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Abstract – This paper discloses a novel algorithm for efficient
inference in undirected graphical models using Sequential Monte
Carlo (SMC) based numerical approximation techniques. The
methodology developed, titled “Auxiliary Particle Belief Propa-
gation”, extends the applicability of the much celebrated (Loopy)
Belief Propagation (LBP) algorithm to non-linear, non-Gaussian
models, whilst retaining a computational cost that is linear in the
number of sample points (or particles). Furthermore, we provide
an additional extension to this technique by analysing temporally
evolving graphical models, a problem which remains largely un-
explored in the scientific literature. The work presented is thus
a general framework that can be applied to a plethora of novel
distributed fusion problems. In this paper, we apply our inference
algorithm to the (sequential problem of) articulated object track-
ing.
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1 Introduction
Graphical models form an intuitively appealing marriage of
probability theory and graph theory. Their use promotes
interaction between statisticians and relevant problem-
domain experts, a point which is prominent in Bayesian
analysis. The graphical representation of the links between
random variables has allowed the development of a plethora
of inference mechanisms, most of which exploit structure
within the model to promote efficient inference. The much-
celebrated Belief Propagation (BP) algorithm[7] is a partic-
ular example of such a technique, providing an exact solu-
tion in cases where one can perform analytic calculations
in tree structured graphical models. Moreover, an approxi-
mate algorithm known as Loopy Belief Propagation (which
is similar in its implementation as standard BP) has been
employed on analytically tractable generic graphical mod-
els (i.e. those with “loops”), with varying degrees of suc-
cess. The use of BP is, however, restricted to “static” in-
ference problems, not least because inference with the exis-
tence of loops is an extremely difficult problem and is still
to be fully understood.

This paper discloses an inference mechanism that com-
bines BP and importance sampling (or particle filtering), the
first step towards a generic framework for performing tru-
ely distributed fusion. Existing technologies[3, 4, 10] that
have combined particle methods with BP have a computa-
tion that is quadratic in the number of particles, and tend

to employ Gibbs sampling, which has to be executed until
convergence. Our complementary technique, which we call
Auxiliary Particle Belief Propagation (APBP), reduces the
computation of existing particle-based techniques to being
linear in the number of particles. In addition to this, we pro-
vide a novel extension which allows one to perform online
inference in temporally evolving graphical models (in a dis-
tributed fashion) using such numerical (particle based) ap-
proximations, a problem which has been largely overlooked
in the literature (thus making comparisons infeasible). As
stated, the development of this framework is the first stage
in allowing the future development of a truly distributed
tracking architecture using particle methods.

The paper is therefore organised as follows: in section 2
we provide a brief overview of inference in graphical mod-
els, specifically based upon the BP algorithm. Then, in sec-
tion 3, we discuss an empirical approximation within the
BP algorithm and highlight the computational problems as-
sociated with such an approach. In the following two sec-
tions, we disclose a novel efficient methodology that over-
comes these computational restrictions and then extend this
technique to the case of temporally evolving (undirected)
graphical models in section 6. We demonstrate the success
of this algorithm on the (sequential problem of) articulated
object tracking in section 7, and finally conclude and dis-
cuss avenues of further work in section 8.

2 Inference in graphical models
2.1 Graphical model notation
In this section, we provide a very brief overview of (undi-
rected) graphical models and refer the reader to the ex-
cellent reference [5] for a complete exposition. Note
that directed graphical models (informally referred to as
Bayesian networks) can be converted to undirected graphi-
cal models[12].

The joint probability for the latent (x) and observed (y)
variables in a general graphical model can be written as fol-
lows:

p(x, y) ∝
∏

i∈V
pi(yi|xi)

∏

c∈C
ψc(xc),

where V denotes the set of vertices (random variable in-
dices) and C denotes the set of cliques (fully connected sub-
sets of nodes). In this model, each latent variable has an



associated observed variable. To simplify the presentation,
we restrict ourselves to pairwise Markov potentials:

p(x, y) ∝
∏

i∈V
pi(yi|xi)

∏

(j,i)∈E
ψj,i(xi, xj),

where E denotes the set of edges joining two (potentially
clustered) nodes. The pairwise Markov potential model
is formed by using graph theoretic clustering algorithms
over the cliques. Additionally, these potentials are non-
negative functions describing the stochastic relationship be-
tween two neighbouring random variables and satisfy the
integrability assumption:

∫
ψj,i(xi, xj)dxi < ∞,

∫
ψj,i(xi, xj)dxj < ∞.

