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Sequential Monte Carlo (SMC) methods are a powerful set of simulation-based
techniques for sampling sequentially from a sequence of complex probability distribu-
tions. These methods rely on a combination of importance sampling and resampling
techniques. In a Markov chain Monte Carlo (MCMC) framework, block sampling strate-
gies often perform much better than algorithms based on one-at-a-time sampling strate-
gies if “good” proposal distributions to update blocks of variables can be designed.
In an SMC framework, standard algorithms sequentially sample the variables one at
a time whereas, like MCMC, the efficiency of algorithms could be improved signif-
icantly by using block sampling strategies. Unfortunately, a direct implementation of
such strategies is impossible as it requires the knowledge of integrals which do not
admit closed-form expressions. This article introduces a new methodology which by-
passes this problem and is a natural extension of standard SMC methods. Applications
to several sequential Bayesian inference problems demonstrate these methods.

Key Words: Block sequential Monte Carlo; Importance sampling; Markov chain Monte
Carlo; Optimal filtering; Particle filtering; State-space models.

1. INTRODUCTION

Sequential Monte Carlo (SMC) methods are a set of flexible simulation-based meth-
ods for sampling from a sequence of probability distributions; each distribution being only
known up to a normalizing constant. These methods were originally introduced in the early
1950s by physicists and have become very popular over the past few years in statistics and
related fields, see Chopin (2002, 2004); Gilks and Berzuini (2001); Künsch (2005); Liu
(2001); Pitt and Shephard (1999). For example, these methods are now extensively used
to solve sequential Bayesian inference problems arising in econometrics, advanced signal
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processing or robotics; see Doucet, de Freitas, and Gordon (2001) for a comprehensive
review of the literature. SMC methods approximate the sequence of probability distribu-
tions of interest using a large set of random samples, named particles. These particles are
propagated over time using simple importance sampling (IS) and resampling mechanisms.
Asymptotically, that is, as the number of particles goes to infinity, the convergence of these
particle approximations towards the sequence of probability distributions can be ensured
under very weak assumptions as discussed by Del Moral (2004). However, for practical
implementations, a finite and sometimes quite restricted number of particles has to be con-
sidered. In these cases, it is crucial to design efficient sampling strategies in order to sample
particles in regions of high probability mass.

A large amount of effort has been devoted to deriving improved schemes for: (1) sam-
pling particles based on tailored importance densities (e.g., Carpenter, Clifford, and Fearn-
head 1999; Doucet, Godsill, and Andrieu 2000; Guo, Wang, and Chen 2005; Liu and
Chen 1998; Pitt and Shephard 1999), (2) MCMC steps to rejuvenate the particle popula-
tion (e.g., Chopin 2002; Doucet, Gordon, and Krishnamurthy 2001; Fearnhead 2002; Gilks
and Berzuini 2001), and (3) look-ahead techniques (e.g., Grassberger 1997; Liu 2001;
Meirovitch 1985; Wang, Chen, and Guo 2002). However, tailored importance densities at-
tempt to sample only one variable at a time, Markov chain Monte Carlo (MCMC) steps
require the use of fast mixing kernels for good performance, and look-ahead techniques are
computationally expensive as they typically require a “local” Monte Carlo integration for
each particle. We propose here an alternative approach that allows us to extend the class of
importance sampling distributions in a plethora of applications without having to perform
any local Monte Carlo integration. Guidelines for the design of efficient sampling schemes
based on this new framework are given. The resulting methods are natural and principled
extensions of standard SMC schemes. They can be applied in a straightforward way wher-
ever SMC methods are currently used. We demonstrate their efficiency on various optimal
filtering problems.

The rest of this article is organized as follows. In Section 2, standard SMC methods are
briefly reviewed and we outline their limitations. The new importance sampling approach
is presented in Section 3. In Section 4, we illustrate our methodology using several optimal
filtering problems. Finally, we give a brief discussion and draw conclusions in Section 5.

2. SEQUENTIAL MONTE CARLO METHODS

In this section we introduce the notation, briefly describe standard SMC methods, and
outline their limitations—see Del Moral (2004); Doucet et al. (2000); Liu (2001) for further
details. Let us consider a sequence of probability distributions {πn}n≥1 such that πn is
defined on the product spaceEn = En and admits a density denoted πn (x1:n) with respect
to a dominating measure (typically Lebesgue) where, for any general sequence {zk} , we
write zi:j = (zi, zi+1, . . . , zj). Each density is known up to a normalizing constant, that is,

πn (x1:n) = Z−1
n γn (x1:n) ,

where γn : En → R
+ can be evaluated pointwise whereas Zn is unknown.



EFFICIENT BLOCK SAMPLING STRATEGIES 3

SMC methods are a class of algorithms for approximately sampling sequentially from
{πn}; that is, first sample from π1 then π2 and so on. By sampling, we mean obtaining at

time n a collection ofN (N � 1) weighted random samples
{
W

(i)
n , X

(i)
1:n

}
, i = 1, . . . , N ,

with W (i)
n > 0 and

∑N
i=1W

(i)
n = 1 satisfying, for any πn-integrable function ϕn,

N∑
i=1

W (i)
n ϕn

(
X

(i)
1:n

)
→

N→∞

∫
ϕn (x1:n)πn (x1:n) dx1:n.

These random samples are known as particles and are propagated through time using im-
portance sampling and resampling mechanisms.

A popular application of SMC methods is optimal filtering, where a latent Markov
process {Xn}n≥1 is only observed through a sequence of noisy observations {Yn}n≥1.
In this case the target distribution πn (x1:n) = p (x1:n| y1:n) is the posterior distribution
of X1:n given a realization of the observations Y1:n = y1:n; see Section 4 for additional
details.

