Proofs and Analysis

James Wright1

September 23, 2011

1Based on (almost identical to) Matt Hoffman’s 2009 refresher.
Overview

1. Two lightning-fast notation slides.
2. Proof techniques, with some straightforward examples.
3. Basic definitions from analysis.
4. Example proofs.
Notation:

- \(\neg A \) not \(A \)
- \(A \lor B \) \(A \) or \(B \)
- \(A \land B \) \(A \) and \(B \)
- \(A \Rightarrow B \) \(A \) implies \(B \)
- \(A \iff B \) \(A \) if and only if \(B \)

Logical equivalences:

- \(A \Rightarrow B \equiv \neg A \lor B \)
- \(A \Rightarrow B \equiv \neg B \Rightarrow \neg A \)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>A \Rightarrow B</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td></td>
<td>T</td>
</tr>
</tbody>
</table>
Sets

Notation:

- $x \in A$ x is an element of A.
- $\{x \in A \mid P(x)\}$ Set of elements of A satisfying predicate P.
- \overline{A} Complement of A: $\{x \mid x \notin A\}$
- $A \cup B$ Union of A and B: $\{x \mid (x \in A) \lor (x \in B)\}$.
- $A \cap B$ Intersection of A and B: $\{x \mid (x \in A) \land (x \in B)\}$.
- $A \setminus B$ Set difference: $\{x \in A \mid x \notin B\}$.
- $A \times B$ Cross product: $\{(x, y) \mid (x \in A) \land (y \in B)\}$.
- $\mathcal{P}(A)$ Power set: $\{B \mid B \subseteq A\}$.
- $|A|$ Cardinality; number of elements of A.\(^2\)

\(^2\)For finite A.

Introduction Proofs Analysis Examples
Direct proof

- Most theorems can be stated as an implication:
 1. The sum of two rational numbers is rational.
 \[a, b \in \mathbb{Q} \implies a + b \in \mathbb{Q} \]
 2. Every odd integer is the difference of two perfect squares:
 \[i = 2j + 1 \text{ for } j \in \mathbb{Z} \implies \exists a, b \in \mathbb{N} : i = a^2 - b^2 \]
- If we assume that the LHS is true and can then show the RHS is true, then the implication must be true.
Most theorems can be stated as an implication:

1. The sum of two rational numbers is rational.
 \[a, b \in \mathbb{Q} \Rightarrow a + b \in \mathbb{Q} \]

2. Every odd integer is the difference of two perfect squares:
 \[i = 2j + 1 \text{ for } j \in \mathbb{Z} \Rightarrow \exists a, b \in \mathbb{N} : i = a^2 - b^2 \]

• If we assume that the LHS is true and can then show the RHS is true, then the implication must be true.

Proof.
Assume that \(i = 2j + 1 \). We can write that as

\[i = 2j + 1 \]
Direct proof

- Most theorems can be stated as an implication:
 1. The sum of two rational numbers is rational.
 \[a, b \in Q \Rightarrow a + b \in Q\]
 2. Every odd integer is the difference of two perfect squares:
 \[i = 2j + 1 \text{ for } j \in \mathbb{Z} \Rightarrow \exists a, b \in \mathbb{N} : i = a^2 - b^2\]

- If we assume that the LHS is true and can then show the RHS is true, then the implication must be true.

Proof.
Assume that \(i = 2j + 1\). We can write that as

\[
i = 2j + 1 \\
= j^2 - j^2 + 2j + 1
\]
Direct proof

- Most theorems can be stated as an implication:
 1. The sum of two rational numbers is rational.
 \[a, b \in Q \Rightarrow a + b \in Q \]
 2. Every odd integer is the difference of two perfect squares:
 \[i = 2j + 1 \text{ for } j \in \mathbb{Z} \Rightarrow \exists a, b \in \mathbb{N} : i = a^2 - b^2 \]
- If we assume that the LHS is true and can then show the RHS is true, then the implication must be true.

Proof.
Assume that \(i = 2j + 1 \). We can write that as

\[
i = 2j + 1 \\
= j^2 - j^2 + 2j + 1 \\
= (j + 1)^2 - j^2.
\]
Proof by contrapositive

Like a direct proof, but we first use the equivalence
\[A \Rightarrow B \equiv \neg B \Rightarrow \neg A. \]
So, assume the RHS is false, and then show that the LHS is also.

Example
Show that if \(3n + 2\) is even then \(n\) is even.
Proof by contrapositive

Like a direct proof, but we first use the equivalence
\(A \Rightarrow B \equiv \neg B \Rightarrow \neg A. \)
So, assume the RHS is false, and then show that the LHS is also.

