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1 Introduction and Motivation

What is “bad” traffic? While even non-technical home
users have become familiar with terms such as “denial
of service” and “worm outbreaks”, a technical solution
to these forms of malicious traffic continues to elude re-
searchers and network administrators alike. The reason for
these difficulties is also rather well understood: The net-
work itself simply has no such notion of bad traffic.

This paper argues that a key omission from the original In-
ternet architecture was that ofpacket dynamics. The histor-
ical obsession with end-to-end design has resulted in con-
nection signalling, flow- and congestion-control loops be-
ing pushed to the transport layer (if not simply ignored);
these decisions have effectively legislatedfor the sort of re-
source exploitation attacks that are a problem today. We ar-
gue that while end-to-end design is vital to maximise free-
dom to innovate, the network must enforce a higher degree
of mutual consent between communicating hosts.

As one example, today’s server farms provide enormous
CPU and bandwidth resources to essentially anyone, of-
ten leaving the site operators with the first line of respon-
sibility in case of abuse. In this paper we investigate a
simple, incrementally deployable modification of the exist-
ing architecture that benefits such sitesimmediately, while
providing increasing protection to all members of the In-
ternet as deployment becomes more pervasive. While
many recent proposals have outlined major architectural
changes [1, 2, 3], often including the introduction of ex-
plicit signalling, we have been interested in a network-level
solution similar to TTL that leaves higher-level semantics
largely unchanged. This thought exercise has lead us to the
following two rather uncontentious observations:

1. Implicit signalling. It is much easier for a receiver to
indicate the traffic that they do like, than the traffic that
they do not. This signalling is done implicitly, simply
by replying to received messages.

2. Ingress limiting. The most desirable location to de-
tect and act against malicious traffic is at, or very near
the source. This avoids resource consumption on in-

termediate links, as well as complexities introduced
by source address spoofing [4, 5, 6].

We argue thatpacket symmetry, the ratio of transmitted to
received packets, should become a fundamental principle
of Internet protocol design: a high degree of packet sym-
metry embeds the notion of mutual consent within a proto-
col, allowing the receiver to implicitly throttle a sender by
not replying to her packets. We further propose that sym-
metry be enforced on network transmissions at the edge: A
simple enforcement mechanism may be placed in NICs or
access providers’ line cards, to delay or drop packets that
result in strongly asymmetric communications. This ex-
treme edge placement makes implementation easy, ensures
a clear notion of packet provenance, and cannot be com-
promised by application or OS exploits on the end-host.

The remainder of this paper attempts to make the case for
symmetry enforcement in the Internet. We do not yet claim
to understand the exact parameterization of symmetry to
enforce, in terms of the granularity of traffic, time, or the
ratio of packets. However, we demonstrate a prototype
implementation to illustrate the potential effectivenessof
symmetry enforcement, and outline a detailed trace analy-
sis of 24 hours of traffic to show the differentiation between
symmetric and asymmetric traffic in the network today.

2 A Simple Idea
As discussed above, our approach is to interpret unsolicited
traffic—traffic lacking in implicit acknowledgement from
the receiving host—as being malicious. To classify packets
we introduce the metric ofpacket asymmetry: we measure
the number of transmitted packets (tx) and received pack-
ets (rx) per unit time and calculate the quantity:

S = log
e

(

tx + 1

rx + 1

)

This metric produces negative values whenrx outweighs
tx, positive values whentx outweighsrx, and zero in the
case of perfectly balanced traffic. The absolute value ofS
measures the magnitude of the asymmetry.



This metric has been carefully chosen for analysis: it
allows an unbiased means of evaluating traffic, centred
around zero, and compresses wildly asymmetric traffic ra-
tios into a tractable range. While we were initially con-
cerned that this metric might not be sufficiently sensitive,
both measurement and initial implementation have shown
it to be very useful to work with.

Given some network vantage point, the value ofS may be
calculated over traffic at some granularity (e.g. per-host,
per-host-pair, per-flow) over a window of time. We may
then take action against traffic that exceeds some thresh-
old value ofS. The remainder of this paper is concerned
with the effectiveness of this approach, and the selection of
reasonable parameters for measurement and limiting. First
though, it is worth detailing several design decisions inher-
ent to our approach.

