
Practical Taint-Based Protection
using Demand Emulation

Alex Ho†, Michael Fetterman†‡, Christopher Clark†,
Andrew Warfield†, and Steven Hand†

†University of Cambridge Computer Laboratory
15 JJ Thomson Avenue

Cambridge CB3 0FD
{firstname.lastname }@cl.cam.ac.uk

‡Intel Research Cambridge
15 JJ Thomson Avenue

Cambridge CB3 0FD
{firstname.lastname }@intel.com

ABSTRACT
Many software attacks are based on injecting malicious code
into a target host. This paper demonstrates the use of a well-
known technique, data tainting, to track data received from
the network as it propagates through a system and to prevent
its execution. Unlike past approaches to taint tracking, which
track tainted data by running the system completely in an em-
ulator or simulator, resulting in considerable execution over-
head, our work demonstrates the ability to dynamically switch
a running system between virtualized and emulated execution.
Using this technique, we are able to explore hardware support
for taint-based protection that is deployable in real-world sit-
uations, as emulation is only used when tainted data is being
processed by the CPU. By modifying the CPU, memory, and
I/O devices to support taint tracking and protection, we guar-
antee that data received from the network may not be executed,
even if it is written to, and later read from disk. We demon-
strate near native speeds for workloads where little taint data
is present.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; C.1.3
[Processor Architectures]: Other; D.4.5 [Operating Systems]:
Reliability; C.4 [Processor Architectures]: Performance of
Systems; B.8 [Hardware]: Performance and Reliability—Mis-
cellaneous

General Terms
Security, Performance, Reliability, Design

Keywords
Demand emulation, emulation, false tainting, QEMU, tainting,
virtual machine, virtualization, Xen

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
EuroSys’06, April 18–21, 2006, Leuven, Belgium.
Copyright 2006 ACM 1-59593-322-0/06/0004...$5.00.

1. INTRODUCTION
Modern computer systems live under a constant threat of ex-
ploitation. The Internet is well-known to host a multitude of
viruses and worms, which attempt to compromise the secu-
rity of system software. The problems caused by such attacks
are also well understood: systems are modified to present ad-
vertisements, capture and log user activity, or assimilated into
botnets where they may be used as drones to attack or infect
other systems.

Many well-known exploits take advantage of the generality
of modern “general-purpose” computers. Data is treated as
an amorphous collection of bits, which may be used in arbi-
trary roles: In a stack-smashing attack, the data composing a
web request is made to include modifications to a server’s call
stack that compromise the system. Viruses and trojans may
be attached to applications or included with email, and the ex-
ecution of these applications may perform malicious modifi-
cations to an unsuspecting host. Many of the vulnerabilities
associated with these attacks stem from the ability to execute
arbitrary data received from the network. However, in a hostile
Internet environment of connected hosts under constant attack,
it seems sensible that the ability to execute data received from
the network should be the exception rather than the norm.

Several researchers have observed this problem in the past and
have explored system extensions to the way that data is man-
aged in order to prevent such exploits. The common approach
used is that oftainting: memory containing data received over
the network is specially marked and its contents are prevented
from being executed. While past systems have demonstrated
the effectiveness of tainting in avoiding compromises, they
generally use full-system hardware emulation or simulation.
The unfortunate consequence of these techniques is a severe
performance penalty, rendering the resulting system impracti-
cal for deployment outside of a laboratory environment. Other
approaches improve performance but at the cost of limiting
their scope to user-space code within an individual process.

This paper presents an implementation of taint-based system
protection that is practical for use on modern workstations.
Our approach embodies two properties that have not simulta-
neously been demonstrated by previous systems: it iscompre-
hensiveandhigh-performance. First, by tracking data through-
out the entire operating system, and not just within a single
application, and by preserving taint annotations even on data
that is written to disk, the system achieves comprehensiveness,

maintaining the invariant that tainted data may never be exe-
cuted. Second, by limiting the use of hardware emulation to
just those regions of code that interact with tainted data, we
drastically reduce the overhead of tracking tainted data and
protecting the system while retaining system-wide safety.

Our approach uses the Xen virtual machine monitor to run a
protected OS within a virtual machine, anddynamically switches
executionon to and off of a hardware emulator as taint-tracking
is required. The coarse-grained combination of virtualization
and full-system emulation, which to our knowledge is the first
such implementation, allows the efficient incorporation of what
is essentially a new hardware feature in an OS-agnostic man-
ner on commodity systems.

While our approach is likely to be too expensive in its current
form to deploy on servers, we believe it is sufficient to demon-
strate the viability of the technique. We validate this claim by
exercising our prototype implementation with a suite of micro-
benchmarks as well as a set of network-intensive tests. We
demonstrate near native speeds for workloads where little taint
data is present.

2. RELATED WORK
There has been significant previous work in the use of tainting
to protect user applications. We focus on those techniques that
target running applications and do not requirea priori source
or binary modifications to existing applications under the be-
lief that solutions requiring either re-compilation or re-linking
of existing applications are very unlikely to be deployable in
practical settings.

Tracking tainted data from untrusted source into a processor
and through a taint-enhanced memory model has been used
with great success in a number of projects. The target applica-
tion either can be executed in an emulator [1] or dynamically
re-written at runtime [2, 3]. These techniques prevent the ap-
plication from transferring control to untrusted code but, as
mentioned above, result in systems that are too slow to deploy.

There also have been a number of proposals for architectural
techniques to incorporate tainting into a processor [4, 5, 6].
These schemes maintain taint information in a bit associated
with each memory byte and modify the processor to propagate
this taint information. The processor is also prohibited from
loading tainted data into the program counter. All of these
proposed architectures have been prototyped using hardware
simulators and not used on real platforms.

Despite the performance issues, however, this prior work has
validated the usefulness of data tainting from a security per-
spective and demonstrated its applicability against a wide range
of attacks. In this paper, we extend the case for the security
benefits of data tainting by attempting to make it sufficiently
low-overhead to deploy in real systems.

The notion of marking potentially dirty data beyond the pro-
cessor has been proposed by Madsen [7]. A multi-level at-
tribute associating a level of trustworthiness can be assigned
to each file, and these trust levels can be combined to formu-
late a security policy. Unfortunately, associating trust at the
file level requires changes to the operating system and is de-
pendent on both the particular file system and operating sys-
tem. Our use of virtualization allows us to assign taint at the
underlying block level, independent of any file system or OS
that may read and process the block.

network
interface
driver

Control VM Protected VM
(Emulated)

Protected VM
(Virtualized)

Virtual Machine Monitor

virtual
block
device

Physical Host

virtual
network
interface

block
device
driver

hardware
emulator

page granularity taint
tracking & activation

taint

Figure 1: Taint-based protection architecture.

A number of environments for interpreted languages now offer
automatic tainting for language variables. These include the
taint mode to Perl [8], safe levels in Ruby [9], JavaScript (in
Netscape Navigator 3.0) [10], and PHP [11].

Tainting can also be used to track the propagation of “dirty”
data in a system. The TaintBochs project [12] analyzes both
the propagation and liveness of tainted data in applications us-
ing a modified version of the Bochs x86 simulator. No attempt
is made to prohibit the execution of tainted data; instead they
maintain extensive logs of the propagation of taints and per-
form analysis at the end of the run.

Both virtualization and emulation have been used to detect
and respond to network-based security exploits in very recent
work. The Potemkin Honeyfarm [13] uses a large VM-based
cluster to isolate exploits, with plans to quickly generate and
disseminate signatures for emerging attacks. Somewhat simi-
larly, Vigilante [14] uses dedicated “detection engines”, some
of which using data-flow analysis based on binary rewriting,
to generate attack signatures. Argos [15] extends Vigilante by
utilizing emulation to allow system-wide tracking of tainted
data independent of the operating system.