Example

Show that if \(3n + 2 \) is even then \(n \) is even.
Instead we will show that if \(n \) is not even, then \(3n + 2 \) is not even.
I.e., if \(n \) is odd then \(3n + 2 \) is odd.
Proof by contrapositive

Like a direct proof, but we first use the equivalence
\(A \Rightarrow B \equiv \neg B \Rightarrow \neg A. \)
So, assume the RHS is false, and then show that the LHS is also.

Example
Show that if \(3n + 2 \) is even then \(n \) is even.
Instead we will show that if \(n \) is not even, then \(3n + 2 \) is not even.
I.e., if \(n \) is odd then \(3n + 2 \) is odd.

Proof.
Assume that \(n \) is odd. That is, \(n = 2j + 1 \) for some \(j \in \mathbb{N}. \)

\[
3n + 2 = 3(2j + 1) + 2
\]
Proof by contrapositive

Like a direct proof, but we first use the equivalence
\[A \Rightarrow B \equiv \neg B \Rightarrow \neg A. \]
So, assume the RHS is false, and then show that the LHS is also.

Example
Show that if \(3n + 2 \) is even then \(n \) is even.
Instead we will show that if \(n \) is not even, then \(3n + 2 \) is not even.
I.e., if \(n \) is odd then \(3n + 2 \) is odd.

Proof.
Assume that \(n \) is odd. That is, \(n = 2j + 1 \) for some \(j \in \mathbb{N} \).

\[
3n + 2 = 3(2j + 1) + 2 \\
= 6j + 5
\]
Proof by contrapositive

Like a direct proof, but we first use the equivalence $A \implies B \equiv \neg B \implies \neg A$.

So, assume the RHS is false, and then show that the LHS is also.

Example

Show that if $3n + 2$ is even then n is even.

Instead we will show that if n is not even, then $3n + 2$ is not even.

I.e., if n is odd then $3n + 2$ is odd.

Proof.

Assume that n is odd. That is, $n = 2j + 1$ for some $j \in \mathbb{N}$.

$$3n + 2 = 3(2j + 1) + 2 = 6j + 5 = 2(3j + 2) + 1,$$

hence $3n + 2$ is odd.
Proof by induction

We want to prove an infinite number of statements A_0, A_1, A_2, \ldots

- Prove that $A_n \Rightarrow A_{n+1}$ for any n (the inductive case).
- Prove A_0 (the base case).
Proof by induction

We want to prove an infinite number of statements A_0, A_1, A_2, \ldots.

- Prove that $A_n \Rightarrow A_{n+1}$ for any n (the inductive case).
- Prove A_0 (the base case).
- Like dominoes, $A_0 \Rightarrow A_1 \Rightarrow A_2 \Rightarrow \ldots$.
Proof by induction

Example
Prove that the number of subsets of a set with \(n \) elements is \(2^n \).
Example
Prove that the number of subsets of a set with \(n \) elements is \(2^n \).

Proof.
Base case: The set with 0 elements, \(\emptyset \) has exactly \(2^0 = 1 \) subset.
Proof by induction

Example
Prove that the number of subsets of a set with \(n \) elements is \(2^n \).

Proof.
Base case: The set with 0 elements, \(\emptyset \) has exactly \(2^0 = 1 \) subset.
Inductive case: Assume that all sets of size \(k \) have \(2^k \) subsets.
Choose an arbitrary set \(B \) of size \(k + 1 \).
Choose an element \(x \in B \) and let \(A = B \setminus \{x\} \). So \(B = A \cup \{x\} \).
Example

Prove that the number of subsets of a set with n elements is 2^n.

Proof.

Base case: The set with 0 elements, \emptyset has exactly $2^0 = 1$ subset.

Inductive case: Assume that all sets of size k have 2^k subsets.

Choose an arbitrary set B of size $k + 1$.

Choose an element $x \in B$ and let $A = B \setminus \{x\}$. So $B = A \cup \{x\}$.

$P(B) = P(A) \cup \{A' \cup \{x\} \mid A' \in P(A)\}$, so we have:
Example
Prove that the number of subsets of a set with \(n \) elements is \(2^n \).

Proof.
Base case: The set with 0 elements, \(\emptyset \) has exactly \(2^0 = 1 \) subset.

Inductive case: Assume that all sets of size \(k \) have \(2^k \) subsets.

Choose an arbitrary set \(B \) of size \(k + 1 \).

Choose an element \(x \in B \) and let \(A = B \setminus \{x\} \). So \(B = A \cup \{x\} \).

\[P(B) = P(A) \cup \{A' \cup \{x\} \mid A' \in P(A)\}, \]

so we have:

\[
|P(B)| = |P(A)| + |\{A' \cup \{x\} \mid A' \in P(A)\}|
\]

because \(P(A) \) and \(\{A' \cup \{x\} \mid A' \in P(A)\} \) are disjoint.
Proof by induction

Example

Prove that the number of subsets of a set with \(n \) elements is \(2^n \).