Measure packets, not bytes.Rather than comparing bytes
transmitted in each direction, we simply count packets.
With no knowledge of the internals of the data being sent,
packets are much more likely to indicate the message struc-
ture that exists within a given protocol. Moreover, the im-
plicit signalling to receive more data may be as simple as
a TCPACK, for which byte counts are considerably less
useful than packets.

Measure and limit close to the transmitter.The outcome
of the approach we advocate is that the policy of implicit
signalling is enforced end-to-end: Receivers are responsi-
ble for generating sufficient backpressure on a channel to
allow the transmitter to continue sending. Monitoring and
enforcement, however, are performed within the network
just outside the reach of the transmitting software (e.g. on
a smart NIC). There are many reasons for this placement:
First, we may clearly establish packet provenance, elimi-
nating the need for trace-back [4, 5, 6]. Second, we elim-
inate all potential damage done to interior links as well
as the target endpoint. Third, we minimize the aggregate
amount of state that must be tracked, allowing a simpler
implementation. And finally, by mandating that placement
be near, but not within the transmitter’s software stack, we
are robust against exploits which circumvent the OS.

Delay, then drop.Unlike traditional IP congestion control,
we opt to delay, rather than to drop packets. As asymme-
try increases beyond a selected threshold, we introduce an
increasing delay to the transmission of a queued packet.
The intention is to be friendly to protocol congestion con-
trol approaches by more gently throttling transmitted pack-
ets. Where our approach is implemented in a smart NIC,
queueing may be completely deferred to the OS. In a non-
local device, for instance in an ISP, we anticipate queueing
some number of packets for delayed transmission, and then
beginning to drop.

The remainder of this paper attempts to show that this ap-
proach, although simple in nature, can be made to work.
In the next section we detail a simple prototype acting on

per-flow measurements. We then analyse a large trace of
Internet traffic to establish how asymmetry might apply in
general. The intention of this paper is to outline an over-
all approach that we hope to deploy in a college network
within the next year; as such, feedback from the network-
ing and systems communities would be very beneficial.

3 A Simple Prototype
As an initial proof-of-concept, we have implemented a
naive traffic shaper based on the symmetry metricS. Our
implementation uses thelibipq extensions for netfil-
ter/iptables1, the packet filtering framework for Linux.

Our prototype interposes on all traffic to and from the local
host, calculating per-host-pair and per-flow asymmetry val-
ues. Based on our analysis, presented in Section 4, we have
chosen to calibrate the filter to an asymmetry threshold of
S = 2.0. This corresponds to an approximately 8:1 ratio of
transmitted to received packets within the window—a very
liberal initial value.

Our prototype transparently forwards packets to the bottom
half of the network stack providing that the current mea-
sured asymmetry is≤ 2.0. WhenS exceeds this threshold,
we begin to count packets as outstanding using a monotoni-
cally increasing packet countern. Each outstanding packet
is then delayed by2nms before it is transmitted. This de-
lay continues to accrue and be applied to transmit packets
until the symmetry falls back below our threshold value, at
which point the timer is reset. Note that both the asymme-
try threshold and penalty are very weak in these examples.
We anticipate that they could be set much more aggres-
sively in a practical deployment.

Figure 1 shows an example of one class of traffic that we
hope to eliminate. The graphs plot the transmit packet rate
and the resultant asymmetry of a simple UDP flood attack
against a remote host. The two hosts are connected over
100Mbit links in a local LAN. The local host transmits one
KB UDP packets as fast as it can, saturating the link. The
symmetry value plotted in the lower graph raises logarith-
mically as the attack continues.

Figure 2 shows the effect on the UDP flood. As can be seen,
the UDP transmission is aggressively limited at the thresh-
old due to the lack of received packets to offset the asym-
metry. Compare this to thescp-based file transfer shown
in Figure 3:scp also saturates the link (achieving a lower
packet rate because it is sending larger packets), but stays
well below the asymmetry threshold.