These systems depend critically on the generation, dissemina-
tion, and incorporation of signatures being faster than actual
worm outbreaks, which is incredibly challenging in the face
of hitlist-based worms. Our approach attempts to make data-
flow-based detection of sufficiently low overhead that it may
be used to directly protect individual end systems.

Limited forms of execution protection have become available
for modern hardware in recent years. Many CPUs now provide
support for disabling execution permissions (NX) for regions
of memory. Using OS modifications it has also been possible
to provide stack and heap execution protection with reasonable
efficiency [16].

Our implementation uses a modified hardware emulator to ef-
fectively add a new, data-flow-based protection mechanism
to the system hardware. Simulation and emulation have of-
ten been used in this manner to prototype new hardware fea-
tures including large SMP systems [17], symmetric maltreat-
ing [18], and fine-grained memory protection [19]. Our work
improves on this general approach for some forms of extension
by only emulating when necessary: when tainted data is not in
processor registers, the system resumes full-speed, virtualized
execution.

Type Goal Mode Modification

Memory Annotate tainted data at a byte
granularity.

V Page-size tracking to trigger fault-based entry to emulation.
E Byte-granularity tracking of all VM memory.

CPU Track tainted data through
memory and raise an exception if
an attempt is made to unsafely use
tainted data.

V Fault on access to tainted data and enter emulation.
E Update tainted memory annotations as data is manipulated;

trigger return to virtualized execution when registers are
clean. Signal errors on use of tainted data.

Network Mark received data as tainted be-
fore it is presented to the OS.

V Virtual network device annotates memory as tainted on re-
ceive DMA path.

Disk Track tainted data across access to
persistent storage.

V Block device maintains taint data on stored blocks, updating
this on writes and annotating memory on reads.

Table 1: Virtual hardware modifications to support taint tracking. The mode field distinguishes
between Virtualized and Emulated execution where appropriate.

3. SYSTEM OVERVIEW
This section provides a broad overview of the design of our
taint-based protection prototype. We begin with a brief de-
scription of our system and then move on to describe the vir-
tual hardware modifications we have made to support taint
tracking and protection. Next, we discuss the lifespan of tainted
data as it travels through the system. Finally, we discuss how
we explicitly untaint data we wish to execute.

Applications run in a protected virtual machine running on a
virtualized CPU at native speeds. If the processor accesses
tainted data, untrusted bytes originating from outside the sys-
tem, then the VMM switches the virtual machine from the vir-
tual CPU to an emulated processor running as a user-space
application in a control VM. The system then proceeds on
the emulator, which tracks the propagation of the tainted data
throughout the system. Once the emulated processor ceases to
manipulate tainted data, the VMM can revert the system back
to virtualized execution.

3.1 Virtual Hardware Support
We have designed taint tracking and protection as a broad set
of hardware modifications to a commodity computer system.
Since we want to ensure that all external data received from
the network be tainted and that the tainting of data be pre-
served as it propagates through memory and persistent stor-
age, these modifications involve changing the behavior of the
CPU, memory, and I/O devices. While we use the combination
of virtual and emulated execution to achieve performance, our
modifications are made completely outside the protected vir-
tual machine and require no changes to the protected OS or
applications.

Figure 1 shows the high-level architecture of the system. As il-
lustrated, the protected VM runs above a virtual machine mon-
itor, and is assisted by a control VM, where the majority of
the architectural modifications are implemented. Table 1 de-
scribes the individual modifications to virtual hardware that
are required to track tainted data. The table additionally con-
trasts that modifications that are in place in each mode of exe-
cution; these will be discussed in more detail in Section 4.

3.2 Taint Model
Our taint model is based around a conventional von Neumann
architecture with a CPU, memory, and I/O devices. Like pro-
gram shepherding [2], we do not prohibit the transfer of tainted
data through the system. Instead, we monitor the movement of
data and ensure that tainted data is not used inappropriately.

We divide the CPU registers into two classes and track the
current taint state of each member of the first class:

• Data Registers: These are the general purpose data reg-
isters for the architecture. Data is loaded into the regis-
ters, manipulated, and then stored back into memory.
They also include floating point registers and any SIMD
vector registers.

• System Registers: These additional registers are used
to manage the processor’s control plane and system re-
sources, such as the program counter, stack, memory
management, and processor operation modes.

Tainted data can flow freely between memory and data regis-
ters. System registers, however, should never be tainted; any
attempt by the processor to move tainted data into a system
register results in a taint violation. This is described more fully
in the next section.

The taint model prevents processor operation from being af-
fected by untrusted data from the outside world. Similarly
to previous taint work [1], we consider the program counter
a system register and prevent the processor from either load-
ing or executing tainted data. Furthermore, we also deem the
stack pointer a system register and prohibit loading tainted
data. This prevents a stack frame overrun from constructing
a frame pointer that causes activation records to be skipped on
return from a subroutine.

Our model prevents the processor state from being directly af-
fected by tainted data. Indirect attacks are still possible as, like
other taint-based protection schemes, data-flow is not tracked
across comparisons or arithmetic operations. However, be-
cause we trust the initial state of the machine, we assume that
the system does nota priori include malicious code that an at-
tacker can exploit. This point is discussed more thoroughly in
Section 3.4 below.

The taint model also does not prevent attacks where applica-
tion semantics are changed based on tainted data. Such attacks
do not try to corrupt the processor state directly and so remain
undetected. For example, a bug in ssh [20] overflowed the
stack and placed a zero into a particular stack variable. This
adulterated stack variable was later used as the userid of the
ssh shell, thus allowing an intruder to gain privileged access to
the host.

6. Normal execution resumes. Once the processor state is free of
tainted data (a), emulation stops and the VM resumes normally (b).

(a)

Control VM
emulator

cpu
PC

regs

Protected VM

cpu
PC

regs

(b)

Control VM
emulator

cpu
PC

regs

Protected VM

(a) (b)

3. Emulator tracks tainted data. Tainting propagates across data
movement instructions through both registers (a) and memory (b).

(a)

Control VM
emulator

cpu
PC

regs

Protected VM

cpu
PC

regs

(b)

2. Protected VM accesses tainted data. Accessing tainted data (a)
switches the VM into emulation mode (b) in the control VM.

Protected VMControl VM
emulator

cpu
PC

regs

5. VM attempts to execute tainted data. Attempts to executed
tainted data are trapped and handled.

(a) (b)

Control VM

emulator
blk

Protected VM

4. Data is stored to or read from disk. Tainted data is tracked even
when written to persistent storage

(c)

Control VM

net
(a)

Protected VM

vnet

1. Inbound packet arrives. The packet is marked tainted (a) and the
vnet driver is notified of a pending packet (b). The packet is then
delivered to the protected VM (c).

(b)

Figure 2: Tracking tainted data throughout the system.

3.3 Lifespan of Tainted Data
Figure 2 illustrates how tainted data is managed as it moves
through the system. In Figure 2-1, a packet arrives at the host
from the physical network interface. The packet is processed
in the control VM, which is hosting the network device and
the pages into which the data has been received are marked as
tainted as they are transfered into the protected VM’s pseudo-
physical address space.

Shortly later, the protected VM handles an interrupt indicating
that a new packet has been delivered. As received data is pro-
cessed, the CPU attempts to load data from the tainted memory
pages into registers. This results in a fault, and causes the VM
to be switched into emulation (Figure 2-2). The current (virtu-
alized) CPU state is preserved and execution is transferred into
a hardware emulator running in user-space in the control VM.
The emulator has direct mapped access to the VM’s memory
and so continues to execute the machine in place.