2.2 Belief Propagation

In this paper, and in most distributed fusion applications,
we are concerned with determining the marginal posterior
distribution p(xi|y). That is, we are interested in the fol-
lowing:

p(xi|y) ∝
∫
· · ·

∫
p(x, y)dx\{i}

∝
∫
· · ·

∫ ∏

i∈V
pi(yi|xi)

∏

(i,j)∈E
ψi,j(xi, xj)dx\{i},

where x\{i} , {x1, . . . , xi−1, xi+1, . . . , xK}.
Now, one can reorder this integral to exploit the structural

properties of the graphical model using the elimination al-
gorithm to reduce the computational effort. However, deter-
mining such an ordering in the most general case whilst try-
ing to minimise the computations (i.e., to exploit the redun-
dancy in the structure) is an NP-hard problem. The (Loopy)
Belief Propagation algorithm[7] is an approximation that
imposes the ordering:

pn(xi|y) ∝ pi(yi|xi)
∏

j∈N (i)

mn
j,i(xi) (1)

where N (i) defines the neighbourhood of node i, and the
superscript n denotes the iteration number. The values
mj,i(xi) are generally “intuitively” stated as being mes-
sages from node j to node i, and are defined as follows:

mn
j,i(xi) ∝

∫
ψj,i(xi, xj)pj(yj |xj)

×
∏

k∈N (j)\i
mn−1

k,j (xj)dxj . (2)

This recursion is constructed through dynamic program-
ming. Clearly, these calculations are tractable for Gaussian
and finite state space models (with the traditional Kalman
smoother being a special case of BP). In the case of tree-
structured graphical models, the algorithm is guaranteed
to converge towards p(xi|y) (with aforementioned tractable
calculations). In graphical models with loops, convergence
is not guaranteed but good empirical performance has been

shown in the literature[6]. Some theoretical properties of
Loopy BP (LBP) have been investigated in reference [12].

Our aim is to remove all assumptions of analytic
tractability of the integrals involved and to construct a par-
ticle approximation of the messages and beliefs.

3 Towards particle belief propagation
As discussed, the belief propagation procedure is decom-
posed into two stages: message update (2) followed by pos-
terior belief update (1). We would like to use an importance
sampling approximation of these probability measures. The
optimal importance function, i.e., optimal with respect to
minimising the variance of the importance weights, is now
discussed for each stage1.

3.1 Optimal importance function

Assume for now that, at iteration n−1, we have a pointwise
approximation of the message (2) from node j to node i (for
all (i, j) ∈ E), given as2:

m̂n−1
j,i (xi) =

N∑

l=1

w
(l),n−1
(j,i) ψj,i(xi, x

(l),n−1
(j) ),

where w
(l),n−1
(j,i) is the (normalised) lth weight for the mes-

sage approximation of j to i at iteration n− 1, and x
(l),n−1
(j)

is the lth particle at node j at iteration n − 1 for this mes-
sage. The optimal choice of importance function for the
approximation of (2) is given as:

q̃opt
j,i (xj |yj) ,

pj(yj |xj)
∏

k∈N (j)\i m̂n−1
k,j (xj)∫

pj(yj |xj)
∏

k∈N (j)\i m̂n−1
k,j (xj)dxj

.

For the belief update (1) at iteration n, assuming a point-
wise approximation of the messages from each of the neigh-
bouring nodes, the optimal importance function is:

q̃opt
i (xi|yi) ,

pi(yi|xi)
∏

j∈N (i) m̂n
j,i(xi)∫

pi(yi|xi)
∏

j∈N (i) m̂n
j,i(xi)dxi

.