2.1 STANDARD SMC METHODS

We first describe the standard sequential importance sampling resampling (SISR)
scheme. At time n − 1, assume a set of weighted particles

{
W

(i)
n−1, X

(i)
1:n−1

}
approxi-

mating πn−1 is available. Note that a random sample/particle X(i)
1:n−1 represents a path

from time 1 to n − 1. The probability density of moving to xn when the current path is
x1:n−1 is denoted qn (xn|x1:n−1). The densities {qn} are parameters of the algorithm to
be selected by the user. The algorithm proceeds as follows at time n.

1.  Sample X(i)
n ∼ qn(·|X(i)

1:n−1).

2. Update and normalize the weights

W (i)
n ∝W (i)

n−1
πn(X(i)

1:n)

πn−1(X
(i)
1:n−1)qn(X(i)

n |X(i)
1:n−1)

. (2.1)

3.  If the degeneracy of
{
W

(i)
n

}
is high, resample

{
X

(i)
1:n

}
according to

{
W

(i)
n

}
to

obtain N unweighted particles also denoted
{
X

(i)
1:n

}
(i.e., weights of resampled

particlesW (i)
n ← N−1).

The resampling step is necessary as, in most cases, the variance of the importance
weights tends to increase over time. Thus, after a small number of time steps, all particles
except a few have negligible weights. In the resampling operation, we associate to each
particle a number of offspring proportional to its weight. Hence we focus the future compu-
tational efforts on the zones of high probability; see Doucet, de Freitas, and Gordon (2001)
for several standard resampling schemes. The degeneracy of the particle representation is
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typically measured using the effective sample size (ESS), as stated by Liu and Chen (1998):

ESS =

(
N∑

i=1

W (i)2
n

)−1

. (2.2)

The ESS takes values between 1 andN ; if the ESS is below a given threshold, sayN/2, then
we resample; (Liu 2001, chap. 3). After the resampling step, the particles are approximately
distributed according to πn.

Expression (2.1) follows from

πn(x1:n)
µn(x1:n)︸ ︷︷ ︸
new weight

=
πn−1(x1:n−1)
µn−1(x1:n−1)︸ ︷︷ ︸

previous weight

πn(x1:n)
πn−1(x1:n−1)qn(xn|x1:n−1)︸ ︷︷ ︸

incremental weight

,

where µn is the distribution of
{
X

(i)
1:n

}
after the sampling step; that is, if the last resampling

step occurred at time p (p < n) one has approximately

µn (x1:n) = πp (x1:p)
n∏

k=p+1

qk (xk|x1:k−1) .

The SISR algorithm has a computational complexity of orderO (N) and, for many practical
applications such as optimal filtering, the calculation of the incremental weight has a fixed
computational complexity. An alternative, popular SMC method is the auxiliary approach
introduced by Pitt and Shephard (1999) in the context of optimal filtering.

The efficiency of the algorithms described above is highly dependent on the choice
of the importance distributions {qn}. The variance of importance sampling estimates can
be shown to be approximately proportional to one plus the variance of the unnormalised
importance weights; Liu (2001). In practice, the resampling step introduces correlations
between particles and the variance expression is much more complex, see Chopin (2004);
Del Moral (2004); Künsch (2005). However, it remains sensible to try to minimize the
variance of the unnormalized importance weights appearing in the SISR algorithm.

In current approaches, the only degree of freedom we have at time n is the importance

distribution qn (xn|x1:n−1) as the paths
{
X

(i)
1:n−1

}
previously sampled are not modified. In

this case, we are restricted to looking at the minimization of the variance of the incremental

weights conditional upon
{
X

(i)
1:n−1

}
. It is well known and straightforward to establish that

this conditional variance is minimized for

qopt
n (xn|x1:n−1) = πn (xn|x1:n−1) . (2.3)

Using this distribution, the incremental importance weight is given by

πn(x1:n)
πn−1 (x1:n−1) q

opt
n (xn|x1:n−1)

=
πn (x1:n−1)
πn−1 (x1:n−1)

. (2.4)

However, it can be difficult to sample from πn (xn|x1:n−1) and/or to compute πn (x1:n−1).
Various methods have been proposed to approximate them. For example, in the optimal fil-
tering context, πn (xn|x1:n−1) and πn (x1:n−1) are typically approximated using standard
suboptimal filtering techniques such as the extended Kalman filter; see, for example, Car-
penter et al. (1999); Doucet et al. (2000); Guo et al. (2005); Pitt and Shephard (1999).
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2.2 LIMITATIONS

Standard SMC methods suffer from several limitations. It is important to emphasize at
this point that, even if the importance distribution (2.3) can be used or well approximated,
this does not guarantee that the SMC algorithm will be efficient. Indeed, if the discrepancy
between two consecutive distributions πn (x1:n−1) and πn−1 (x1:n−1) is high, then the
variance of the incremental weight (2.4) will be high. Consequently it will be necessary to
resample very often and the particle approximation of the joint distribution

π̂n (dx1:n) =
N∑

i=1

W (i)
n δ

X
(i)
1:n

(dx1:n)

will be unreliable. In particular, for k << n the marginal distribution π̂n (dx1:k) will
only be approximated by a few if not one unique particle because the algorithm will have
resampled many times between times k and n. The problem with approaches discussed

until now is that only the variables
{
X

(i)
n

}
are sampled at time n but the paths values{

X
(i)
1:n−1

}
remain fixed. An obvious way to improve the algorithm would consist of not

only sampling
{
X

(i)
n

}
at time n but also modifying the values of the paths over a fixed lag{

X
(i)
n−L+1:n−1

}
for L > 1 in light of πn; L being fixed or upper bounded to ensure that we

have a sequential algorithm. The objective of this approach is not only to sample
{
X

(i)
n

}
in regions of high probability mass but also to modify the path values

{
X

(i)
n−L+1:n−1

}
to

move them towards these regions. This approach is conceptually simple. Unfortunately, we
will see that a direct naive implementation of it is impossible as it would require calculating
an intractable integral for each particle. In the next section we present an original approach
which allows us to circumvent this problem.