Despite the simplicity of our implementation, we feel that
the results are very promising. Note that at a transmitting-
host granularity, port scanning can be recognized in a man-
ner almost identical to that used to limit the UDP flood.
Instead, we would track transmissions to individual foreign
host or (host, port) pairs.

1http://www.netfilter.org/
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Figure 1: Simple DDoS Example: UDP Flood

Unacknowledged UDP flood of 1KB packets (limiting)
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Figure 2: Symmetry-Limiting UDP Flood

scp−based transfer of a 128MB file
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Figure 3: High Throughput TCP Unaffected

Packet asymmetry is clearly an effective approach for this
simple pair of traffic examples, but is it useful in the general
case? At what granularity should traffic be monitored? We
now consider a trace-based analysis of Internet traffic to
consider the applicability of our approach “in the wild.”

4 Traffic Analysis
In order to determine what sort of traffic might be consid-
ered ‘well-behaved’, we performed analysis on a 24 hour
packet trace collected at a non-university research institu-
tion. The trace captured every packet on the full-duplex
Gigabit Ethernet link which connected the institution to
the Internet. The trace contains over 573 million packets
to/from over 170,000 IP addresses and totalling over 250
gigabytes of data—see [7, 8] for more details on the trace
characteristics and the monitoring infrastructure used.

We have examined the degree of symmetry present in the
trace data at several granularities: all traffic from each
source host; traffic between host pairs; and finally per-flow
traffic. The aim of this analysis has been to determine to
what degree our symmetry metric can be used to distin-
guish well-behaved traffic, and how much state it might be
useful to maintain in order to achieve this.

4.1 Host Packet Symmetry
We first examined symmetry from the point of view of each
of the 170,000 individual hosts in the trace. We calculate
S for all packets relating to that host at a variety of time
scales, from one second up to one day. The intention of this
measurement is(i) to characterize the ranges of symmetries
that are exhibited within the trace, and(ii) to determine the
timescales at which it is appropriate to consider symmetry.
Our results are shown in Figure 4.

Regardless of the time-scale over which we measureS,
the vast majority of hosts exhibit strongly symmetric traf-
fic (|S| ≤ 2.0). The left-hand tails depict hosts where a
considerably larger number of packets were received than
transmitted, while the right-hand tails show the opposite.

The smallest time-scale (one second) most clearly sepa-
rates symmetric and asymmetric hosts, but requires much
more state be tracked. Note that the plots for one hour and
24 hour windows completely overlap, illustrating that no
self-similarity is observed in terms of traffic symmetry.

4.2 Host-Pair Packet Symmetry
Next we decided to investigate the level of symmetry ob-
served between the unique pairs of hosts in the trace. We
carried this out for the approximately 320,000 pairs in
which both source and destination send packets and use a
time-scale of 1 minute to calculateS.

Figure 5 shows the cumulative distribution ofS for all
host pairs that exchanged packets in both directions dur-
ing our observation period. Almost all host pairs main-
tain extremely strong symmetry in their communications
(|S| ≤ 1.0), while very few are significantly skewed to-
wards the receiving side (bottom 1%) or the transmitting
side (top 3%).

We also measuredS for a further 6.8 million host pairs in
which only the source sends any packets. This clearly un-
desired traffic demonstrated symmetry values ranging from
0.69–10.5, although with 99.9% less than 2.0.

4.3 Flow Symmetry
To investigate the symmetry of traffic within individual
flows, we chose to examine separately the sets of TCP and
UDP flows within the trace. For increased precision, we
calculate symmetry values every second.

Figure 6 shows the cumulative distribution of the maximum
value ofS for the TCP flows in the trace. The use of ac-
knowledgment packets in TCP imposes a degree of symme-
try on all flows in the trace; virtually all TCP flows exhibit
asymmetry≤ 1.5—a ratio of about4.5 packets to one. Ex-
amining the outlying TCP flows reveals a small number of
misbehaving (or at least irregularly behaving) flows, which
we are currently investigating.