As one can clearly see, the form of the importance func-
tions are structurally identical for both the message and be-
lief update stages (that is, they are both products of mixtures
of similar terms), and as such, one can devise a common
methodology from which to sample. Before doing so, it
is worth commenting on the computational and tractability
restrictions of such a choice of importance function.

Since both of the proposal distributions involve a product
of mixtures of terms, then for a large number of particles N
and a dense graphical model (that is, the cardinality of the
set of terms in the product (denoted K) is large) we have
an explosion in the computational complexity (or number

1Henceforth, optimal importance function will always mean
optimal with respect to minimising the variance of the importance
weights.

2Details of how to obtain such an approximation are given later
in the paper.



of mixture components) in the proposal distribution. More-
over, calculation of the normalising constant in each of the
importance functions is intractable (if we could calculate
this integral, then it is likely that we would not have to make
an approximation!). To circumvent the computational prob-
lem we devise a novel3 strategy that introduces an auxiliary
variable in analogy to the Auxiliary Particle Filter (APF)[8].
The auxiliary variable clearly increases the dimensional-
ity of the sampling space under consideration since we are
working on the product space, but allows for a computa-
tionally efficient algorithm. To circumvent the tractability
problems, one has to use an approximation to the impor-
tance function used (on the extended space), which will be
detailed later in the paper. We now generalise the discus-
sion to sampling from a product of mixtures using impor-
tance sampling before returning to the auxiliary particle be-
lief propagation technique.

4 Generic concept: sampling from a product
of mixtures

The general aim is to sample from the following:

p(x) =
φ(x)

∏K
i=1 fi(x)∫

φ(x)
∏K

i=1 fi(x)dx
, (3)

where

fi(x) =
N∑

l=1

f
(l)
i (x)

is a mixture comprised of N terms, x ∈ <d for each i, and
φ(x) is the likelihood term.

4.1 Auxiliary variable
As stated, we consider the introduction of a latent variable
for each term in the product i:

θi ∈ {1, 2, . . . , N}, i = 1, . . . , K,

with θ1:K = {θ1, . . . , θK}. The discrete valued random
variable θi = mi denotes the mixture component in fi from
which the sample is drawn. We may write:

p(x) =
∑

θ1:K

p(x, θ1:K)

=
∑

θ1:K

p(θ1:K)p(x|θ1:K).

The terms in this factorisation of the joint distribution are
given as:

p(θ1:K = m1:K) = Z−1

∫
φ(x)

K∏

i=1

f
(mi)
i (x)dx, (4)

3It is worth commenting that reference [3] described an im-
portance sampling perspective but omitted the actual importance
function used within the paper and did not consider the compu-
tational aspects that are fundamentally important within such an
approach (and so did not use an auxiliary variable as will be de-
scribed here).

where Z−1 denotes a normalising constant, and:

p(x|θ1:k = m1:K) =
φ(x)

∏K
i=1 f

(mi)
i (x)∫

φ(x)
∏K

i=1 f
(mi)
i (x)dx

. (5)

Now, the procedure to sample such a product of mixtures
is as follows:

• sample the latent variables θ1:K ∈ ({1, 2, . . . , N}K)
according to the probability given in (4);

• Having sampled θ1:K , we then sample X from the
product of densities in (5). It is easy to show that X is
distributed according to the product of mixtures (3).

We will return to mechanics of how to actually draw sam-
ples from (5) later in the paper. For now, we assume that
for any (m1, . . . , mK) ∈ ({1, 2, . . . , N}K), one can sam-
ple from the product φ(x)

(∏K
i=1 f

(θi)
i (x)

)
, and that the

integral over this term w.r.t x is analytically tractable.
The actual difficulty lies in generating the latent variable

θ1:K as there are NK possible configurations. Enumerat-
ing all such possible configurations would be wasteful since
one might as well just sample each component! An approx-
imation is therefore needed. One approach is to use the
Gibbs sampler, which is similar in principal to the approach
adopted in references [4, 10]. The marginal distribution of
θi conditioned on θ\{i} , {θ1, . . . , θi−1, θi+1, . . . , θK} is