As this execution progresses, as shown in Figure 2-3, emulated
instructions operate on tainted data. The emulated processor
microcode is modified to track tainted data across memory and
register stores. Stores of untainted data result in the cleaning
of tainted memory. In this manner, well-behaved OSes will
clean tainted memory as they zero freed pages.

Figure 2-4 shows that tainted data is also tracked across stor-
age to disk. The virtual disk is modified to store an on-disk
data structure mapping the location of tainted data. If data is
re-read then the memory it is placed in is marked appropri-
ately.

Figure 2-5 illustrates what happens if a VM attempts to ex-
ecute a piece of tainted memory or load tainted data into a
system register: an instruction exception is thrown, enabling
the operating system to react as appropriate. Such events can
occur when the VM loads the address of tainted data into the
EIP, or when it simply advances execution into a tainted re-
gion of memory. The exception thrown could be an existing
processor fault, such as invalid opcode, or we could extend the
processor with a specific “tainted” exception. To minimize op-
erating system software changes we opt for the former of these
two options in our work.

Finally, after processing a region of tainted data, the proces-
sor finds that its registers have become clean (Figure 2-6). At
this point, it executes to an appropriate opportunity and then
transfers the processor state back to virtualized execution.

3.4 Managing and Executing Tainted Data
We demonstrate that the addition of a sweeping hardware fea-
ture, such as taint-tracking, can be efficiently achieved on com-
modity hardware. This work provides all the necessary mecha-
nism for end-to-end taint protection on modern hardware, with
sufficiently reasonable performance as to be deployed on desk-
top systems. Our current taint model is intentionally simple,
for purposes of exposition and validation—it is the same as
that described in systems such as Vigilante [14]. This model
trusts the software on the host not to maliciously remove taint-
ing. We believe that there is a clear opportunity to explore
alternative taint models.

Control VM Protected VM
(Virtualized)

Virtual Machine Monitor

emulator

page granularity
taint tracking

byte granularity
taint tracking

Figure 3: Tracking tainted memory. Tainted memory
is tracked by two synchronized data structures: A byte-
granularity hash table resides in the emulator, and a
coarser page-granularity bitmap in the VMM.

3.4.1 Untainting Data for Execution
There are some situations where it is desirable to execute data
received from the network. To allow users to install and run
new applications or system upgrades, the system must provide
a mechanism to untaint data. Furthermore, untainting should
be as simple as possible to avoid users becoming discouraged
with the additional security provided by taint-based protection.
In order to achieve this, we require that data to be untainted be
written to disk. We then provide a utility, calledbless , which
removes taint annotations from the blocks accordingly.

4. IMPLEMENTATION
Our implementation is based on the Xen VMM [21] with hard-
ware emulation provided by a modified version of QEMU [22].
This section details how we have modified and combined these
packages to provide taint-based protection.

4.1 Tracking Tainted Memory
Our design requires the addition of fine-grained taint tracking
to the host architecture. We chose to track tainted data at a byte
granularity, for fear that coarser (e.g. page granularity) track-
ing would lead to excessive propagation of taint annotations
and, as a consequence, incur a higher performance overhead.
Tracking of tainted data must strike a balance between two as-
pects of the system: As shown in Figure 3, the emulator must
have fast access to a byte-granularity index of tainted memory,
while the VMM must be able to map page-granularity taint
information onto MMU hardware to activate emulation when
necessary.

4.1.1 Tracking Tainted Bytes (Emulation)
The taint tracking data structure is a byte-granularity mask de-
scribing the location of all tainted data in the system. As the
vast majority of accesses to this data structure are made in
emulated execution, it is allocated inside the emulator’s ad-
dress space. This has the additional benefit of avoiding mem-
ory overhead and churn within the VMM itself. This data is
store in a bit-per-byte bitmap representing all of the physical
memory of the protected VM.

Table 2 contains a list of calls which are used to track and
check tainting for the processor and memory; most are self-
explanatory. Note that since control registers can never be
tainted, there are no calls to set or query them.

The interface to this data structure is the only mechanism by
which memory is marked or unmarked as being tainted. After
the byte-granularity tracking structure is updated, these mark-
ings are generalized to a page granularity bitmap that is shared
with the VMM.

void taint memorypage(physicaladdr, taint)
Taint or untaint a page of physical memory. Used by device
drivers when loading external data.

void taint memory(virtualaddr, length, taint)
Set the taint of a region of virtual memory.

boolean checkmemory(virtualaddr, length)
Check if any byte in region of virtual memory is tainted.

void taint register(registerid, taint)
Set the taint for a data register.

boolean checkregister(registerid)
Check if a data register is tainted.

Table 2: Taint API

4.1.2 Tracking Tainted Pages (Virtualization)
Unfortunately, the x86 hardware does not provide a general
mechanism to generate memory faults at byte-granularity or
based on physical addresses. To overcome these limitations,
we ensure that any active page table entries pointing to tainted
data are marked as not present, resulting in an fault into the
VMM on their access. As the hardware protection is at page
granularity, the shared tainted-physical-page bitmap is con-
sulted on page faults. If a faulting address maps to a tainted
page, a switch to emulated execution is triggered.

A second challenge with the x86 hardware is in mapping a list
of tainted physical pages on to the virtual address space of all
applications that may attempt to access it. As data is marked
as tainted, it is important that all references to it reflect this
fact and result in a page fault on access.

Our approach takes advantage of shadow page tables [23, 24,
25] to address this issue. This technique involves maintain-
ing a protected version of a VM’s page tables in hypervisor
memory, beyond the reach of that VM. These shadow tables
are used by the hardware MMU, and so contain authoritative
information on a VM’s virtual memory—the page tables held
within the VM may be freely modified by the virtualized host,
and are validated and translated into the live shadow tables as
necessary. In the case of our implementation, new page table
entries are validated against the bitmap of tainted pages and
marked accordingly.

Using shadow page tables provides a level of indirection be-
tween the VM and physical memory, and allows new MMU
functionality to be implemented in software. Other recent ex-
amples that use shadow page tables to extend the functional-
ity of memory include live VM migration [26], which tracks
page dirtying as a VM is iteratively copied over the network,
and “flash cloning” [13] in which a running VM may be du-
plicated while memory is shared between the two VMs in a
copy-on-write fashion.

The shadow fault handler is called whenever a page fault is re-
ceived from the protected VM. In our implementation the fault
handler is responsible for two important tasks. First, it tests to
see if a faulting page is marked as tainted. If so, it flags that
the VM should be restarted in emulation mode when it returns
from the fault. Second, as an optimization, the shadow code
maintains a list of code pages that have been translated and
cached by the emulator. It ensures that these pages are always
mapped read-only, and records them as requiring invalidation
on update faults.

void op_movl_A0_im (u32_t imm)
{

A0 = (u32_t) imm;
taint_register(S_A0, 0);

}

void op_ldl_T0_A0 (void)
{

T0 = (u32_t) ldl_p((u8_t *)A0);
taint_register(S_T0,

check_memory(A0, 4));
}

void op_movl_EAX_T0(void)
{

EAX = T0;
taint_register(R_EAX,

check_register(S_T0));
}

Figure 4: QEMU micro-operations to load the accumula-
tor with the contents of a memory location.

4.1.3 Instruction-level Taint Tracking
QEMU splits each x86 instruction into a number of micro-
operations that we have annotated with tainting logic. For ex-
ample, the instruction to load the accumulator with the con-
tents of a memory location (movl $c0379da8, %eax) is
decomposed into a sequence of three micro-operations: one
to load the memory address into a temporary register, one to
load a second temporary register with the contents of memory,
and a third to move the contents of the second temporary reg-
ister into the accumulator. This decomposition is illustrated in
Figure 4.