Proof.

Base case: The set with 0 elements, \(\emptyset \) has exactly \(2^0 = 1 \) subset.

Inductive case: Assume that all sets of size \(k \) have \(2^k \) subsets.

Choose an arbitrary set \(B \) of size \(k + 1 \).

Choose an element \(x \in B \) and let \(A = B \setminus \{x\} \). So \(B = A \cup \{x\} \).

\[\mathcal{P}(B) = \mathcal{P}(A) \cup \{A' \cup \{x\} \mid A' \in \mathcal{P}(A)\} \], so we have:

\[
|\mathcal{P}(B)| = |\mathcal{P}(A)| + |\{A' \cup \{x\} \mid A' \in \mathcal{P}(A)\}|
= |\mathcal{P}(A)| + |\mathcal{P}(A)|
\]
Example
Prove that the number of subsets of a set with \(n \) elements is \(2^n \).

Proof.
Base case: The set with 0 elements, \(\emptyset \) has exactly \(2^0 = 1 \) subset.

Inductive case: Assume that all sets of size \(k \) have \(2^k \) subsets.
Choose an arbitrary set \(B \) of size \(k + 1 \).
Choose an element \(x \in B \) and let \(A = B \setminus \{x\} \). So \(B = A \cup \{x\} \).
\(\mathcal{P}(B) = \mathcal{P}(A) \cup \{A' \cup \{x\} \mid A' \in \mathcal{P}(A)\} \), so we have:

\[
|\mathcal{P}(B)| = |\mathcal{P}(A)| + |\{A' \cup \{x\} \mid A' \in \mathcal{P}(A)\}|
\]

\[
= |\mathcal{P}(A)| + |\mathcal{P}(A)|
\]

\[
= 2|\mathcal{P}(A)|
\]

\[
= 2 \cdot 2^k \quad \text{(by induction)}
\]

\[
= 2^{k+1}.
\]

\[\square\]
We want to prove an infinite number of statements A_0, A_1, A_2, \ldots

- Prove that $A_0 \land A_1 \land \ldots \land A_n \Rightarrow A_{n+1}$ for any n (the inductive case).
- Prove A_0 (the base case).
General induction

We want to prove an infinite number of statements A_0, A_1, A_2, \ldots

- Prove that $A_0 \land A_1 \land \ldots \land A_n \Rightarrow A_{n+1}$ for any n (the inductive case).
- Prove A_0 (the base case).
- Like dominoes,

$$A_0 \Rightarrow A_1$$

$$A_0 \land A_1 \Rightarrow A_2$$

$$A_0 \land A_1 \land A_2 \Rightarrow A_3$$

$$\ldots$$
Example

Prove that for any \(n \in \mathbb{N} \), \(n = p_1 p_2 \ldots p_k \), where \(p_i \) is prime for all \(1 \leq i \leq k \).
Example
Prove that for any \(n \in \mathbb{N} \), \(n = p_1 p_2 \ldots p_k \), where \(p_i \) is prime for all \(1 \leq i \leq k \).

Proof.
Base case: \(n = 2, k = 1, p_1 = 2 \).
Example
Prove that for any $n \in \mathbb{N}$, $n = p_1 p_2 \ldots p_k$, where p_i is prime for all $1 \leq i \leq k$.

Proof.
Base case: $n = 2$, $k = 1$, $p_1 = 2$.
Inductive case: Assume $w = p_1 p_2 \ldots p_k$ for all $w < n$.
Case 1: n is prime. Then $p_1 = n$ and we’re done.
Example
Prove that for any $n \in \mathbb{N}$, $n = p_1 p_2 \ldots p_k$, where p_i is prime for all $1 \leq i \leq k$.

Proof.

Base case: $n = 2$, $k = 1$, $p_1 = 2$.

Inductive case: Assume $w = p_1 p_2 \ldots p_k$ for all $w < n$.

Case 1: n is prime. Then $p_1 = n$ and we’re done.

Case 2: n is composite. So $n = ab$ for $a, b \in \mathbb{N}$ and $a, b > 1$.
Example

Prove that for any $n \in \mathbb{N}$, $n = p_1 p_2 \ldots p_k$, where p_i is prime for all $1 \leq i \leq k$.

Proof.

Base case: $n = 2$, $k = 1$, $p_1 = 2$.

Inductive case: Assume $w = p_1 p_2 \ldots p_k$ for all $w < n$.