Considering UDP flows, Figure 7 shows a much broader
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Figure 4: Host Symmetry
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Figure 5: Host-Pair Symmetry (rx > 0)
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Figure 6: Maximum per-flow asymmetry (TCP flows of length> 100)
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Figure 7: Maximum per-flow asymmetry (UDP flows of length> 100)

range of symmetry values. On further examination of the
outlying UDP flows we find a great deal of misconfigured
DNS traffic, and a considerable number of malicious flows;
all of these packets are clearly supposed to be subjected to
our shaper.

In both sets of flow measurements we examine the effect
of ignoring packets at the beginning of the flow to reduce
any transient asymmetry present with low packet counts.
Both of the flow-granularity CDFs use only flows from the
trace with an excess of 100 packets, and demonstrate that a
smoothing effect may be obtained in this manner.

In summary, our analysis shows that packet-level symmetry
shows good promise as a classifier between well-behaved
and abusive traffic. Furthermore, monitoring per-flow sym-
metry did not indicate fundamentally different properties
than did host-pair granularity, leading us to believe that the
latter is a good starting point for future investigations.

5 Discussion
We next consider possible evasions, discuss deployment
options, and argue for making symmetry arequiredcom-
ponent of protocol design.

5.1 Evasive Manoeuvres
We first consider the steps attackers might take to fool our
mechanism into incorrectly allowing a node to keep send-
ing substantial amounts of undesired traffic. The degree to
which we can avoid this depends on the amount of state
we use and whether or not we assume spoofable source ad-
dresses. In the following, we assume host-pair symmetry
tracking. We believe this amount of state to be easily man-
ageable, particularly given deployment close to the edge,
while allowing our enforcement to be protocol agnostic.

Without help from the outside, individual hosts can only
dilute their asymmetric traffic by ensuring a large fraction
of symmetric traffic. This is clearly a minor concern. A
first distributed strategy is to “fly under the radar” individ-



ually, that is, to keep the abusive traffic to a small amount
per node, but use substantial amounts of nodes for the at-
tack, i.e., to leverage a botnet. Attackers could, for in-
stance, use a pulsing attack where all nodes attempt to blast
away as much traffic as possible, then fall quiet and just as
the throttling mechanism permits new transmissions, blast
away again. Our answer is that a suitably sensitive delay
mechanism would only permit such blasts for a very brief
period (recall how in Figure 1 the UDP flood was muted
very quickly).

Another strategy is collusion: during a DDoS attack, the
attacker uses the nodes of a botnet to send spoofed cross-
traffic amongst its members in order to fool the members’
symmetry monitors into thinking that the victim is return-
ing substantial amounts of packets. The feasibility of this
approach depends on the following:

• Source address spoofing. As network ingress filter-
ing [9] becomes more pervasive, this will become in-
creasingly hard. Note that our symmetry mechanism,
if widely deployed, would be an ideal opportunity to
enforce widespread deployment of ingress filtering.

• Randomization of IP ID values by the victim. Without
this feature, a significant number of colluding nodes
have to be informed about the ID value, estimate the IP
IDs of the forged packets, and do this quickly enough
so forged packets are labelled accuratelyandarrive in
a reasonable sequence.

• TTL estimation. Every bot needs to discover by it-
self the correct TTL value that matches the TTL of
the actual victim’s reply packets as they arrive at the
attacking bot that is colluded with.

We feel that while better defence against spoofing-based
collusion is conceivable, the IP ID and TTL combination
will be difficult enough to overcome for the period until our
mechanism is deployed widely. Once that is the case, per-
vasive symmetry enforcement and ingress filtering allow
the attacker at best fragile layered asymmetry exploitation
to achieve limited amounts of gain in abusive traffic. Fur-
thermore, our approach to reducing botnet effectiveness is
aided by an increasing array of other mechanisms highly
compatible with ours, such as rigorous checking of reverse
path forwarding at the ingress point [10].