These RISC-style micro-operations provide a convenient place
at which to add taint tracking. Referring once again to Figure 4
we see that the load of an immediate value into the (temporary)
address registerA0 clears any possible previous taint; the load
of a memory word intoT0 propagates the taint information
associated with that 4-byte region of memory; and the assign-
ment ofEAXfrom T0 simply propagatesT0’s taint status.

4.2 Demand Emulation
Our implementation hopes to achieve high performance for
what is effectively a “hardware extension” requiring emula-
tion, but where emulated execution is not the common case.
Assuming that only a limited portion of execution time is spent
dealing with tainted data, we may run mostly in virtualized
mode, with a very small execution overhead, and then switch
into emulation only “on demand” while tainted data is being
processed. We call these dynamic transitions between virtual
and emulated execution V2E and E2V.

The addition of this live emulation support to Xen has required
only minimal modifications to the hypervisor. The decision to
transition into emulation is made immediately before control
is passed from VMM to VM context. At this point, a flag is
tested to determine if emulation is required. To switch to emu-
lation, the VM is paused, and an interrupt is sent to the control
VM instead of the activation of the virtualized instance. As
such, QEMU acts very much as a drop-in software replace-
ment for the physical CPU that may be turned on and off at a
per-instruction granularity.

4.2.1 Entering emulated execution (V2E)
The left-hand side of Figure 5 shows entry to emulation from
a taint fault in native execution. As was mentioned in Sec-

time
Xen

emulated

virtual

emulated

virtual

us
er

ke
rn

el

(a)

(d)

(f)

(g)

(h)

(b)

(c)

emulation ➙ virtualvirtual ➙ emulation

(e)

Figure 5: Transitioning between virtual and emulated ex-
ecution. A virtualized host takes a page fault in either
user (a) or kernel (d) and enters Xen; the shadow fault
handler identifies that the page is tainted (b); and then re-
turns to the same execution context in emulation (c) where
the processor state is copied into the emulator. When a de-
cision is made to end emulation (e,h), the processor state
is copied back to Xen and a hypercall is made for Xen to
unpause the virtual machine (f); finally, virtual execution
continues (g).

tion 4.1.2, we transition from virtual to emulated execution
whenever a fault is taken on a page of memory that has been
marked as containing tainted data. The shadow fault handler
in Xen marks the VM as requiring redirection on hypervisor
return. While the emulator has all of the protected VM’s mem-
ory directly mapped, the processor context must still be trans-
ferred before execution can proceed. Table 3 shows the IA-32
processor state that is transferred from Xen to QEMU.

Emulated instructions must still handle both faults, traps, and
interrupts. The left-hand side of Figure 6 demonstrates how
these are handled in our current implementation. In the case
of faults, we chose to preserve the regular fault entry seman-
tics provided by Xen, which authenticates hypercalls based on
the calling VM. An alternative approach would be to add a
“remote fault” entry, where the emulator could directly issue
faults on behalf of another VM. When a faulting instruction is
recognized by the emulator, it makes a hypercall to Xen, ask-
ing that the faulting instruction be reissued by the virtualized
VM. On entry to Xen, a re-entry count is provided to indi-
cated the number of VM entries that are to be allowed prior
to returning to emulation. On faults, this value is set to one,
allowing a single instruction to be evaluated.

Although this technique for faulting maintains the existing fault
interfaces within Xen, the “double-bounced” routing through
the hypervisor does represent a performance overhead. Our
approach to date has been to design for stability, and the cur-
rent technique avoids significant changes to the VMM. Addi-
tionally, emulation is sufficiently expensive that this may not
be a key overhead to address. That said, the addition of a “re-
mote fault” interface would eliminate protection VM crossings
and will be interesting to investigate as future work.

Interrupts are handled similarly to faults, but require less rout-
ing across protection domains. However, as with virtualized
execution there is no notion of a direct hardware interrupt to
the virtual machine. Interrupts are handled directly by Xen and
then translated toevent notificationsin the VM. Event notifi-
cations are a configurable and maskable bitmap of “ports”—
effectively a virtual APIC—which are mapped as virtual inter-
rupts to the VM. The bit-mask is stored on a page of memory
shared between the hypervisor and each VM, and a summary
“event pending” bit is tested whenever a VM is scheduled.

#bytes

7 debug registers 28
8 general purpose registers 32
program counter (EIP) & status (EFLAGS) 8
4 control registers1 16
GDT andLDT base and limit 16
6 segment selectors 24
x87 floating point state and registers 86
XMM state and registers 132

Total 342

Table 3: IA-32 processor state transferred between Xen
and QEMU.

The emulator must deal with interrupts similarly. On VM
startup, the emulator locates the shared memory page contain-
ing the event bitmap. As long as a VM in running in emula-
tion, this bitmap is tested regularly in between the execution
of basic blocks. If an interrupt is detected:

• the emulator traps to Xen (with a re-entry count of zero);

• Xen prepares the interrupt frame; and

• execution resumes in the appropriate context, where the
interrupt handler is run.

This is illustrated on the right-hand side of Figure 6.

It is not worth polling shared memory for interrupts at a finer
granularity than emulated basic blocks since the CPU is not
necessarily in a consistent state to be interrupted at such points.
However, polling between basic blocks is complicated by the
optimizations employed by QEMU which adaptively link con-
secutive basic blocks together. Tight loops, for instance calcu-
lating the CPU speed at boot, may end up linked together and
eliminate opportunities to poll altogether. To address this, we
introduce an emulated timer interrupt, which tests for pending
interrupts every 50ms.

4.2.2 Returning to virtualized execution (E2V)
Returning from emulation to virtualized execution presents an
interesting problem. A naı̈ve approach might define a function
taint check() that checks if all data registers are clear of tainted
data, and then invoke this after every instruction. This would
be unwise for several reasons. First, testing the register set for
tainted data is far too expensive to do every operation; sec-
ondly, the emulated CPU may temporarily be in an inconsis-
tent state and require expensive canonicalization; and finally,
since the x86 CPU has only eight registers it is entirely possi-
ble for all of these to become transiently clean in the middle of
an operation on tainted data. Aggressively exiting emulation
in situations such as these could result in thrashing in and out
of emulated execution.

Instead our initial implementation allowed the emulator to run
as long as possible and deferred the call totaint check to the
next event which forced QEMU to re-enter Xen. This turned
out to be too long and we found ourselves emulating code un-
necessarily.
1Tracking control registers is simplified by merit of the fact
that Xen paravirtualizes the hardware interface. Many regis-
ters, such as machine specific registers and the task register,
do not need to be tracked in V2E/E2V transitions.

time
Xen

emulated

virtual

emulated

virtual

us
er

ke
rn

el

(a)

(d)

(e)

(f)

count =
 1

count =
 0

(g)

(b)

(c)

interrupt / trapsystem call / fault

Figure 6: Handling system entry in emulation. When the
emulator encounters a fault (a), it traps to Xen, which en-
ables single stepping (b) and allows the faulting instruc-
tion to reissue from the VM (c). This faults into Xen nor-
mally, where the fault is handled (d), and control is passed
to the emulated fault handler (e). Traps and interrupts en-
ter Xen (f), and are redirected directly to the OS handler
in emulation (g).

In an attempt to provide a low-overhead exit from emulation
and avoid thrashing between the two execution modes, we
have added a degree of hysteresis to whentaint check is called.
During basic block execution, we count the number of consec-
utive memory accesses to untainted pages, an inexpensive op-
eration given our bit per memory page bitmap. Upon comple-
tion of a chain of basic blocks, we check to see if the previous
x memory references were untainted, and if so calltaint check.