3. EFFICIENT BLOCK SAMPLING STRATEGIES FOR SMC

3.1 EXTENDED IMPORTANCE SAMPLING

At time n − 1, assume a set of weighted particles
{
W

(i)
n−1, X

(i)
1:n−1

}
approximating

πn−1 is available. We propose not only to extend the current paths but also to sample again
a section of their paths over a fixed lag. Let qn

(
x′

n−L+1:n

∣∣x1:n−1
)

denote the probabil-
ity density of moving to x′

n−L+1:n when the current path is x1:n−1; that is, we sample

X
′(i)
n−L+1:n ∼ qn(·|X(i)

1:n−1), construct the new paths
{
X

(i)
1:n−L, X

′(i)
n−L+1:n

}
, and discard{

X
(i)
n−L+1:n−1

}
. Letting µn−1 denote the distribution of

{
X

(i)
1:n−1

}
at time n − 1, the

distribution of
{
X

(i)
1:n−1, X

′(i)
n−L+1:n

}
is thus given by

µn

(
x1:n−1, x

′
n−L+1:n

)
= µn−1 (x1:n−1) qn(x′

n−L+1:n|x1:n−1) (3.1)
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and hence the distribution of the paths of interest
{
X

(i)
1:n−L, X

′(i)
n−L+1:n

}
is

µn

(
x1:n−L, x

′
n−L+1:n

)
=
∫
µn

(
x1:n−1, x

′
n−L+1:n

)
dxn−L+1:n−1. (3.2)

We would like to correct for the discrepancy between πn

(
x1:n−L, x

′
n−L+1:n

)
and

µn

(
x1:n−L, x

′
n−L+1:n

)
by using importance sampling. However there are two problems

with this approach. First, it is usually impossible to compute µn

(
x1:n−L, x

′
n−L+1:n

)
point-

wise up to a normalizing constant. Second, even if it were possible, there would no longer
be a simple expression such as (2.1) for the weight update.

To deal with this problem, the key idea is to perform importance sampling on the

enlarged space associated with
{
X

(i)
1:n−1, X

′(i)
n−L+1:n

}
as their joint probability distribution

(3.1) does not involve any integral. To do this it is necessary to extend the dimensionality of
the target distribution πn

(
x1:n−L, x

′
n−L+1:n

)
to be able to perform importance sampling.

We introduce an artificial conditional distribution λn

(
xn−L+1:n−1|x1:n−L, x

′
n−L+1:n

)
that allows us to define a new extended target distribution

πn

(
x1:n−L, x

′
n−L+1:n

)
λn

(
xn−L+1:n−1|x1:n−L, x

′
n−L+1:n

)
.

As one can see, by construction, this artificial target distribution admits the required distri-
bution πn

(
x1:n−L, x

′
n−L+1:n

)
as a marginal. So if we perform IS to estimate this artificial

target distribution, then marginally we will obtain an estimate of πn

(
x1:n−L, x

′
n−L+1:n

)
.

It is now easy to estimate the incremental weight using the following relation

πn

(
x1:n−L, x

′
n−L+1:n

)
λn

(
xn−L+1:n−1|x1:n−L, x

′
n−L+1:n

)
µn

(
x1:n−1, x′

n−L+1:n

)
=
πn−1 (x1:n−1)
µn−1 (x1:n−1)

πn

(
x1:n−L, x

′
n−L+1:n

)
λn

(
xn−L+1:n−1|x1:n−L, x

′
n−L+1:n

)
πn−1 (x1:n−1) qn(x′

n−L+1:n|x1:n−1)
(3.3)

as this does not involve any integration.
Note that in this framework, πn−1 (x1:n−1) /µn−1 (x1:n−1) does not correspond to the

importance weight calculated at timen−1 because we also use artificial distributions before
time n. However, if we express the target distribution at time n as πn multiplied by all the
artificial distributions introduced until time n then the following block SISR algorithm
weights the particles consistently at time n; see Appendix for details.

At time n < L

1. Sample X ′(i)
1:n ∼ qn(·|X(i)

1:n−1).

2. Update and normalize the weights

W (i)
n ∝W (i)

n−1

πn(X ′(i)
1:n )λn

(
X

(i)
1:n−1

∣∣∣X ′(i)
1:n

)
πn−1(X

(i)
1:n−1)qn(X ′(i)

1:n |X(i)
1:n−1)

.

3.  Set
{
X

(i)
1:n

}
←
{
X

′(i)
1:n

}
.
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4. If the degeneracy of
{
W

(i)
n

}
is high, resample

{
X

(i)
1:n

}
according to

{
W

(i)
n

}
to obtain

N  unweighted particles (that is, weights of resampled particles W (i)
n ← N−1).

 At time n ≥ L
5.  Sample X ′(i)

n−L+1:n ∼ qn(·|X(i)
1:n−1).

6.  Update and normalize the weights

W (i)
n ∝W (i)

n−1

πn(X(i)
1:n−L, X

′(i)
n−L+1:n)λn

(
X

(i)
n−L+1:n−1

∣∣∣X(i)
1:n−L, X

′(i)
n−L+1:n

)
πn−1(X

(i)
1:n−1)qn(X ′(i)

n−L+1:n|X(i)
1:n−1)︸ ︷︷ ︸

incremental weight

. (3.4)

7.  Set
{
X

(i)
1:n

}
←
{
X

(i)
1:n−L, X

′(i)
n−L+1:n

}
.