Case 1: n is prime. Then $p_1 = n$ and we’re done.

Case 2: n is composite. So $n = ab$ for $a, b \in \mathbb{N}$ and $a, b > 1$.

By induction, $a = p_1 p_2 \ldots p_k$ and $b = p'_1 p'_2 \ldots p'_{k'}$.

Hence $n = p_1 p_2 \ldots p_k p'_1 p'_2 \ldots p'_{k'}$.

\[
\square
\]
Proof by contradiction

We want to prove some statement A. Instead, we assume $\neg A$ and show that it leads to some contradiction. Everything was consistent without $\neg A$, so it must have been $\neg A$ that caused the inconsistency/contradiction. Therefore, $\neg \neg A \equiv A$ must be true.
Proof by contradiction

We want to prove some statement A. Instead, we assume $\neg A$ and show that it leads to some contradiction. Everything was consistent without $\neg A$, so it must have been $\neg A$ that caused the inconsistency/contradiction. Therefore, $\neg \neg A \equiv A$ must be true.

Example

Prove that $ab + 1 \neq ac$ for any $a, b, c \in \mathbb{N}$ where $a, b, c > 1$.
Proof by contradiction

We want to prove some statement A. Instead, we assume $\neg A$ and show that it leads to some contradiction. Everything was consistent without $\neg A$, so it must have been $\neg A$ that caused the inconsistency/contradiction. Therefore, $\neg\neg A \equiv A$ must be true.

Example
Prove that $ab + 1 \neq ac$ for any $a, b, c \in \mathbb{N}$ where $a, b, c > 1$.

Proof.
Assume instead that $ac = ab + 1$.
Then by rearrangement we have $c = b + \frac{1}{a}$.
But since $a > 1$, $b + \frac{1}{a} \notin \mathbb{N}$, a contradiction.
Consider a set T ordered by relation \leq and a subset $S \subseteq T$.

- The **infimum** is the greatest lower bound.
- The **supremum** is the least upper bound.

These bounds are the tightest possible on S, but they need not be in S.

- Hence they differ from min and max.
- For $T \neq \mathbb{R}$, they need not even exist.

Example

Let $T = \mathbb{R}$ and $S = \{x \in \mathbb{R} | x^2 < 2\}$.

Then $\sup(S) = \sqrt{2}$, but $\sqrt{2} \notin S$.

So $\max(S)$ does not exist.
Consider a set T ordered by relation \leq and a subset $S \subseteq T$.

- The infimum is the greatest lower bound.
- The supremum is the least upper bound.

These bounds are the tightest possible on S, but they need not be in S.

- Hence they differ from min and max.
- For $T \neq \mathbb{R}$, they need not even exist.

Example

Let $T = \mathbb{R}$ and $S = \{x \in \mathbb{R} \mid x^2 < 2\}$.

Then $\sup(S) = \sqrt{2}$, but $\sqrt{2} \notin S$.

So $\max(S)$ does not exist.
Miscellaneous notation: arg min and arg max

Definition
The **arg min** of an expression $f(x)$ is the set of values of x for which the expression attains its minimum. That is,

$$\arg\min_{x \in X} f(x) = \{ x \in X \mid f(x) \geq f(x') \quad \forall x' \in X \}.$$

The **arg max** is defined analogously for the maximum.

Example

$$\arg\min_{x \in \mathbb{R}} x^2 + 5 = \{0\}.$$

$$\arg\min_{x \in \{-2, 5, 2\}} \log|x| = \{-2, 2\}.$$

$$\arg\min_{x \in \mathbb{R}} \log|x| \text{ does not exist.}$$
Definition
A function has a limit
\[\lim_{x \to x_0} f(x) = L \]
if for every \(\epsilon > 0 \) there exists \(\delta > 0 \) such that
\[|f(x) - L| < \epsilon \text{ if } |x - x_0| < \delta. \]

Definition
For limits tending to infinity,
\[\lim_{x \to \infty} f(x) = L \]
if for every \(\epsilon > 0 \) there exists a bound \(M > 0 \) such that
\[|f(x) - L| < \epsilon \text{ if } x > M. \]
Example

Show that \(\lim_{x \to \infty} \frac{2x - 1}{x - 3} = 2 \).

Proof.

Using the definition, we can write

\[
|f(x) - L| = \frac{2x - 1}{x - 3} - 2
\]

\[
= \frac{2x - 1}{x - 3} - \frac{2x - 6}{x - 3}
\]

\[
= \frac{5}{x - 3}.
\]

We can see that if \(x > 3 + \frac{5}{\epsilon} \) \(\Rightarrow |f(x) - L| < \epsilon \) (provided that \(x > 3 \)).
Definition
\(f(x) \) is continuous at \(x_0 \) if \(\lim_{x \to x_0} f(x) = f(x_0) \). \(f(x) \) is continuous on \([a, b]\) if this holds for all \(x_0 \in [a, b] \).