We currently setx = 50 empirically, based on our develop-
ment and evaluation workloads. Further evaluation is required
to determine whether another value or another algorithm, per-
haps with a higher degree of hysteresis, would be more bene-
ficial. See Section 5.3 for additional details.

4.3 Device Extensions
Tainted data is tracked across network and block device in-
terfaces by implementingsoft devices[27]—in essence, ex-
tended virtual hardware—which may interact with I/O-related
data outside the scope of the protected virtual machine. Since
it is unsafe to share direct hardware access between multiple
virtual machines, Xen uses “split drivers”: adriver VMhas di-
rect access to the hardware, and presents an idealized view of
the device to other VMs. A driver for this interface is installed
in the client OS, and the driver VM multiplexes access to the
physical device. In our implementation, the emulator, phys-
ical drivers, and device extensions all share a common VM,
although they could potentially be separated out for additional
robustness.

4.3.1 Tainting Network Data
Xen’s current network interface delivers packets to individ-
ual VMs using page remapping. Inbound packets are received
into a system-wide pool of free pages, which have been “do-
nated” by VMs that use the network. A packet is written into
an empty page, routed to the destination VM, and delivered to
that VM by mapping the page into its physical address space,
in place of a previously donated page.

We extend the virtual network interface to mark received pack-
ets as tainted before they are delivered to the protected VM. As
a packet is received, the network interface passes the physical
address and length of the packet to the taint-tracking module in
the emulator, where it is incorporated into the system taint list.
This marking is done asynchronously with batches of packets,
but is always completed before the data is made available to
the protected VM.

Processing packet headers results in considerable time spent
in emulation, and involves code that is generally well tested
and trusted to be safe. As a performance optimization, we al-
low the virtual network interface to be configured to deliver
untainted packet headers. In addition to mapping the packet’s
page in the receiving VM, the network interface does some ba-
sic sanity checking, and then places an untainted copy of the
packet headers in shared memory, which the protected VM
may process without incurring taint faults. Similarly, for vari-
ous network control packets (e.g. ARP packets, ICMP pings),
the device driver can verify the integrity of the packets and
bless them. The operating system does not need to enter emu-
lation each time these packets arrive, and internal kernel data
structures such as routing tables can thus be kept clean. In
this sense, we effectively provide a “smart NIC” which blesses
data packet headers and network control packets as being safe.

4.3.2 Tainting Storage
The virtual storage interface in Xen is structured similarly to
that of the network, but does not involve page exchange since
the target memory page for reads and writes always belongs
to the protected VM and is known at the time of the request.
The virtual disk device, running in the control VM, maintains
a persistent data structure—a sparse tree—identifying all disk
blocks that have been marked as tainted. On writes, the taint
properties of memory are preserved on disk. An additional
benefit to this data structure is that it is not part of the virtual
disk and so cannot be addressed by the protected VM.

On reads from disk, the target pages are rendered invalid while
the request is serviced by the control VM. Before the data is
made available to the protected VM, the taint markings are
updated as appropriate.

4.3.3 Selective Tainting
In some situations, it may be desirable to strike a further com-
promise between the performance overhead of taint tracking
and the thoroughness of the system. As an extension of the
header exemptions described for the virtual network interface
in Section 4.3.1, we have modified a commonly used intrusion
detection system (IDS), calledsnort to monitor all traffic
that will be delivered to the protected VM.

This approach allows an interesting extension to the function-
ality of the IDS, in which it may divide inbound traffic into
three classes:

• Attack trafficfor which IDS rules already exist is simply
dropped as normal;

• White-list trafficreceived from trusted hosts or destined
for particular trusted services is not be marked as tainted;

• Other traffic which is treated as untrusted and passed
into the system with taint-based protection.

One benefit to this technique is that it allows administrators to
focus on the set of traffic that they do trust, rather than that
which they do not, but without requiring unanticipated traffic
to be dropped. Instead it is simply treated with an enhanced
degree of protection.

Our current system includes a complete implementation of this
functionality but since it represents a mechanism to strictly
reducethe overhead of taint-tracking by tainting less data, we
do not enable it in our performance evaluation.

reserved

saved registers

saved registers

st
ac

k

st
ac

k

control
registers

data
registers

(a) (b)

top of
kernel stack

page boundary

Figure 7: Default Linux kernel stack layout (a) for in-
terrupt and exception processing, and modified stack lay-
out (b) with potentially tainted registers on a separate
page.

4.4 Operating System Enhancements
The implementation described thus far has been software ag-
nostic. By modifying the virtual CPU, physical memory and
devices offered to a virtual machine by a virtual machine mon-
itor, our technique is independent of both the operating system
and any user applications and does not require any changes.

Unfortunately, existing software has not been written to inter-
act efficiently with page granularity tainting—the placement
of tainted and untainted data together on the same memory
page can force unnecessary transitions into emulation. These
time consuming switches and the slowdown inherent in emu-
lation can both be avoided simply by altering the placement of
data structures in memory. We call this problemfalse tainting
by analogy with the false sharing problem observed in multi-
processor cache coherence protocols and distributed shared
virtual memory systems.

As a particular example, consider when a user application is
suspended, due to either an exception such as a page fault or
an external interrupt. The kernel saves the application’s reg-
isters on the kernel’s stack and then proceeds to handle the
exception. However, if the application was processing tainted
data at the time, one or more registers containing tainted data
would be pushed onto the kernel stack as shown in Figure 7(a).
The mere presence of tainted data on the kernel stack would
most likely force the operating system to process the exception
under emulation, even though no tainted data is accessed.

We minimize this by preallocating some space on each kernel
stack. By default, Linux allocates two pages, or 8 Kbytes, for
each kernel stack. By preallocating exactly the right amount
of space on each stack, the user’s possibly tainted registers
are stored on the higher page, while all the call frames used
while processing inside the kernel sit on the lower page (Fig-
ure 7(b)). We also zero the user’s registers immediately after
saving them, to keep any possibly tainted values from escaping
into the kernel. While emulation may still be required for plac-
ing the user’s tainted registers onto the higher page, and for re-
trieving them again just before exiting the kernel, this allows
the majority of the kernel code to run in native mode. How-
ever, it does reduce the amount of space available to Linux on
each kernel from 8 Kbytes to just over 4 Kbytes.

Fortunately, there is a Linux kernel configuration option that
allows Linux to survive with only 4 Kbytes per stack (CON-
FIG 4KSTACKS). It does this by requiring all interrupts (and
in particular, interrupts which occur while already executing
inside the kernel) to switch to another, dedicated 4 Kbyte stack,

stat signal handling fork fork shell file create mmap latency
Configuration (µsecs) (µsecs) (µsecs) (µsecs) (µsecs) (µsecs)

Linux 1.19 1.59 70 5,641 25.1 268
Xen Linux 1.46 (1.2x) 1.78 (1.1x) 197 (2.8x) 6,244 (1.1x) 27.1 (1.1x) 593 (2.2x)

Modified VM 2.02 (1.7x) 2.59 (1.6x) 208 (3.0x) 6,421 (1.1x) 29.6 (1.2x) 600 (2.2x)
Protected VM 2.08 (1.7x) 2.47 (1.6x) 259 (3.7x) 6,724 (1.2x) 29.6 (1.2x) 660 (2.5x)

100% emulated,
49.60(41.7x) 57.78 (36.4x) 7,420(106.5x) 139,668(24.8x) 467.5(18.6x) 16,480(61.5x)

& no tainting
100% emulated,

111.00(93.3x) 176.14(110.7x) 11,905(170.8x) 415,979(73.7x) 1,838.2(73.2x) 23,699(88.4x)
& tainting

Table 4: Representative LMbench test results.

which are statically allocated per-CPU. By enabling this op-
tion and then allocating 8 Kbytes for each stack anyway, we
keep the user’s tainted data from slowing down system calls,
interrupt handling, and exception processing in the kernel.