8.  If the degeneracy of
{
W

(i)
n

}
 is high, resample

{
X

(i)
1:n

}
 according to

{
W

(i)
n

}
 to

obtainN  unweighted particles (i.e., weights of resampled particlesW (i)
n ← N−1 ).

We adopt the convention π0(x1:0) = 1 andλ1 (x1:0|x′
1) = 1. This algorithm is a simple

and principled extension of the standard SISR procedure. An auxiliary version of this method
in the spirit of Pitt and Shephard (1999) can also be obtained. General convergence results
developed for SMC methods apply in a straightforward way; see Del Moral (2004). Indeed,
the only difference is that instead of sampling from the initial sequence of distributions, we
now sample from a sequence of extended distributions defined in the Appendix.

Clearly the performance of the algorithm is highly dependent on the artificial distri-
butions {λn} and the importance distributions {qn}. In the next subsection, we provide
guidelines on how to select these distributions so as to optimise the performance of the
algorithm.

3.2 ALGORITHMIC SETTINGS

We first address the selection of the artificial distributions {λn}. To select them, we
propose to minimize the variance of the incremental importance weight appearing in (3.4).
We will denote this incremental weight wn

(
x1:n−1,x

′
n−L+1:n

)
.

Proposition 1. The conditional distribution λn

(
xn−L+1:n−1|x1:n−L, x

′
n−L+1:n

)
which minimizes the variance of the incremental importance weightwn

(
x1:n−1,x

′
n−L+1:n

)
is given by

λopt
n

(
xn−L+1:n−1|x1:n−L, x

′
n−L+1:n

)
=

πn−1(x1:n−1)qn(x′
n−L+1:n|x1:n−1)∫

πn−1(x1:n−1)qn(x′
n−L+1:n|x1:n−1)dxn−L+1:n−1

(3.5)

and in this case the incremental weight takes the form

wopt
n

(
x1:n−L,x

′
n−L+1:n

)
=

πn

(
x1:n−L, x

′
n−L+1:n

)∫
πn−1(x1:n−1)qn(x′

n−L+1:n|x1:n−1)dxn−L+1:n−1
. (3.6)
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 Proof of Proposition 1: The result follows from the variance decomposition formula

var
[
wn

(
X1:n−1,X

′
n−L+1:n

)]
= E

[
var
[
wn

(
X1:n−1,X

′
n−L+1:n

)∣∣X1:n−L, X
′
n−L+1:n

]]
+var

[
E
[
wn

(
X1:n−1,X

′
n−L+1:n

)∣∣X1:n−L, X
′
n−L+1:n

]]
. (3.7)

The second term on the right-hand side of (3.7) is independent ofλn (xn−L+1:n−1|x1:n−L ,

x′
n−L+1:n

)
as

E
[
wn

(
X1:n−1,X

′
n−L+1:n

)∣∣X1:n−L, X
′
n−L+1:n

]
=

∫
πn

(
x1:n−L, x

′
n−L+1:n

)
λn

(
xn−L+1:n−1|x1:n−L, x

′
n−L+1:n

)
πn−1 (x1:n−1) qn(x′

n−L+1:n|x1:n−1)

× πn−1(x1:n−1)qn(x′
n−L+1:n|x1:n−1)∫

πn−1(x1:n−1)qn(x′
n−L+1:n|x1:n−1)dxn−L+1:n−1

dxn−L+1:n−1

= wopt
n

(
x1:n−L,x

′
n−L+1:n

)
.

The termE
[
var
[
wn

(
X1:n−1,X

′
n−L+1:n

)∣∣X1:n−L+1, X
′
n−L+1:n

]]
is equal to zero if one

uses the expression (3.5) for λn as in this case the incremental weight becomes independent
of xn−L+1:n−1.

This result is intuitive and simply states that the optimal artificial distribution λopt
n is

the one that takes us back to the case where we perform importance sampling on the space
where the variables xn−L+1:n−1 are integrated out. In practice, it is typically impossible
however to use λopt

n and wopt
n , as the marginal distribution∫

πn−1(x1:n−1)qn(x′
n−L+1:n|x1:n−1)dxn−L+1:n−1 (3.8)

cannot be computed in closed form. There is an important exception. If
qn(x′

n−L+1:n|x1:n−1) = qn(x′
n−L+1:n|x1:n−L), then (3.8) does not involve an integral

and

λopt
n

(
xn−L+1:n−1|x1:n−L, x

′
n−L+1:n

)
= πn−1(xn−L+1:n−1|x1:n−L), (3.9)

wopt
n

(
x1:n−L,x

′
n−L+1:n

)
=

πn

(
x1:n−L, x

′
n−L+1:n

)
πn−1(x1:n−L)qn(x′

n−L+1:n|x1:n−L)
. (3.10)

As is the case with standard SMC previously discussed,πn−1(x1:n−L) is typically unknown.
However, λn could be selected so as to approximate (3.9). We emphasize that even if it is
not equal to (3.9), this procedure still yields asymptotically consistent estimates.

Having optimized λn, we now consider the distributions {qn} that minimise the condi-
tional variance of the incremental importance weight (3.6).