Theorem (Intermediate value theorem)
If \(f(x) \) is continuous on \([a, b]\), then \(f \) takes on every value between \(f(a) \) and \(f(b) \).
Theorem

The real numbers are uncountable. That is, no enumeration exists that assigns to every element of \(\mathbb{R} \) a unique element of \(\mathbb{N} \).
Theorem

The real numbers are uncountable. That is, no enumeration exists that assigns to every element of \mathbb{R} a unique element of \mathbb{N}.

Proof (by contradiction).

Assume, on the contrary, that $[0, 1]$ is countable, and thus we can construct an infinite list containing all the reals in this range:

<table>
<thead>
<tr>
<th>0</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.14159...</td>
</tr>
<tr>
<td>2</td>
<td>0.7182817...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Let k_n be the nth digit of the nth number. Now construct w whose nth digit is 2 if $k_n = 1$, or 1 otherwise. Note that w cannot appear on our list, because it differs from the nth number in the list in the nth digit. Therefore the list does not contain all the reals in $[0, 1]$ after all, a contradiction.
Theorem

The real numbers are uncountable. That is, no enumeration exists that assigns to every element of \(\mathbb{R} \) a unique element of \(\mathbb{N} \).

Proof (by contradiction).

Assume, on the contrary, that \([0, 1]\) is countable, and thus we can construct an infinite list containing all the reals in this range:

\[
\begin{array}{c|c}
0 & 0.0 \\
1 & 0.14159 \ldots \\
2 & 0.7182817 \ldots \\
\vdots & \\
\end{array}
\]

Let \(k_n \) be the \(n \)th digit of the \(n \)th number.

Now construct \(w \) whose \(n \)th digit is 2 if \(k_n = 1 \), or 1 otherwise.
Cardinality of \mathbb{R}

Theorem

The real numbers are **uncountable**. That is, no enumeration exists that assigns to every element of \mathbb{R} a unique element of \mathbb{N}.

Proof (by contradiction).

Assume, on the contrary, that $[0, 1]$ is countable, and thus we can construct an infinite list containing all the reals in this range:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>0.14159…</td>
</tr>
<tr>
<td>2</td>
<td>0.7182817…</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>

Let k_n be the nth digit of the nth number.

Now construct w whose nth digit is 2 if $k_n = 1$, or 1 otherwise. Note that w cannot appear on our list, because it differs from the nth number in the list in the nth digit. Therefore the list does not contain all the reals in $[0, 1]$ after all, a contradiction.
Cardinality of \mathbb{Q}

Guesses about the cardinality of \mathbb{Q}?
Example

The rational numbers are countable: There exists an enumeration that assigns to every element of \mathbb{Q} a unique element of \mathbb{N}.

Proof (direct by construction).

We demonstrate that the rationals are countable by constructing an enumeration. Create a table with numerators across the top and denominators down the sides:

<table>
<thead>
<tr>
<th>\mathbb{Q}</th>
<th>1</th>
<th>2</th>
<th>3...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/1</td>
<td>2/1</td>
<td>3/1...</td>
</tr>
<tr>
<td>2</td>
<td>1/2</td>
<td>2/2</td>
<td>3/2...</td>
</tr>
<tr>
<td>3</td>
<td>1/3</td>
<td>2/3</td>
<td>3/3...</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Start at the top-left and zig-zag across the table, counting fully-reduced fractions as you go:

$\{ (1, 1), (2, 2), (3, 3), \ldots \}$.
Cardinality of \mathbb{Q}

Example

The rational numbers are countable: There exists an enumeration that assigns to every element of \mathbb{Q} a unique element of \mathbb{N}.

Proof (direct by construction).