It is still possible for an interrupt to occur while processing
tainted data in the kernel. If one or more of the registers are
tainted, then they will taint the kernel stack as they are saved.
Since the LinuxCONFIG4KSTACKSoption will cause this
interrupt to quickly switch to a separate stack, the interrupt
handler itself does not end up using a tainted stack, but upon
returning from the interrupt, the kernel’s stack is now tainted.
To combat this, we also zero the register save area on the ker-
nel stack immediately after restoring the user’s registers, and
just before returning from the interrupt.

These modifications allow the kernel to process interrupts and
exceptions almost entirely in native mode.

Another Linux-specific example involves buffer management
in the TCP stack where multiple partially consumed buffers
can be coalesced to save memory. This process can have the
unfortunate side-effect of migrating tainted packet data back
onto the same page as the packet header and negating the per-
formance optimization described in Section 4.3.1. The work-
around is to disable TCP packet queue collapsing for tainted
data.

4.5 Validation and VMM Stability
Throughout our implementation, we have been struck by how
stable the resulting system has been. As the emulator and
device extensions all run in user-space, we rarely needed to
reboot the physical host during development. Moreover, the
changes to the VMM itself have been very small, amount-
ing to only 528 lines of code. We also change 755 lines of
kernel code in the control VM, mostly to provide the driver
extensions. All the remaining implementation described here
resides in user-space.

One concern in our final implementation was to ensure that we
were in fact emulating in all the appropriate situations. To val-
idate this, we enabled debug single-stepping whenever an em-
ulated fault was reissued by the virtualized protected VM. The
use of single-stepping ensured thatonly the faulting instruc-
tion is executed by the VM—if the emulator has misjudged
an instruction, single-stepping ensures that the virtualized ex-
ecution returns immediately to Xen, where execution may be
redirected to the emulator. This validation technique did in fact
identify a fault-handling bug, which has now been resolved.

5. EVALUATION
In this section, we evaluate the performance of our taint-based
protection system. We use a snapshot of the public Xen source
code taken on December 16, 2005, post 3.0 release. The test
machine is a Dell 2650, with a single 2.8GHz P4 hyperthreaded
CPU, 2GB of RAM and Broadcom TG3 gigabit Ethernet in-
terface. 1GB of RAM was allocated to the control VM and
128MB to the protected VM, running an Ubuntu Linux distri-
bution.

The machine configurations of interest are:

(a) Native Linux running on bare hardware (Linux)
(b) Linux running in a virtual machine (Xen Linux)
(c) Linux in a VM, modified to betaint-friendly, by reduc-

ing data copying, cleaning the registers and stack, and
tuning the network stack (Modified VM)

(d) Modified Linux running as a protected virtual machine,
switching to emulation to track tainted data (Protected
VM)

(e) Modified Linux, always running in the emulator, with-
out tainting (100% emulated, no taint)

(f) Modified Linux, always running in the emulator, prop-
agating taints (100% emulated, tainting)

5.1 Untainted Performance
LMbench is a series of micro-benchmarks designed to evalu-
ate the performance of operating system primitives. We specif-
ically select the measurements of the processor, processes, file
system, and virtual memory system. Table 4 shows the per-
formance of: the stat system call, catching signals, the fork
system call, forking and then executing /bin/sh in the child,
creating a zero size file, and mapping and unmapping a file
into/from memory.

The first three rows show the times and relative slowdown for
native Linux, our taint-friendly kernel, and a protected VM.
The stat, signal handling, and file create tests show a negligi-
ble increase in time and hence little penalty for tainting as no
network data is involved.

The extra time required for the fork system call and mmap la-
tency can be attributed to shadow page table maintenance. It
is interesting to note that in the fork shell benchmark, where
the time to instantiate the shell process dominates the time to
fork the process, the modified VM and protected VM both ap-
proximate the performance of Xen Linux.

To understand the overhead of our implementation, we have
also run LMbench on two modified systems. In the first, the
system stays in the QEMU emulator all the time but with taint
tracking disabled. However, the overhead of switching be-

Configuration max min average

baseline
(c

a
)

3.0x 1.1x 1.9x

taint overhead vs Linux
(d

a
)

5.0x 1.1x 2.1x

taint overhead vs emulator
(d

c
)

1.7x 1.0x 1.1x

emulation overhead
(e

c
)

35.7x 15.8x 26.6x

taint overhead
(f

e
)

3.9x 1.0x 2.2x

Table 5: Combined processor, processes, file, and VM sys-
tem latency LMbench test results.

tween the emulator and Xen to handle interrupts and excep-
tions remains. The final row shows results for a similar system
but with taint tracking enabled.

We next analyze each individual LMbench processor, process,
file, and VM system test. For each micro-benchmark, we com-
pute the ratio of the scores from two configurations from Ta-
ble 4. We list in Table 5 the best, worst, and average ratios
across all micro-benchmarks for the configuration pair. This
allows us to estimate the performance impact of individual
components.

The first row shows the overhead that our taint-friendly ker-
nel, running on a virtual machine, incurs, compared to native
Linux. The next row shows the overhead that our implementa-
tion incurs for these LMbench tests, as compared to the same
native Linux. These numbers are generally very low, as we
would not expect LMbench to introduce tainted data into the
system.

The third row shows the overhead of our implementation ver-
sus a VM that is running our taint-friendly kernel and network
driver, but without any emulator; there is no taint tracking, and
no switching into emulation. In other words, we add about 10
percent total overhead to LMbench for running it on a virtual
machine that is doing full system taint tracking.

The fourth row shows the impact of running under emulation.
With the V→E→V overhead, we see that the emulator is about
26.6 times slower than the raw processor.

Finally, we compare running with and without taint tracking
in the emulator. This shows that our taint tracking additions to
QEMU incur an approximately 2.2x slowdownwhen we are
in the emulator. However, the goal is to avoid entering the
emulator as much as possible.

5.2 Network Performance
Network traffic is the source of taint introduction into the ma-
chine, and the next experiments determine the typical network
transmit and receive rates of a protected virtual machine. The
netcat command sends data through a TCP connection be-
tween machines, with the amount of data transmitted chosen
to exercise the machine for approximately 30 seconds.

recvhost% nc -l -p 2000 > /dev/null
sendhost% (sleep 5; dd if=/dev/zero bs=100k

count= x) | nc recvhost 2000 -q 0

netcat (MB/sec)
transmit receive

Configuration (x = 2, 000) (x = 20, 000)
Linux 107.19 107.04

Xen Linux 87.41 (1.2x) 80.43 (1.3x)
Modified VM 86.92 (1.2x) 47.87 (2.2x)
Protected VM 72.04 (1.5x) 5.94 (18.0x)

dd|ssh (MB/sec)
transmit receive

(x = 200) (x = 100)
Linux 38.38 34.21

Xen Linux 28.52 (1.3x) 27.44 (1.2x)
Modified VM 25.62 (1.5x) 17.11 (2.0x)
Protected VM 0.29 (132x) 0.22 (155x)

Table 6: netcat and dd|ssh test results

In the results in Table 6, native Linux sees symmetric, near
wire-limited transmission and reception speeds for netcat on
our 1 gigabit Ethernet. Virtualization then introduces a 20 per-
cent performance cost on network speeds due to the interpo-
sition of our control VM between the unprotected virtual ma-
chine and its network.

Receive speeds are reduced by adding our taint-friendly vir-
tual NIC (described in Section 4.3.1) that is pre-screening and
filtering packets, and then separating their headers into un-
tainted memory so that the protected VM can process the head-
ers without touching the tainted payloads. To limit the excess
propagation of taints while executing the kernel we have also
added register and memory scrubbing on every interrupt, sys-
tem call, and exception; and we have disabled the TCP stack’s
buffer collapsing to avoid copying of tainted data.