Proposition 2. The importance distribution qn
(
x′

n−L+1:n

∣∣x1:n−1
)

which minimizes
the variance of the “λn-optimized” incremental weight wopt

n

(
x1:n−1,x

′
n−L+1:n

)
condi-

tional upon x1:n−L is given by

qopt
n

(
x′

n−L+1:n

∣∣x1:n−1
)

= πn(x′
n−L+1:n

∣∣x1:n−L) (3.11)



EFFICIENT BLOCK SAMPLING STRATEGIES 9

and in this case wopt
n

(
x1:n−1,x

′
n−L+1:n

)
satisfies

wopt
n

(
x1:n−1,x

′
n−L+1:n

)
=

πn (x1:n−L)
πn−1(x1:n−L)

. (3.12)

Proof of Proposition 2: The proof is straightforward as it is easy to check that the
conditional variance of wopt

n is equal to zero for qopt
n given in (3.11). The expression (3.12)

follows by inserting (3.11) into (3.6).
Note that this result is a straightforward extension of the standard case where L = 1 as

discussed in (2.3)–(2.4).
In practice, it follows from Propositions 1 and 2 that we should aim to design impor-

tance distributions {qn} which approximate (3.11) and then select artificial distributions
{λn} to approximate (3.9). So, if we use an approximation π̂n(x′

n−L+1:n

∣∣x1:n−L) of
πn(x′

n−L+1:n

∣∣x1:n−L) for the importance distribution, we can also use an approxima-
tion π̂n−1(xn−L+1:n−1|x1:n−L) of πn−1(xn−L+1:n−1|x1:n−L) of the optimal artificial
distribution. In this case, the block SISR algorithm proceeds as follows at time n (n ≥ L).

1.  Sample X ′(i)
n−L+1:n ∼ π̂n(·|X(i)

1:n−L).

2.  Update and normalize the weights

W (i)
n ∝W (i)

n−1

πn(X(i)
1:n−L, X

′(i)
n−L+1:n)π̂n−1

(
X

(i)
n−L+1:n−1

∣∣∣X(i)
1:n−L

)
πn−1(X

(i)
1:n−1)π̂n(X ′(i)

n−L+1:n|X(i)
1:n−L)

.

3.  Set
{
X

(i)
1:n

}
←
{
X

(i)
1:n−L, X

′(i)
n−L+1:n

}
.

4.  If the degeneracy of
{
W

(i)
n

}
is high, resample

{
X

(i)
1:n

}
according to

{
W

(i)
n

}
to

obtain N unweighted particles (i.e., weights of resampled particles W (i)
n ← N−1).

3.3 DISCUSSION

The resample-move (RM) strategy proposed by Gilks and Berzuini (2001) (see also
Doucet, Gordon, and Krishnamurthy 2001; Fearnhead 2002) is a popular alternative method
to limit the degeneracy of the particle population. It can also be interpreted as sampling from
a sequence of artificially extended distributions. Assume we have samples
{W (i)

n−1, X
(i)
1:n−1} approximating πn−1. At time n, the RM algorithm first uses a stan-

dard SISR step as described in Section 2. Then the paths between time n − L + 1 and n
are “moved” according to an MCMC kernel qn(x′

n−L+1:n|x1:n) of invariant distribution
πn(xn−L+1:n|x1:n−L) and their weights are not modified. This MCMC step corresponds
to sampling from an extended distribution

πn

(
x1:n−L, x

′
n−L+1:n

)
λn

(
xn−L+1:n|x1:n−L, x

′
n−L+1:n

)
where the artificial measure is given by

λn

(
xn−L+1:n|x1:n−L, x

′
n−L+1:n

)
=
πn (x1:n) qn(x′

n−L+1:n|x1:n)
πn

(
x1:n−L, x′

n−L+1:n

) .
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In practice, one introduces a resampling step between the standard SISR step and the MCMC
step if the degeneracy of the importance weights is high. If this step was not introduced, then
RM would be inefficient. Indeed, even if one had a very fast mixing MCMC kernel, then the
weights (2.1) would not be modified. This is suboptimal. The introduction of a resampling
step mitigates this problem but, contrary to the block sampling strategies described in the
previous section, RM can only limit the path degeneracy over a lag of length L. This is
demonstrated in Section 4.

In the context of static models, SMC algorithms using a RM-type strategy have been
proposed by Chopin (2002) whereas algorithms based on using alternative artificial mea-
sures have been proposed by Del Moral, Doucet, and Jasra (2006). However, in Chopin
(2002) and Del Moral et al. (2006), the authors use at time n an MCMC kernel of invari-
ant distribution πn to sample the particles, whereas the particles are sampled here using
approximations of Gibbs moves.

We believe that the new approach proposed here is simpler and is a natural extension of
standard techniques corresponding to the caseL = 1. We do not claim that these block sam-
pling SMC methods will always outperform standard SMC. It depends entirely on the ability
of the user to design good approximations of the distributions {πn (xn−L+1:n|x1:n−L)}.
Similarly, in a MCMC framework, block sampling strategies will only outperform one at
a time strategies if the proposal distributions to sample blocks are designed carefully. A
lot of effort has been devoted to the design of efficient importance distributions/proposal
distributions (e.g., Durbin and Koopman 2000; Pitt and Shephard 1997) and these methods
can be directly applied to our framework.

4. APPLICATIONS TO OPTIMAL FILTERING

4.1 MODEL

In this section, we detail the application of block sampling SMC methods to optimal
filtering. Consider an unobserved hidden Markov process {Xn}n≥1 defined by

X1 ∼ µ, Xn|Xn−1 = xn−1 ∼ f ( ·|xn−1) .

We only have access to noisy observations {Yn}n≥1. These observations are such that
conditional on {Xn}≥1 their marginal density is given by

Yn|Xn = xn ∼ g ( ·|xn) .