Pr
(
θi| θ\{i} = m\{i}

)∝
∫

φ(x)f (θi)
i (x)

K∏

j=1
j 6=i

f
(mj)
j (x)dx,

with θ\{i} and m\{i} being deemed obvious notation from
the context. Assuming we run κ Gibbs sampling iterations,
the computational cost of existing Non-Parametric Belief
Propagation algorithms is O(κKN2). Moreover, MCMC
within a particle filtering context has been used [2] but is
sometimes referred to as being inefficient[8]. To avoid such
a prohibitive computational cost (which is particularly im-
portant when one considers a temporally evolving system)
and a potentially slowly mixing Markov chain, we adopt an
importance sampling approach which reduces the compu-
tation to O(NK) computations, that are able to be paral-
lelised.

4.2 Auxiliary variable: an importance sampling
perspective

Since the calculation of the (true) optimal proposal is com-
putationally intractable then we have to make an approxi-
mation, that is, we introduce an importance function. We
propose two such choices of importance function, although
it is anticipated that there may be other approximations that
may improve the performance of our algorithm.

4.2.1 Case 1: Independent component labels

The simplest form of proposal distribution for the joint aux-
iliary variable is through assuming independence between



each dimension (terms in the product), such that we have:

q(θ1:K) =
K∏

i=1

qi(θi), (6)

where qi(·) is a pmf on 1, . . . , N. A sensible choice would
be

qi(θi = mi) ∝
∫

φ(x)f (mi)
i (x)dx. (7)

Clearly this cannot be used when one cannot calculate the
above integral, and so further approximations have to made
as detailed later in the paper. Note that the computational
cost of this approach is O(KN).

4.2.2 Case 2: Conditionally dependent labels

Instead of complete independence of the importance labels,
we can factorise the joint distribution as follows:

q(θ1:K) =
K∏

i=1

qi|1:i−1(θi|θ1:i−1) (8)

where we define q1|0(·) , q1(·), as given in equation (7).
The success of this choice of importance function (in terms
of minimising the variance of the importance weights) is
clearly dependent upon the ordering of the terms in the la-
tent space, but we assert that by relaxing the assumption (6)
one should see an improvement in performance.

Now, a sensible choice of importance function for i ≥ 1,
qi|1:i−1( ·|m1, . . . , mi−1), a pmf on {1, 2, . . . , N} for each
(m1, . . . ,mi−1) ∈ {1, 2, . . . , N}i−1 is given by:

qi|1:i−1(θi| θ1:i−1 = m1:i−1)∝
∫

φ(x)f (θi)
i

i−1∏

j=1

f
(mj)
j dx.

It is worth noting, however, that the use of this proposal
is computationally more restrictive than (6), (it is order
O(KN2)) and suffers from the same analytic tractability
issues.

5 Auxiliary particle belief propagation
It is instructive at this point to remove oneself from the ab-
stract concepts used in the previous section and return to
the numerical approximation of the posterior belief (and
the intermediate messages) in a (time invariant) graphical
model. The problem that we face is that it is not possible in
the most general case to sample from the product appear-
ing in the proposal distributions, nor are we able to analyti-
cally calculate the integrals appearing in the auxiliary vari-
able proposal. An approximation to the optimal importance
function therefore has to be made. In this paper we consider
an Unscented approximation, in analogy to the Unscented
Particle Filter[11], since such an approximation is deemed
to be most flexible. Other similar approximations, such as
a first order Taylor series approximation or a variational ap-
proximation, could also be used. As was highlighted earlier
in the paper, the proposal distributions for the message and
belief updates are structurally very similar and so we do not

differentiate between the two in the ensuing discussion, for
brevity.

We stress at this point that the approximations intro-
duced in the previous section are approximations of the im-
portance functions used; no such ad hoc approximations
are used in the approximation of the marginal posterior
probabilities nor the messages. Such entities are approx-
imated using the theoretically rigorous (sequential) impor-
tance sampling mechanism, a concept which is known to be
asymptotically optimal. Whilst it may appear that many ap-
proximations have been suggested in the previous section,
this is clearly not the case for the quantities of interest.