The taint-protected virtual machine achieves transmission speeds
close to that of the unprotected virtual machine, which is what
we would hope for—since the majority of the incoming net-
work packets will simply be packet ACKs which carry no pay-
load, and thus introduce no new tainted data into our machine.
On the receive path, however, we see that a taint-protected vir-
tual machine experiences an 18x performance decrease, as the
incoming tainted packet data must be copied into user-space,
with all such copying necessarily performed inside the emula-
tor.

To explore the expected worst-case performance of our sys-
tem, we drive a CPU-bound computation on tainted data whilst
also receiving interrupts by runningdd through ssh.

recvhost% ssh sendhost dd if=/dev/zero
bs=100k count= x > /dev/null

On native Linux, we see that the machine is CPU bound—it is
unable to use all of the gigabit Ethernet bandwidth. The un-
protected virtual machine again sees a performance decrease
due to the additional layer between the VM and the network.

As predicted, this is an exceptionally bad workload for our
taint-protected virtual machine. The initial key exchange be-
tween ssh and sshd deposits tainted data in user-space that is
accessed to decrypt every arriving packet, so triggering emu-
lation. In addition, the interrupt processing caused by packet

V2E E2V
Configuration (cycles) (cycles)

1 CPU 39.6k 31.5k

1 CPU
36.8k 24.0k

(with hyperthreading)
2 CPUs

37.2k 34.0k
(without HT)

Table 7: Transition times from virtualization to emulation
and vice versa.

arrival and system call handling for transferring data between
the kernel and user-space causes the protected virtual machine
to be continually switched between virtual and emulated en-
vironments, incurring expensive transition overheads and de-
creasing performance to a 150th of native execution.

5.3 Transition Costs
We measure the transition time taken to switch between run-
ning virtualized and running under the emulator by sampling
the processor cycle counter either side of carefully constructed
instruction sequences, deliberately touching tainted data (in
the case of entry to emulation) or terminating a carefully placed
basic block with untainted registers (to cause a return to vir-
tualization). The results are shown in Table 7. These show
the number of cycles on a 2.4GHz CPU occurring between
two rdtsc instructions with three other instructions between
them that trigger mode transition2. None of the lasting effects
on the virtual machine (cache effects, TLB effects, etc) are
accounted for here.

The transition results indicate that it is desirable to run the
control VM and the protected VM on two different threads on
a hyperthreaded processor. With our workload, hyperthread-
ing enables both virtual machines to make progress in paral-
lel where possible, successfully beating the uniprocessor al-
ternative, and yet allows them to exchange the VM state on a
transition in their shared caches, which reduces the time of a
transition. In contrast, the SMP configuration has to move this
processor configuration (and the VM’s working set, which is
not directly measured by these numbers) between CPU caches,
slowing it down and outweighing the benefit of avoiding inter-
VM cache pollution.

Determining when to return from emulation to virtualized ex-
ecution is a subtle question deserving of further research. It
would satisfy the correctness constraints of our model to sim-
ply exit emulation whenever all of the CPU registers are un-
tainted. An artifact of our implementation is that it restricts
switching to occur only at the end of basic blocks. The impor-
tant question is whether it isdesirableto switch back to virtu-
alized execution at the soonest possible opportunity: while all
the registers may be clean at a given instant, if they are about
to be tainted again then we would rather avoid the rather large
transition times from Table 7.

Towards this end, we added a basic hysteresis function: tran-
sitions from emulation would only be considered after N se-
quential memory accesses have all accessed untainted pages.
(Notice that even if we are not touching tainted data, we re-

2The observed difference in cycle counter values executing
without performing a transition was typically 84 cycles, nearly
all of which is just the cost of therdtsc instructions them-
selves

hysteresis MB/sec
5 5.93
50 5.79
500 4.01
5000 3.24

Table 8: Effect of hysteresis on netcat receive

main in emulation if we are touching pages which contain
tainted data, i.e. false taint hits.) Table 8 shows the effects
of hysteresis settings of 5, 50, 500, and 5000 on our netcat
receive workload.

In this experiment, tainted data is being received in bulk by
netcat and immediately discarded into/dev/null . All the
copy to user calls in the kernel are touching tainted data, and
thus must occur in emulation. In this particular benchmark, we
see that increasing hysteresis does not provide a benefit; how-
ever we have observed counterexamples during development
and believe that future research ought consider a dynamic con-
trol system for the hysteresis value.

6. CONCLUSION
This paper presents a novel architecture for taint-based data
protection using a combination of machine virtualization and
emulation, safely achieving high-performance for computa-
tion by dynamically switching to emulated execution only when
tainted data is being handled by the processor.

6.1 Summary
When executing in a taint-free environment, we are able to
drastically improve upon the overhead of continuous emula-
tion and, in effect, introduce a new hardware feature with rea-
sonable overhead on commodity hardware. Although our work
extends previous research on taint-based data tracking, our ap-
proach is both more efficient and more comprehensive: to our
knowledge we are the first to propagate taint markings to and
from disk, ensuring that tainted data may never be executed.

We have identified the importance of introducing taint-friendly
modifications to an operating system kernel, to reduce the win-
dow of tainted execution and limit the propagation of taints.
Adding register and stack washing to interrupt handler code
prevents the execution of tainted user processes from unneces-
sarily forcing the kernel into the emulator.

Exporting the address space of a running virtual machine into a
user-space process in a second virtual machine to perform sys-
tem emulation proved to be a convenient and powerful tech-
nique, although ultimately at the expense of some performance
due to the high transition costs incurred. We believe that im-
plementing emulation within the hypervisor would provide a
significant system performance improvement.

6.2 Ongoing and Future Work
The current taint-tracking implementation within our modi-
fied QEMU required the explicit addition of taint logic to the
execution of each micro-operation. Instead of adding taint
code manually to the almost 1,000 micro-operations used by
QEMU, we are working on using the CIL [28] C-to-C trans-
formation tool to add taint annotations automatically. We an-
ticipate that this will greatly simplify experimentation with al-
ternate taint models, such as byte-level tainting within each
register.

A second piece of ongoing work targets additional performance
enhancements which go beyond the simple per-micro-operation
taint tracking. Instead we are investigating the application of
run-time data-flow analysis to “collapse” a sequence of taint-
ing operations. Ideally this will be integrated closely with
the basic-block optimization and chaining techniques used by
QEMU, allowing near-native execution of emulated code while
maintaining accurate taint semantics.

We decided to use an emulator running in user-space in the
control VM to simplify the system architecture. In retrospect,
transition costs between the virtualization and emulation and
the need to “double bounce” to service a system call or fault
during emulation was greater than what we originally antici-
pated. Placing the emulator within the VMM and aligning the
data structures used by the emulator with the VMM’s would
drastically minimize these costs.

The basic hardware support assume in our work so far has been
page-granularity protection. However some researchers [29,
30] have explored finer granularity hardware protection tech-
niques in which the ECC bits are manipulated in order to re-
liably protect individual cache lines. We anticipate that using
such techniques would greatly improve performance by reduc-
ing the amount of false tainting.

We started this work, hoping to avoid any changes to the kernel
or application code, but found that the changes in Section 4.4
were required to combat the accidental leaking of tainted data
into many kernel operations. We would like to explore explic-
itly exposing the operating system and the application writer
to the notion of running on a tainted system, and see if vari-
ous forms of taint segregation can be improved cooperatively.
For example, one can imagine a taint-aware garbage collector
which keeps tainted objects on tainted pages, thus trying to
minimize false taints.