At time n, the optimal estimation of the collection of statesX1:n given a realization of the
observations Y1:n = y1:n is based on the posterior density

πn (x1:n) = p (x1:n| y1:n) ∝ µ (x1) g (y1|x1)
n∏

k=2

f (xk|xk−1) g (yk|xk) .
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The optimal distribution (3.11) and associated importance weight (3.12) are equal to

πn (xn−L+1:n|x1:n−L) = p (xn−L+1:n| yn−L+1:n, xn−L) , (4.1)

πn (x1:n−L) = p (x1:n−L| y1:n) ,

πn (x1:n−L)
πn−1 (x1:n−L)

=
p (x1:n−L| y1:n)
p (x1:n−L| y1:n−1)

∝ p (yn| yn−L+1:n−1, xn−L) . (4.2)

We can assess the effect of the block sampling approach on the optimal importance weights
in the important case where the optimal filter forgets its initial condition exponentially;
see (Del Moral 2004, chap. 4) for sufficient conditions for exponential forgetting. In this
importance case, under additional assumptions, it has already been established that SMC
methods converge uniformly in time in Lp norm in (Del Moral 2004, chap. 7) and that the
variance of the SMC approximations is also bounded uniformly in time; see (Chopin 2004,
theorem 5). The following simple result shows that in this case the optimal weights (4.2)
also become independent of xn−L as L increases.

Lemma 1. Assume that (for finite constantsA, B and α < 1) g (yn|xn) < A for any
xn and that the optimal filter forgets its initial conditions exponentially, that is, we have∫ ∣∣p (xn| yn−L+1:n, xn−L)− p (xn| yn−L+1:n, x

′
n−L

)∣∣ dxn ≤ BαL

for any
(
xn−L, x

′
n−L

)
and any L. In this case the optimal importance weights satisfy for

any yn ∣∣p (yn| yn−L+1:n−1, xn−L)− p (yn| yn−L+1:n−1, x
′
n−L

)∣∣ ≤ ABαL.

The straightforward proof is omitted. In practice, we cannot compute these weights
exactly and so use approximations instead. However, this result suggests that if we can
approximate the optimal importance distribution in a satisfactory way then the variance
of these weights will decrease significantly with L, limiting drastically the number of
resampling steps necessary.

Let us consider a simple Gaussian autoregressive model

Xn = αXn−1 + σvVn,

Yn = Xn + σwWn

where Vn
iid∼ N (0, 1) and Wn

iid∼ N (0, 1) . In this case, it is easy to establish that
p (xn| yn−L+1:n, xn−L) is a Gaussian distribution with covariance independent of
(xn, yn−L+1:n) such that∣∣E (xn| yn−L+1:n, xn−L)− E (xn| yn−L+1:n, x

′
n−L

)∣∣
=
(

α

1 + σ2
v/σ

2
w

)L ∣∣xn−L − x′
n−L

∣∣ .
As soon as

|α|
1 + σ2

v/σ
2
w

< 1
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then p (xn| yn−L+1:n, xn−L) “forgets” its initial condition exponentially quickly. This con-
vergence is faster when the signal to noise ratio σ2

v/σ
2
w is high and the underlying Markov

process {Xn} is mixing quickly (i.e., small α). Although we have only discussed here the
linear Gaussian case (solvable through the Kalman filter), more generally the exponential
forgetting property will hold when the Markov process {Xn} mixes quickly and/or when
the observations are sufficiently informative. In such situations, we expect block sampling
SMC methods to outperform significantly standard methods if “good” approximations of
the optimal importance distributions can be obtained.

4.2 SIMULATIONS

This section discusses the application of the block sampling SMC methods to two pop-
ular problems. The first problem is a target tracking problem which has been analyzed in
a number of statistical publications including Fearnhead (2002) and Gilks and Berzuini
(2001). The second is for stochastic volatility models appearing in Kim, Shephard, and
Chib (1998), Pitt and Shephard (1997), Pitt and Shephard (1999).

4.2.1 Bearing-Only Tracking

The target is modeled using a standard constant velocity model

Xn =


1 T 0 0
0 1 0 0
0 0 1 T

0 0 0 1

Xn−1 + Vn,

where Vn
iid∼ N (0,Σ), with T = 1 and

Σ = 5


T 3/3 T 2/2 0 0
T 2/2 T 0 0
0 0 T 3/3 T 2/2
0 0 T 2/2 T

 .

The state vector Xn =
(
X1

n X2
n X3

n X4
n

)T
is such that X1

n (respectively X3
n)

corresponds to the horizontal (respectively vertical) position of the target whereas X2
n

(respectively X4
n) corresponds to the horizontal (respectively vertical) velocity. One only

receives observations of the bearings of the target from a sensor located at the origin

Yn = tan−1
(
X3

n

X1
n

)
+Wn

whereWn
iid∼ N (0, 10−4

)
; that is, the observations are almost noiseless. In the simulations,

the initial stateX1 is distributed according to a Gaussian of mean corresponding to the true
initial simulated point and an identity covariance. We emphasize that these parameters are
representative of real-world tracking scenarios.

To build an approximation p̂ (xn−L+1:n| yn−L+1:n, xn−L) of the optimal importance
distribution (4.1), we use the extended Kalman filter (EKF) combined with the forward
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Table 1. Average Number of Resampling Steps for 100 Simulations, 100 Time Instances per Simulation
Using N = 1,000 Particles

Filter Avge. # resampling steps

Bootstrap 46.7
SMC-EKF(1) 44.6
RML(10) 45.2
RMFL(10) 43.3
SMC-EKF(2) 34.9
SMC-EKF(5) 4.6
SMC-EKF(10) 1.3

filtering/backward sampling formula described by Chib (1996) and Frühwirth-Schnatter
(1994). More precisely we use

p̂ (xn−L+1:n| yn−L+1:n, xn−L)

= p̂ (xn| yn−L+1:n, xn−L)
n−1∏

k=n−L+1

p̂ (xk| yn−L+1:k, xn−L, xk+1) , (4.3)

where

p̂ (xk| yn−L+1:k, xn−L, xk+1) =
f (xk+1|xk) p̂ (xk| yn−L+1:k, xn−L)∫
f (xk+1|xk) p̂ (xk| yn−L+1:k, xn−L) dxk

.