We demonstrate that the rationals are countable by constructing an enumeration. Create a table with numerators across the top and denominators down the sides:

```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/1</td>
<td>2/1</td>
<td>3/1</td>
</tr>
<tr>
<td>2</td>
<td>1/2</td>
<td>2/2</td>
<td>3/2</td>
</tr>
<tr>
<td>3</td>
<td>1/3</td>
<td>2/3</td>
<td>3/3</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Start at the top-left and zig-zag across the table, counting fully-reduced fractions as you go:

$$\{(1, \frac{1}{1}), \ldots\}.$$
Example

The rational numbers are **countable**: There exists an enumeration that assigns to every element of \mathbb{Q} a unique element of \mathbb{N}.

Proof (direct by construction).

We demonstrate that the rationals are countable by constructing an enumeration. Create a table with numerators across the top and denominators down the sides:

<table>
<thead>
<tr>
<th>\mathbb{Q}</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1/1$</td>
<td>$2/1$</td>
<td>$3/1$</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>$1/2$</td>
<td>$2/2$</td>
<td>$3/2$</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>$1/3$</td>
<td>$2/3$</td>
<td>$3/3$</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

Start at the top-left and zig-zag across the table, counting fully-reduced fractions as you go:

$\{(1, \frac{1}{1}), (2, \frac{2}{1}), ...\}$.
Cardinality of \(\mathbb{Q} \)

Example

The rational numbers are countable: There exists an enumeration that assigns to every element of \(\mathbb{Q} \) a unique element of \(\mathbb{N} \).

Proof (direct by construction).

We demonstrate that the rationals are countable by constructing an enumeration. Create a table with numerators across the top and denominators down the sides:

<table>
<thead>
<tr>
<th>(\mathbb{Q})</th>
<th>1</th>
<th>2</th>
<th>3...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/1</td>
<td>2/1</td>
<td>3/1...</td>
</tr>
<tr>
<td>2</td>
<td>1/2</td>
<td>2/2</td>
<td>3/2...</td>
</tr>
<tr>
<td>3</td>
<td>1/3</td>
<td>2/3</td>
<td>3/3...</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Start at the top-left and zig-zag across the table, counting fully-reduced fractions as you go:

\[\{(1, \frac{1}{1}), (2, \frac{2}{1}), (3, \frac{1}{2})\}\].
Cardinality of \mathbb{Q}

Example

The rational numbers are countable: There exists an enumeration that assigns to every element of \mathbb{Q} a unique element of \mathbb{N}.

Proof (direct by construction).

We demonstrate that the rationals are countable by constructing an enumeration. Create a table with numerators across the top and denominators down the sides:

<table>
<thead>
<tr>
<th>\mathbb{Q}</th>
<th>1</th>
<th>2</th>
<th>3...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/1</td>
<td>2/1</td>
<td>3/1</td>
</tr>
<tr>
<td>2</td>
<td>1/2</td>
<td>2/2</td>
<td>3/2</td>
</tr>
<tr>
<td>3</td>
<td>1/3</td>
<td>2/3</td>
<td>3/3</td>
</tr>
</tbody>
</table>

Start at the top-left and zig-zag across the table, counting fully-reduced fractions as you go:

$\{(1, \frac{1}{1}), (2, \frac{2}{1}), (3, \frac{1}{2}), (4, \frac{3}{2}), \ldots\}$.

Introduction Proofs Analysis Examples 18
Cardinality of \mathbb{Q}

Example

The rational numbers are countable: There exists an enumeration that assigns to every element of \mathbb{Q} a unique element of \mathbb{N}.

Proof (direct by construction).

We demonstrate that the rationals are countable by constructing an enumeration. Create a table with numerators across the top and denominators down the sides:

\[
\begin{array}{c|ccc}
\mathbb{Q} & 1 & 2 & 3 \ldots \\
\hline
1 & 1/1 & 2/1 & 3/1 \ldots \\
2 & 1/2 & 2/2 & 3/2 \ldots \\
3 & 1/3 & 2/3 & 3/3 \ldots \\
\vdots & \vdots & \vdots & \vdots \\
\end{array}
\]

Start at the top-left and zig-zag across the table, counting fully-reduced fractions as you go:

\[
\{(1, \frac{1}{1}), (2, \frac{2}{1}), (3, \frac{1}{2}), (4, \frac{3}{2}), (5, \frac{1}{3}) \ldots \}