The approach of dynamic emulation presented in this paper
has allowed us to implement a sweeping new architectural
feature—in this case taint-based protection—in a novel fash-
ion. We feel that this is in some sense just one application of
demand emulation: the approach is more generally applicable
for any “sometimes on” architectural features, where perfor-
mance can be regained by reverting to virtualized execution
whenever a feature is not in use.

In addition to the requirement that new features be “sometimes
on” for this approach to be useful, we require that there exist
an appropriate mechanism (such as page protection) to acti-
vate the switch from virtualized to emulated execution. Given
these constraints, we are confident that there is a considerable
opportunity to explore the development of other new hardware
features using this technique, and look forward to examining
this area in the near future.

Acknowledgments
The work presented in this paper benefited greatly from dis-
cussions with Ian Pratt, Keir Fraser, Jon Crowcroft, Perik-
lis Akritidis, Anil Madhavapeddy, Manuel Costa, and Paul
Barham. The authors would also like to thank our shepherd
Gilles Muller, and Fabrice Bellard for his excellent work in
creating a versatile open-source emulator that proved both en-
joyable and educational to extend.

7. REFERENCES
[1] James Newsome and Dawn Song. Dynamic Taint

Analysis for Automatic Detection, Analysis, and
Signature Generation of Exploits on Commodity
Software. InProceedings of the 12th Annual Network
and Distributed System Security Symposium, February
2005.

[2] Vladimir Kiriansky, Derek Bruening, and Saman
Amarasinghe. Secure Execution Via Program
Shepherding. InProceedings of the 11th USENIX
Security Symposium, August 2002.

[3] Wei Xu, Sandeep Bhatkar, , and R. Sekar. A Unified
Approach for Preventing Attacks Exploiting a Range of
Software Vulnerabilities. Technical Report Technical
Report SECLAB-05-05, Department of Computer
Science, Stony Brook University, August 2005.

[4] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas
Devadas. Secure Program Execution via Dynamic
Information Flow Tracking. InProceedings of the 11th
International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS-XI), pages 85–96, 2004.

[5] Jedidiah R. Crandall and Frederic T. Chong. Minos:
Control Data Attack Prevention Orthogonal to Memory
Model. InProceedings of the 37th International
Symposium on Microarchitecture (MICRO), December
2004.

[6] Shuo Chen, Jun Xu, Nithin Nakka, Abigniew
Kalbarczyk, and Ravi Iyer. Defeating Memory
Corruption Attacks via Pointer Taintedness Detection.
In Proceedings of IEEE International Conference on
Dependable Systems and Networks (DSN-2005), June
2005.

[7] Dana Madsen. An Operating System Analog to the Perl
Data Tainting Functionality. InProceedings of the 23rd
National Information Systems Security Conference, June
2000.

[8] Randal L. Schwartz. Perl Advisor: Taint so Easy, Is It?
Unix Review, August 2000.

[9] David Thomas and Andrew Hung.Programming Ruby:
The Pragmatic Programmer’s Guide. Addison Wesley
Longman, first edition, 2001.

[10] David Flannagan.JavaScript: The Definitive Guide.
O’Reilly, second edition, January 2001.

[11] Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene,
Jeffrey Shirley, and David Evans. Automatically
Hardening Web Applications Using Precise Tainting. In
Proceedings of the 20th IFIP International Information
Security Conference (SEC2005), May 2005.

[12] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher,
and Mendel Rosenblum. Understanding Data Lifetime
via Whole System Simulation. InProceedings of the
13th USENIX Security Symposium, pages 321–336,
August 2004.

[13] Michael Vrable, Justin Ma, Jay Chen, David Moore,
Erik Vandekieft, Alex Snoeren, Geoff Voelker, and
Stefan Savage. Scalability, Fidelity and Containment in
the Potemkin Virtual Honeyfarm. InProceedings of the
20th ACM Symposium on Operating Systems Principles,
October 2005.

[14] Manuel Costa, Jon Crowcroft, Miguel Castro, Antony
Rowstron, Lidong Zhou, Lintao Zhang, and Paul
Barham. Vigilante: End-to-End Containment of Internet
Worms. InProceedings of the 20th ACM Symposium on
Operating Systems Principles, October 2005.

[15] Georgios Portokalidis, Asia Slowinska, and Herbert
Bos.Argos: an Emulator for Fingerprinting Zero-Day
Attacks. InProceedings of the first EuroSys Conference,
April 2006.

[16] Pax project.http://pax.pgsecurity.com/ .

[17] Edouard Bugnion, Scott Devine, Kinshuk Govil, and
Mendel Rosenblum. Disco: Running Commodity
Operating Systems on Scalable Multiprocessors. In
Proceedings of the 16th ACM Symposium on Operating
Systems Principles, pages 143–156, October 1997.

[18] Dean M. Tullsen, Susan Eggers, and Henry M. Levy.
Simultaneous Multithreading: Maximizing On-Chip
Parallelism. InProceedings of the 22th Annual
International Symposium on Computer Architecture,
1995.

[19] Emmett Witchel, Junghwan Rhee, and Krste Asanovic.
Mondrix: Memory Isolation for Linux using Mondriaan
Memory Protection. InProceedings of the 20th ACM
Symposium on Operating Systems Principles, October
2005.

[20] Paul Starzetz. Quick Analysiss [sic] of the recent crc32
ssh(d) bug. Email to bugtraq@securityfocus.com,
February 2001.

[21] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,
Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and
Andrew Warfield. Xen and the Art of Virtualization. In
Proceedings of the 19th ACM Symposium on Operating
Systems Principles, pages 164–177, October 2003.

[22] Fabrice Bellard. QEMU, a Fast and Portable Dynamic
Translator. InProceedings of the 2005 USENIX Annual
Technical Conference, April 2005.

[23] Carl A. Waldspurger. Memory Resource Management in
VMware ESX Server. InOSDI 2002: Proceedings of
the Fifth Symposium on Operating Systems Design and
Implementation, December 2002.

[24] P. H. Gum. System/370 Extended Architecture:
Facilities for Virtual Machines.IBM Journal of
Research and Development, 27(6):530–544, November
1983.

[25] Judith S. Hall and Paul T. Robinson. Virtualizing the
VAX Architecture. InISCA ’91: Proceedings of the
18th Annual International Symposium on Computer
Architecture, pages 380–389, New York, NY, 1991.

[26] Christopher Clark, Keir Fraser, Steven Hand,
Jacob Gorm Hansen, Eric Jul, Christian Limpach, Ian
Pratt, and Andrew Warfield. Live Migration of Virtual
Machines. InProceedings of the 2nd Symposium on
Networked Systems Design and Implementation, May
2005.

[27] Andrew Warfield, Steven Hand, Keir Fraser, and Tim
Deegan. Facilitating the Development of Soft Devices.
In Proceedings of the 2005 USENIX Annual Technical
Conference, April 2005.

[28] George C. Necula, Scott McPeak, S.P. Rahul, and
Westley Weimer. Cil: Intermediate Language and Tools
for Analysis and Transformation of C Programs. In
Proceedings of the 11th Annual Conference on
Compiler Construction, April 2002.

[29] Steven K. Reinhardt, Babak Falsafi, and David A.
Wood. Kernel Support for the Wisconsin Wind Tunnel.
In Proceedings of the 2nd USENIX Symposium on
Microkernels and Other Kernel Architectures,
September 1993.

[30] Feng Qin, Shan Lu, and Yuanyuan Zhou. SafeMem:
Exploiting ECC-Memory for Detecting Memory Leaks
and Memory Corruption During Production Runs. In
Proceedings of the 11th International Symposium on
High-Performance Computer Architecture (HPCA-11),
February 2005.

