kernel , the assumption

must be replaced by . Similarly, if one uses a resam-
pling scheme other than the multinomial resampling, one needs
to ensure that are integer-valued random variables
such that

for all -dimensional vectors
and . This assumption is satisfied by the

resampling schemes described in [4], [6], and [21].
To sum up, as long as the importance weights are upper

bounded and one uses a standard resampling scheme, then
convergence of the mean square error toward zero is ensured,
and the rate of convergence is in .

3) Uniform Convergence:Theorem 2 ensures that under
minimal conditions, converges toward in the
mean square sense for any and that the rate of con-
vergence of the approximation error
is in . However, we have not paid attention to the growth of
the sequence . Indeed, there is no reason why should not
increase over time. Actually, without any additional assump-
tion, it does. Assuming that the “true” optimal filter associated
with the dynamic model one simulates does not forget its initial
condition, then the (approximation) errors committed at any
time accumulate over time. As a consequence,increases
over time. This implies that to ensure a given precision of the
estimate , one needs an increasingly larger number of
particles as time increases. This is not really satisfactory in
applications where one faces a large number of data.

To ensure that does not increase over time, one needs to
have some mixing assumptions on the dynamic model (and thus
the “true” optimal filter) that ensure that any error is forgotten
(exponentially) with time. Several results have been established
recently in the literature after the pioneering work in [11]. A
general overview of this problem and new results are presented
in [22]. We present here a result established in [22].

Let us consider the kernel

Assumption (Mixing Kernel):There exist and a positive
measure such that

for any .
This assumption means that the kernel is very weakly depen-

dent on the past value . This is a strong assumption. It can
typically only be established when lies in a compact subset
of . However, it might be possible to relax this strong as-
sumption.

Assumption:One has

Then, under these two assumptions, the following uniform (in
time) convergence result holds.
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Theorem 3 [22]: For all , there exists a constant
independent of such that for any

This result roughly means that if the “true” optimal filter is
quickly mixing, then uniform convergence in time of the par-
ticle filtering method is ensured. On the contrary, it is expected
that if the optimal filter has a “long memory,” then there will be
an accumulation of errors over time that prevents uniform con-
vergence.

Remark 2: In the case where a (random) fixed parameter is
part of the state, the dynamic model is not ergodic, and it is
thus expected that whatever the particle filtering one uses, one
cannot obtain uniform convergence results. In practice, it has
been observed that as time increases, such algorithms indeed
diverge [2].

VI. L ARGE DEVIATIONS

We state here a result concerning the large deviations analysis
of two types of particle filters (for details, see [7] and [12]). We
start with the definition of a large deviation principle (LDP) [13,
p. 35].

Definition 1: Let be a separable metric space equipped
with the Borel -field , and let be a sequence
of probability measures on . We say that the sequence

satisfies a full LDP with therate function :
if the following conditions hold.

The rate function is lower semi-continuous, that
is, for every sequence , we have

or, equivalently, that
is a closed set for every .

For every open set , we have the lower bound

For every closed set , we have the upper bound

If, in addition, is a compact set for every
, we say that the LDP holds with thegood rate

function .
The probability measures are usually the laws of a se-

quence of random variables that converge to a certain value
. Heuristically, the rate functiontells us how quickly con-

verges to . The higher the value of is on a certain set (for
which ), the quicker the sequence leaves that set

Using the notation introduced in the previous sections, let
, be the measures

Then, converges almost surely to
, where

Obviously, the first marginal of is , and the
second marginal of is

Let and be two probability measures. We define to
be the relative entropy of with respect to

if is absolutely continuous with respect to, ; other-
wise, . We also define ,

where is the measure given by
and and to be the
function

if and -a.s.

otherwise

where

Then, we have the following theorem.
Theorem 4: If is obtained using the bootstrap filter, then

the law of satisfies a full LDP with the good rate function

(26)

for all . In
(26), we took , and

and .
Moreover, if is obtained using an algorithm with a minimal
variance resampling scheme, then the law ofsatisfies a full
LDP with the good rate function , where
the function in (26) is given by .

As corollaries to the above theorem, one can obtain large de-
viation results for more convenient path spaces. Since we have

(27)

the minimal variance resampling scheme converges faster than
the bootstrap filter on the set of probability measures.

However, in the above theorem, we refer to a variant of the
minimal variance resampling scheme described in [7, Sec. 3.3.1]
for which has a random number of particles (though very
close to ). Hence, is no longer a probability measure. As a
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result, is finite on some measures for which the mass
is not necessarily 1, whereas is on nonprob-
ability measures.

VII. D ISCUSSION

In this survey, we have reviewed a few convergence results
on particle filtering methods. This is by no way an exhaustive
list of results; see, for example, [10] for further detailed results
and their proofs. Under weak assumptions, we have shown that
it is possible to ensure (almost sure) convergence of the em-
pirical distributions generated by particle filtering methods to-
ward the true ones, some bounds on the mean square errors, and
some large deviations results. However, there are still many re-
sults to establish. In particular, from a practitioner viewpoint, it
seems unsatisfactory to have to assume bounded above to
obtain some convergence results. Similarly, the crucial uniform
convergence results rely on strong assumptions on the dynamic
models that make them unapplicable for most real-world prob-
lems. Nevertheless, this is a very new field, and it is likely that
in the near future, stronger results will be established.
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