The distributions {p̂ (xk| yn−L+1:k, xn−L)} are Gaussian distributions whose parameters
are computed using an EKF initialized using Xn−L = xn−L.

We compare the following:

• The standard bootstrap filter (see, e.g., Gordon, Salmond, and Smith 1993) which
uses the prior as importance distribution,

• two resample-move algorithms as described by Gilks and Berzuini (2001), where
the SISR algorithm for L = 1 using the EKF proposal is used followed by: (1) one at
a time Metropolis-Hastings (MH) moves using an approximation of the full conditionals
p (xk| yk, xk−1, xk+1) as a proposal over a lag L = 10 (algorithm RML(10)); and (2)
using the EKF proposal given by (4.3) for L = 10 (algorithm RMFL(10)). The acceptance
probabilities of those moves were between 0.5/0.6 in all cases.

• the block SISR algorithms for L = 2, 5, and 10 which are using the EKF proposal
denoted SMC-EKF(L).

Systematic resampling is performed whenever the ESS defined in (2.2) goes belowN/2.
The results are displayed in Table 1.

The standard algorithms—namely, bootstrap, SMC-EKF(1), RML(10), and
RMFL(10)—need to resample very often as the ESS drop belowN/2. The resample-move
algorithms RML(10) and RMFL(10) suffer from the same problems as standard SMC tech-
niques (bootstrap and SMC-EKF(1)) despite their computational complexity being similar
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Figure 1. Average number of unique particles {X
(i)
n } approximating p(xn|y1:100) (y-axis) plotted against time

(x-axis).

to SMC-EKF(10); this is because MCMC steps are only introduced after an EKF(1) pro-
posal has been performed. Conversely, as L increases, the number of resampling steps
required by SMC-EKF(L) methods decreases dramatically. Consequently, the number of
unique paths approximating p (x1:100| y1:100) remains very large. In Figure 1, we display

the average number of unique particles
{
X

(i)
n

}
approximating p (xn| y1:100). We see that

using standard techniques this number rapidly decreases towards 1 as n decreases whereas
using the block sampling approach this decrease is much slower.

4.2.2 STOCHASTIC VOLATILITY

We consider the popular stochastic volatility model as described by Durbin and Koop-
man (2000); Kim et al. (1998); Pitt and Shephard (1997, 1999)

Xn = φXn−1 + σVn, X1 ∼ N
(

0,
σ2

1− φ2

)
,

Yn = β exp (Xn/2)Wn, (4.4)

where Vn
iid∼ N (0, 1) and Wn

iid∼ N (0, 1). In the SMC context, several techniques have
been proposed to approximate the optimal importance distribution for L = 1, that is
p (xn| yn, xn−1); Pitt and Shephard (1999). In the MCMC context (as in Pitt and Shephard
1997), methods to approximate distributions of the form p (xn−L+1:n| yn−L+1:n, xn−L)
have been proposed but these are typically computationally intensive. We propose here a
simpler alternative based on the fact that

log
(
Y 2

n

)
= log

(
β2)+Xn + log

(
W 2

n

)
. (4.5)

This representation has been previously used in the econometrics literature to obtain the
optimal linear minimum mean square estimate of {Xn} using the Kalman filter. We use
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Table 2. Average Number of Resampling Steps for 100 Simulations using 500 Time Instances per
Simulation

Filter # particles Avge. # resampling steps

Bootstrap 50000 176.2
SMC-EKF(1) 12000 127.1
SMC-EKF(2) 4000 80.0
SMC-EKF(5) 1600 11.6
SMC-EKF(10) 1000 0.45

it here to build our importance distribution. We approximate the non-Gaussian noise term
log
(
W 2

n

)
with a Gaussian noise of similar mean and variance and hence obtain a linear

Gaussian model approximation of (4.4)–(4.5). We then proceed in a similar fashion to
the bearings-only-tracking example, by using a Gaussian approximation of the optimal
distribution of the form (4.3).

The performance of our algorithms are assessed through computer simulations based
on varying samples sizes to attain an approximately equal computational cost. We compare

• the standard bootstrap filter,

• the block SISR algorithms for L = 1, 2, 5, and 10 denoted SMC-EKF(L) .

Systematic resampling is again performed whenever the ESS goes below N/2. The
results are displayed in Table 2 for σ2 = 0.9, φ = 0.8, and β = 0.7.

The computational complexity of the proposed approach is higher than that of stan-
dard techniques. However, as these algorithms use the observations to guide the particles
in regions of high probability mass, they are much more robust to outliers than standard
techniques as was clearly emphasized by Pitt and Shephard (1999). Moreover, the number
of resampling steps is consequently significantly limited. This is useful if a parallel imple-
mentation is performed as the resampling operation is seen as a major bottleneck to the
parallelization of SMC techniques.

Figure 2 displays the average number of unique particles
{
X

(i)
n

}
approximating

p (xn| y1:500). We see that using the standard techniques, this number decreases rather
quickly as n decreases. However, using the block sampling approach this decreases much
more slowly. In particular, SMC-EKF(10) performs remarkably well. For n < 400, SMC-
EKF(10) algorithm outperforms the bootstrap filter in terms of unique number of particles.
It provides estimates of p (xn| y1:500) that are much more reliable than the bootstrap filter
as n decreases. Interestingly, for the same computational complexity, the bootstrap filter
consistently outperforms the SMC-EKF(1) algorithm for this problem. However, we em-
phasize here that, if outliers were present, the improvements brought by the SMC-EKF(1)
algorithm and the block sampling algorithms over the bootstrap would be much higher than
in these simulations.