5.1 Sampling the component labels
To sample the component labels in the product of mixtures,
one is required to calculate the following integral (we con-
sider (6) since an analogy to the more complicated case will
be discussed in the following section):

qi(θi = mi) ∝
∫

pj(yj |xj)ψj,i(xi, x
mi
j )dxi

where for clarity we have dropped the dependence on the
iteration number. In the most general this integral is an-
alytically intractable and so an approximation has to be
made, although this does not compromise any theoretical
considerations since this is an approximation only to the
importance function. An Unscented approximation to this
integral, as suggested in reference [1], would involve pro-
ducing a set of sigma points {x̂(l)

j }W
l=1 with corresponding

weights α(l) in the usual manner, to allow one to determine
the mean:

qi(θi = mi) ∝
W∑

l=1

α(l)pj

(
yj |ψj,i(x

(mi)
i , x̂

(l)
j )

)
.

5.2 Sampling the state
The Unscented approximation for the proposal distribution
is conducted in two stages: we first approximate the prod-
uct term (denoted the “prior”) and then approximate the
Kalman filter update by incorporating information from the
“likelihood”. So, for the first stage, we form an Gaussian
approximation to each of the terms in the product using a
set of weighted sigma points. The mean and covariance are
calculated for all terms in the product (k ∈ S) as:

µj,k
x =

W∑

l=1

α(l)ψj,k(x(mk)
k , x̂

(l)
j )

P j,k
xx =

W∑

l=1

α(l)(ψj,k(x(mk)
k , x̂

(l)
j )− µj,k

x )

× (ψj,k(x(mk)
k , x̂

(l)
j )− µj,k

x )T .

The mean and covariance of the product of terms are calcu-
lated:

µj
x = P j

xx

(∑

k∈S
(P j,k

xx )−1µj,k
x

)

P j
xx =

(∑

k∈S
(P j,k

xx )−1

)−1

,



with a further set of sigma points chosen from the Gaussian:

N

([
µj

x

0

]
,

[
P j

xx 0
0 R

])
,

where R is the measurement noise covariance. The sigma
points are then used to determine the following moments:

µj
y =

W∑

l=1

α̃(l)φj(x̂
(l)
j , ν̂

(l)
j )

P j
yy =

W∑

l=1

α̃(l)φj(x̂
(l)
j , ν̂

(l)
j )− µj

y)

× (φj(x̂
(l)
j , ν̂

(l)
j )− µj

y)T

P j
xy =

W∑

l=1

α̃(l)(x̂(l)
j − µj

x)(φj(x̂
(l)
j , ν̂

(l)
j )− µj

y)T ,

where φj is the usual functional representation of the mea-
surement to the latent state and measurement noise, νj . Fi-
nally, the mean µj and covariance P j of the Unscented ap-
proximation of the optimal importance function are calcu-
lated as follows:

µj =µj
x + P j

xy(P j
yy)−1(yj − µj

y) (9)

P j =P j
xx − P j

xy(P j
yy)−1PT

xy. (10)

5.3 Weight update

The normalised weight for the belief update can now be
written as:

w
(l),n
i ∝ w

(l),n−1
i ×

pi(yi|x(l),n
i )

∏
j∈N (i) w

(θ
(l)
j ),n

(j,i) ψj,i(x
(l),n
i , x

(θ
(l)
j ),n

(j) )

q(θ(l)
1:K)q(x(l),n

i |θ(l)
1:K)

,

(11)
and the normalised weight for the message update can be
written as:

w
(l),n
(j,i) ∝ w

(l),n−1
(j,i) ×

pj(yj |x(l),n
(j) )

∏
k∈N (j)\i w

(θ
(l)
k ),n−1

(k,j) ψk,j(x
(l),n
(j) , x

(θ
(l)
k ),n−1

(k) )

q(θ(l)
1:K)q(x(l),n

j |θ(l)
1:K)

.