\]
Cardinality of \mathbb{Q}

Example

The rational numbers are countable: There exists an enumeration that assigns to every element of \mathbb{Q} a unique element of \mathbb{N}.

Proof (direct by construction).

We demonstrate that the rationals are countable by constructing an enumeration. Create a table with numerators across the top and denominators down the sides:

<table>
<thead>
<tr>
<th>\mathbb{Q}</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/1</td>
<td>2/1</td>
<td>3/1</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>1/2</td>
<td>2/2</td>
<td>3/2</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>1/3</td>
<td>2/3</td>
<td>3/3</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Start at the top-left and zig-zag across the table, counting fully-reduced fractions as you go:

$\{(1, \frac{1}{1}), (2, \frac{2}{1}), (3, \frac{1}{2}), (4, \frac{3}{2}), (5, \frac{1}{3}), \ldots \}$.

Theorem
For any $a, b \in \mathbb{R}$ where $a < b$, there is a $q \in \mathbb{Q}$ such that $a < q < b$.

Proof (direct by construction).
Let $n = \frac{1}{b-a} + 1$. Then $nb - na > 1$.
Let m be the largest integer such that $m < na$. Then it must be that $na < m + 1 < nb$, since

- $m + 1 < na$ would contradict m being the largest integer less than na, and
- $m + 1 > nb$ cannot be true since $nb - na > 1$.

Hence $a < \frac{m+1}{n} < b$. □
Density and continuous functions

Theorem

If \(f : \mathbb{R} \rightarrow \mathbb{R} \) and \(g : \mathbb{R} \rightarrow \mathbb{R} \) are both continuous and \(f(q) = g(q) \ \forall q \in \mathbb{Q} \), then \(f(x) = g(x) \ \forall x \in \mathbb{R} \).

Proof.
Assume for contradiction that

\[
f(q) = g(q) \ \forall q \in \mathbb{Q},
\]

but there exists \(a \in \mathbb{R} \) such that \(f(a) \neq g(a) \). Let \(\epsilon = \frac{|f(a) - g(a)|}{2} \).

By continuity, there exist \(\delta_1, \delta_2 > 0 \) such that

\[
|x - a| < \delta_1 \ \text{guarantees} \ |f(x) - f(a)| < \epsilon,
\]

and

\[
|x - a| < \delta_2 \ \text{guarantees} \ |g(x) - g(a)| < \epsilon.
\]

Choose \(q \in \mathbb{Q} \) such that \(|q - a| < \min\{\delta_1, \delta_2\} \). (exists by density)

\[
|f(a) - g(a)| \leq |f(a) - f(q)| + |f(q) - g(q)| + |g(q) - g(a)| < \epsilon + 0 + \epsilon = |f(a) - g(a)|,
\]

a contradiction.
Theorem

If \(f : \mathbb{R} \mapsto \mathbb{R} \) and \(g : \mathbb{R} \mapsto \mathbb{R} \) are both continuous and \(f(q) = g(q) \ \forall q \in \mathbb{Q} \), then \(f(x) = g(x) \ \forall x \in \mathbb{R} \).

Proof.

Assume for contradiction that \(f(q) = g(q) \ \forall q \in \mathbb{Q} \), but there exists \(a \in \mathbb{R} \) such that \(f(a) \neq g(a) \). Let \(\epsilon = \frac{|f(a) - g(a)|}{2} \).
Density and continuous functions

Theorem

If \(f : \mathbb{R} \mapsto \mathbb{R} \) and \(g : \mathbb{R} \mapsto \mathbb{R} \) are both continuous and
\(f(q) = g(q) \ \forall q \in \mathbb{Q} \), then \(f(x) = g(x) \ \forall x \in \mathbb{R} \).

Proof.

Assume for contradiction that \(f(q) = g(q) \ \forall q \in \mathbb{Q} \), but there exists \(a \in \mathbb{R} \) such that \(f(a) \neq g(a) \). Let \(\epsilon = |f(a) - g(a)|/2 \).

By continuity, there exist \(\delta_1, \delta_2 > 0 \) such that
\(|x - a| < \delta_1 \) guarantees \(|f(x) - f(a)| < \epsilon \), and
\(|x - a| < \delta_2 \) guarantees \(|g(x) - g(a)| < \epsilon \).
Theorem

If $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are both continuous and $f(q) = g(q) \ \forall q \in \mathbb{Q}$, then $f(x) = g(x) \ \forall x \in \mathbb{R}$.

Proof.

Assume for contradiction that $f(q) = g(q) \ \forall q \in \mathbb{Q}$, but there exists $a \in \mathbb{R}$ such that $f(a) \neq g(a)$. Let $\epsilon = |f(a) - g(a)|/2$.

By continuity, there exist $\delta_1, \delta_2 > 0$ such that

- $|x - a| < \delta_1$ guarantees $|f(x) - f(a)| < \epsilon$, and
- $|x - a| < \delta_2$ guarantees $|g(x) - g(a)| < \epsilon$.