We now apply the algorithms with N = 1,000 particles for all algorithms to the
pound/dollar daily exchange rates from 1/10/81 to 28/6/85. This time series consists of
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Figure 2. Average number of unique particles {X
(i)
n } approximating p(xn|y1:500) (y-axis) plotted against time

(x-axis).

945 data points and the parameters σ = 0.1726, φ = 0.9731, β = 0.6338 are selected
as in Durbin and Koopman (2000). Figure 3 displays the empirical measures approximat-
ing various marginal smoothing distributions. As expected, this approximation improves
significantly as L increases. Figure 4 displays SMC estimates of the posterior variances
var [Xn| y1:945]. The variance estimates of the bootstrap and SMC-EKF(1) quickly decay
to zero as n decreases because the posterior distributions p (xn| y1:945) are approximated
by one unique particle. The variance estimates provided by the block sampling approaches

Figure 3. Empirical measures approximating the smoothing distributions p(xn|y1:945) at times n = 100, 130,
160, 190 for bootstrap (top left), SMC-EKF(1) (top right), SMC-EKF(5) (bottom left), SMC-EKF(10) (bottom
right).
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Figure 4. SMC estimates of var (Xn|y1:945) (y-axis) plotted against time (x-axis). Top to bottom: bootstrap,
SMC-EKF(1), SMC-EKF(5), SMC-EKF(10).

are much better. In particular SMC-EKF(10) provides variance estimates which are approx-
imately similar as n decreases; this is expected as a result of the ergodic properties of this
state-space model. An MCMC run on the same dataset yields comparable estimates. This
provides strong evidence that such blocking strategies can significantly limit the degener-
acy of the particle population and yield much better estimates of joint distributions than
standard techniques.

5. DISCUSSION

This article presented principled extensions of standard SMC methods that allow us to
implement block sampling strategies. These methods can be applied wherever SMC methods
apply. Given that the cost of block sampling schemes is higher than that of standard methods,
it is difficult to assess beforehand whether it will be beneficial for a specific application.
Nevertheless, the examples presented in the previous section show that it can dramatically
reduce the number of resampling steps and provide a far better approximation of joint
distributions than standard techniques, for a fixed computational complexity. Generally, our
guidelines are that we will observe significant gains when it is possible to design a sensible
approximation of the optimal importance distribution (3.11) and when the discrepancy
between successive target distributions is high. In the optimal filtering framework, this
situation occurs when we receive, for example, informative observations and the dynamic
noise is high. This also suggests that the block sampling approach could only be used in
cases where we observe a significant drop in the ESS using standard techniques.
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APPENDIX: BLOCK SAMPLING WEIGHT UPDATE
DERIVATION

This appendix establishes the validity of the weights update rule (3.4). To clarify our
argument, it is necessary to add a superscript to the variables; for example,Xp

k corresponds
to the pth time the random variable Xk is sampled. Using such notation, a path is sampled
according to

X1
1 ∼ q1 (·) ,(

X2
1 , X

1
2
) ∼ q2 ( ·|X1

1
)
,

...(
XL

1 , X
L−1
2 , . . . , X1

L

) ∼ qL ( ·|XL−1
1 , . . . , X1

L−1
)
,(

XL
2 , X

L−1
3 , . . . , X1

L+1
) ∼ qL+1

( ·|XL
1 , X

L−1
2 , . . . , X1

L

)
,

...(
XL

n−L+1, X
L−1
n−L+2 . . . , X

1
n

) ∼ qn ( ·|XL
1:n−L, X

L−1
n−L+1 . . . , X

1
n−1
)
.

To summarize, the importance distribution at time n is of the form

qn
(
x1

1, . . . , x
1
n

)
= q1

(
x1

1
)
q2
(
x2

1, x
1
2

∣∣x1
1
)

× · · · × qn
(
xL

n−L+1, . . . , x
1
n

∣∣xL
1:n−L, . . . , x

1
n−1
)
; (A.1)

that is, at timenwe have sampledL times the variablesx1:n−L+1 thenL−i timesxn−L+1+i

for i = 1, . . . , L.
We now consider the following extended target distribution denoted π̃n

π̃n

(
x1:L

1 , . . . , x1:L
n−L+1, x

1:L−1
n−L+2, . . . , x

1
n

)
= πn

(
xL

1:n−L+1, x
L−1
n−L+2, . . . , x

1
n

)
λ2
(
x1

1

∣∣x2
1, x

1
2
)

× · · · × λn

(
xL−1

n−L+1, . . . , x
1
n−1

∣∣xL
1:n−L, x

L
n−L+1, . . . , x

1
n

)
. (A.2)

Clearly we have

π̃n

(
x1:L

1 , . . . , x1:L
n−L+1, x

1:L−1
n−L+2, . . . , x

1
n

)
qn
(
x1:L

1 , . . . , x1:L
n−L+1, x

1:L−1
n−L+2, . . . , x

1
n

)︸ ︷︷ ︸
new weight

=
π̃n−1

(
x1:L

1 , . . . , x1:L
n−L, x

1:L−1
n−L+1, . . . , x

1
n−1
)

qn−1
(
x1:L

1 , . . . , x1:L
n−L, x

1:L−1
n−L+1, . . . , x

1
n−1

)︸ ︷︷ ︸
previous weight

× πn

(
xL

1:n−L+1, x
L−1
n−L+2, ..., x

1
n

)
λn

(
xL−1

n−L+1, ..., x
1
n−1

∣∣xL
1:n−L, x

L
n−L+1, ..., x

1
n

)
πn−1

(
xL

1:n−L, x
L−1
n−L+1, ..., x

1
n−1

)
qn
(
xL

n−L+1, ..., x
1
n

∣∣xL
1:n−L, x

L−1
n−L+1, ..., x

1
n−1

)︸ ︷︷ ︸
incremental weight

.

This establishes the validity of (3.4).
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