(12)
To ensure that the algorithm has converged, we employ a

similar tactic to that in standard (discrete/Gaussian) cases,
with the main difference being the introduction of a set of
test functions that are integrated using the particle approx-
imation. Consider the set of (user-defined) test functions:
ϕ1, . . . , ϕq . Using the particle approximations of the be-
liefs at times n and n − 1, we can introduce the following
rule of (algorithmic) convergence assessment:

Terminate if: max
α

∣∣∣< b
(n)
i , ϕα >−< b

(n−1)
i , ϕα >

∣∣∣ < ε,

for some suitable threshold ε > 0, tested ∀ i ∈ V .

Pseudo-code for the APBP algorithm is given below:

AUXILIARY PARTICLE BELIEF PROPAGATION
For each node; While not converged:

1. For i = 1, . . . , N (message or belief update):

• Sample the component label:

– Using an unscented approximation to (6) or
(8) as detailed in section 5.1, sample the
component label.

• Sample the state:

– Conditioned on the component label, use an
unscented approximation to the posterior as
detailed in section 5.2 to form an importance
function and sample the state.

• Re-weight according to (11) or (12).

2. Resample using standard techniques if necessary.

6 Sequential auxiliary particle belief
propagation

Perhaps the most important contribution within this paper
is within this section; developing the ability to perform on-
line efficient inference in a temporally evolving graphical
model using Sequential Monte Carlo (SMC) techniques.
Clearly, one could employ a standard particle filter on the
joint space of all of the nodes in the graphical model and in-
tegrate to determine the marginal estimates, but this would
be wasteful since one is not exploiting the conditional inde-
pendence of the graphical structure. Moreover, such sam-
pling would remove the ability to perform decentralised
processing, which is a necessity in distributed fusion as well
as other real world systems. We now extend our proposed
APBP algorithm to account for a time dimension in the in-
ference problem.

6.1 Sequential Belief Propagation
Let xi,t and yi,t denote the latent and observed variables
at time t, respectively. We make the following standard
Markov assumption for the time dimension:

p(xt|xt−1) =
∏

i∈V
p(xi,t|xi,t−1).

The marginal belief at time t is then:

p(xi,t|y1:t) ∝ p(xi,t, yt|y1:t−1)

∝
∫ ∏

k∈V
pi(yk,t|xk,t)p(xk,t|y1:t−1)

×
∏

(i,j)∈E
ψj,i(xi,t, xj,t)dx\{i},t,



where we have assumed a time-inhomogeneous likelihood
for notational simplicity. The belief update and message
update, in analogy to (1) and (2) respectively, can be written
as:

pn(xi,t|y1:t) ∝pi(yi,t|xi,t)p(xi,t|y1:t−1)
∏

j∈N (i)

mn
j,i,t(xi,t)

mn
j,i,t(xi) ∝

∫
ψj,i(xi,t, xj,t)pj(yj,t|xj,t)p(xj,t|y1:t−1)

×
∏

k∈N (j)\i
mn−1

k,j,t(xj,t)dxj,t,

where:

p(xj,t|y1:t−1) =
∫

p(xj,t|xj,t−1)p(xj,t−1|y1:t−1)dxt−1.

It is noted that a similar formulation was provided in refer-
ence [3], where the authors (in the sequential case) use the
(time-dependent) prior p(xi,t|xi,t−1) as their importance
function. However, it is not clear how the authors circum-
vent the computational explosion/tractability issues present
in such importance sampling schemes.

6.2 Weight update

The algorithm described within this section is a straight-
forward extension of the auxiliary concepts: one again
samples an auxiliary variable (set of components in the
products of mixtures) and then samples the state condi-
tional on the auxiliary variable. The inclusion of the prior
only brings about a further auxiliary variable (denoted
γj in the product, and thus increases the dimension of
the auxiliary variable), and since the true distribution has
changed, the normalised weight for the belief update is
given as:

w
(l),n
j,t ∝ w

(l),n−1
j,t pj(yj,t|x(l),n

j,t )×

w
(γ

(l)
j )

j,t−1p(x(l),n
j,t |x(γ

(l)
j )

j,t−1)
∏

j∈N (l) w
(θ

(l)
i )