Choose $q \in \mathbb{Q}$ such that $|q - a| < \min\{\delta_1, \delta_2\}$. (exists by density)
Density and continuous functions

Theorem

If \(f : \mathbb{R} \rightarrow \mathbb{R} \) and \(g : \mathbb{R} \rightarrow \mathbb{R} \) are both continuous and \(f(q) = g(q) \ \forall q \in \mathbb{Q} \), then \(f(x) = g(x) \ \forall x \in \mathbb{R} \).

Proof.

Assume for contradiction that \(f(q) = g(q) \ \forall q \in \mathbb{Q} \), but there exists \(a \in \mathbb{R} \) such that \(f(a) \neq g(a) \). Let \(\epsilon = \frac{|f(a) - g(a)|}{2} \).

By continuity, there exist \(\delta_1, \delta_2 > 0 \) such that \(|x - a| < \delta_1 \) guarantees \(|f(x) - f(a)| < \epsilon \), and \(|x - a| < \delta_2 \) guarantees \(|g(x) - g(a)| < \epsilon \).

Choose \(q \in \mathbb{Q} \) such that \(|q - a| < \min\{\delta_1, \delta_2\} \). (exists by density)

\[
|f(a) - g(a)| \leq |f(a) - f(q)| + |f(q) - g(q)| + |g(q) - g(a)|
\]
Density and continuous functions

Theorem

If \(f : \mathbb{R} \rightarrow \mathbb{R} \) and \(g : \mathbb{R} \rightarrow \mathbb{R} \) are both continuous and
\[f(q) = g(q) \quad \forall q \in \mathbb{Q}, \]
then \(f(x) = g(x) \quad \forall x \in \mathbb{R}. \)

Proof.

Assume for contradiction that \(f(q) = g(q) \quad \forall q \in \mathbb{Q}, \) but there exists \(a \in \mathbb{R} \) such that \(f(a) \neq g(a). \) Let \(\epsilon = \frac{|f(a) - g(a)|}{2}. \)

By continuity, there exist \(\delta_1, \delta_2 > 0 \) such that
\[|x - a| < \delta_1 \quad \text{guarantees} \quad |f(x) - f(a)| < \epsilon, \]
\[|x - a| < \delta_2 \quad \text{guarantees} \quad |g(x) - g(a)| < \epsilon. \]

Choose \(q \in \mathbb{Q} \) such that \(|q - a| < \min\{\delta_1, \delta_2\}. \) (exists by density)

\[
|f(a) - g(a)| \leq |f(a) - f(q)| + |f(q) - g(q)| + |g(q) - g(a)|
< \epsilon + 0 + \epsilon = |f(a) - g(a)|,
\]

a contradiction.
Density and continuous functions

Theorem

If $f : \mathbb{R} \mapsto \mathbb{R}$ and $g : \mathbb{R} \mapsto \mathbb{R}$ are both continuous and $f(q) = g(q)$ $\forall q \in D$ for any dense subset $D \subseteq \mathbb{R}$, then $f(x) = g(x)$ $\forall x \in \mathbb{R}$.

Proof.

Previous proof only used density of \mathbb{Q}, no other properties of \mathbb{Q}. So result goes through for any dense subset of \mathbb{R}. \square
Theorem

There is no largest prime.
No largest prime

Theorem
There is no largest prime.

Lemma
If \(n = a \cdot b + 1 \), then neither \(a \) nor \(b \) divides \(n \).

Lemma
Any \(n \in \mathbb{N}, r > 1 \) can be written as \(p_1 \cdot p_2 \cdot \ldots \cdot p_k \), where each \(p_i \) is prime for \(1 \leq i \leq k \).
No largest prime

Theorem
There is no largest prime.

Lemma
If \(n = a \cdot b + 1 \), then neither \(a \) nor \(b \) divides \(n \).

Lemma
Any \(n \in \mathbb{N}, r > 1 \) can be written as \(p_1 \cdot p_2 \cdot \ldots \cdot p_k \), where each \(p_i \) is prime for \(1 \leq i \leq k \).

Proof of theorem (by contradiction).
Suppose that there is a finite sequence of all primes \(p_1, p_2, \ldots, p_k \).
Let \(q = p_1 \cdot p_2 \cdot \ldots \cdot p_k + 1 \).
Then \(p_i \) does not evenly divide \(q \) for all \(i = 1, \ldots, k \) (first lemma).
Theorem

There is no largest prime.

Lemma

If \(n = a \cdot b + 1 \), *then neither* \(a \) *nor* \(b \) *divides* \(n \).

Lemma

Any \(n \in \mathbb{N} \), \(r > 1 \) *can be written as* \(p_1 \cdot p_2 \cdot \ldots \cdot p_k \), *where each* \(p_i \) *is prime for* \(1 \leq i \leq k \).

Proof of theorem (by contradiction).

Suppose that there is a finite sequence of all primes \(p_1, p_2, \ldots, p_k \). Let \(q = p_1 \cdot p_2 \cdot \ldots \cdot p_k + 1 \). Then \(p_i \) does not evenly divide \(q \) for all \(i = 1, \ldots, k \) (first lemma). But then it is impossible to write \(q \) as the product of primes, contradicting the second lemma.
Thanks!
Additional examples

- Every tree with \(n \) vertices has exactly \(n - 1 \) edges.
- Sum of vertex degrees in any undirected graph is even.