(j,i),tψj,i(x
(θ

(l)
i )

(i),t , x
(l),n
j,t )

q(θ(l)
1:K , γ

(l)
j )q(x(l),n

j,t |θ(l)
1:K , γ

(l)
j )

,

with the normalised weight for the message update given
as:

w
(l),n
(j,i),t ∝ w

(l),n−1
(j,i),t pj(yj,t|x(l),n

(j),t )w
(γ

(l)
j )

j,t−1p(x(l),n
(j),t |x

(γ
(l)
j )

j,t−1)×

∏
k∈N (j)\i w

(θ
(l)
k )
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.

Clearly one can perform “standard” particle filtering to
determine an initial message for each of the nodes, by con-
sidering a particle approximation to the local posterior dis-
tribution p(xt,i|y1:t−1, yt,i). This allows for a more intu-
itive understanding for the initial messages and experimen-
tal results have shown that it has reduced the variance of the
weights of the message passing algorithm.

7 Results

In this section, we demonstrate the SAPBP algorithm on
articulated object tracking, specifically pose estimation of
a human. It is not the intention of this section to perform
novel “computer vision”, we merely use this as a simple
mechanism to display results from our algorithm.

7.1 Articulated object tracking

Articulated object tracking is becoming a pertinent problem
in many application domains (from military to medical).
In this paper, we consider the application of the SAPBP
methodology to the articulated tracking of a human (one
performing a “back-flip”), with the problem being the esti-
mation of 3-D position of a defined set of proximal joints
(e.g. head, torso). The dataset we use comes from a mo-
tion capture system, whereby a human is tagged with a set
of infra-red reflective markers which enables one to pro-
duce a set of measurements at each of the markers. The
task is to then infer, from this noisy set of measurements
(at each time instance), empirical approximations to the re-
quired expectations within a skeletal graphical model struc-
ture to thus estimate the pose. This problem is a simplified
version of that in reference [9], which considers the prob-
lem of pose estimation within a sequence of images. How-
ever, [9] does not allow online estimation, but does consider
the more difficult problem of markerless 3D pose estima-
tion in a video sequence. We adopt a similar potential func-
tion modelling approach as that used in [9], although the
likelihood function within our model is much simpler since
we do not have the additional detection (within a video se-
quence) to consider. We consider a constant velocity model
for the motion consideration in the time axis. The estimated
“skeletal” structure for several randomly selected time in-
stances is displayed in Figure 14.

8 Conclusions and Further Work

This paper has introduced an Auxiliary Particle Belief Prop-
agation algorithm, which is an importance sampling based
approximation to the messages and the beliefs in the BP al-
gorithm, for inference on graphical models (and so facilitat-
ing decentralised data fusion). Through the introduction of
an auxiliary variable, it was shown that it is possible to re-
duce the computational complexity of an importance sam-
pling approach to be linear in the number of particles, whilst
also sampling from an approximation to the ”optimal” im-
portance function; optimal in the sense that the variance
of the weights is minimised. This approach is prevalent in
the particle filtering literature. Perhaps the most important
contribution within this paper is the ability perform online
inference in time evolving graphical models. This exten-
sion is very important for the design of truly distributed
data fusion (and tracking system) architectures. A straight-
forward extension of this work would be to employ Rao-
Blackwellisation, where appropriate, to further minimise

4An avi file containing the results can be downloaded from
www-sigproc.eng.cam.ac.uk/∼ mb511/avifiles/SAPBPresults.avi
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Fig. 1: Articulated object tracking results from the applica-
tion of the SAPBP algorithm, (MAP estimates) displayed
at 4 randomly chosen time instances.

the variance of the estimates. In addition, considering a
fixed-lag over the temporal aspect would improve results.

In future work, we aim to apply this algorithm to the
articulated tracking of multiple humans in a sequence of
video images where data association ambiguity is present.
We also aim to study decentralised tracking architectures,
where one could also consider the dimension of the joint
state of the targets to be a random variable itself.
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