5.2 Deployment Considerations
We envision three basic deployment strategies. First, virtu-
alized co-location facilities can use virtual machine moni-
tors such as Xen [11] to provide administrators with a con-
trol mechanism that ensures their sites cannot be abused
for attacks. Similar concerns have recently arisen in con-
text of research networks such as PlanetLab and we are
interested in exploring deployment opportunities in these
environments as our implementation matures. Second, de-
ployment can occur in the form of “smart NICs”— net-
work interfaces which may be programmed with advanced

functionality [12]. Third, access networks provide a single
monitoring point with full access to the networks’ traffic,
for example at edge routers. In all of these scenarios, de-
ployment is beyond the reach of potentially compromised
application/OS software while still remaining sufficiently
close to the edge of the network that packet provenance is
not questioned.

5.3 Mandating Symmetric Protocols
Our experiments have already stressed a new rule for good
protocol design: symmetric protocols are easier to control.
Not only do they allow restricting the sender to a certain
threshold asymmetry, they also allow the receiver to implic-
itly signal end-of-interest simply by opting not to respond.
At the same time, requiring symmetry also prevents at-
tacks that abuse granularity incongruences in protocol con-
trol mechanisms [13]. We believe an analysis of existing
protocols from a symmetry perspective could prove highly
fruitful in evolving the approach outlined in this paper. In
extremis, we might imagine moving symmetry-based en-
forcement towards a much stronger (e.g.|S| ≃ 0.0) thresh-
old. Enforcing drastically lower levels of asymmetry would
likely reduce the efficiency of some existing protocols (thus
acting as an impetus to upgrade), while concurrently pro-
viding an even clearer distinction between good and bad
traffic.

6 Related Work
The study of malicious traffic has been of such significant
interest that a thorough list of citations would easily fill the
length of this paper. Generally speaking though, we be-
lieve that the approach described here is the first to argue
for a simple, incremental change to the Internet based on
enforcing the notion that symmetric traffic is good traffic.

Our approach is a proactive, constraint-based change to
the network that intends to prevent it from getting into a
bad state in the first place. In contrast, many existing ap-
proaches have been much more reactive in nature, involv-
ing a receiver signalling that they are under attack. We feel
that these approaches address the symptom rather than the
disease; responding to an active attack is incredibly difficult
often requiring architectural support to identify the source
of the attack [4, 5, 6] and support from routers to offload
filtering closer to the source [14, 15].

A significant additional flaw in these approaches is that
damage is already done before countermeasures can be
taken: intermediate network links may become saturated,
resulting in collateral damage in accessing neighbouring
receivers who are not directly under attack. This reason-
ing has resulted in several recent proposals for consider-
ably more drastic architectural changes, often making con-
nection signalling explicit [1, 2, 3]. We believe that these
proposals are overly complex, and would be considerably
more difficult to deploy than ours.

Several other efforts bear individual similarities to our



work. Microsoft’s recently produced—and withdrawn—
TCP connection limiting for SP2 [16] placed a strict limit
on the rate at which new TCP connections could be opened.
MULTOPS [17] described a router design that used a simi-
lar approach to us; their work is limited to DDoS limitation
and TCP traffic, and focuses considerably more on router
data structures than on traffic analysis.

Perhaps most closely related are the D-WARD pro-
posal [18] and the MANAnet Reverse Firewall [19]. Both
of these propose throttling DDoS traffic close to the source,
although they focus on byte- rather than packet-level met-
rics, and use more involved algorithms requiring additional
state and computation. Moreover, our approach does not
require access to the contents of packet payloads.

7 Conclusion and Future Work

This work argues that packet symmetry should become a
fundamental design principle for the Internet. To support
our argument, we have introduced a simple symmetry met-
ric, illustrated a symmetry enforcement prototype, justified
it using trace-driven analysis, and described an incremental
deployment path that benefits the Internet’s major hosting
sites immediately.

Our work poses a number of open questions that we intend
to address in future work. First, what is the optimization
of the state vs. accuracy tradeoff? It is not yet clear what
granularity of traffic our final implementation will need to
function at. As we intend a deployment which will function
at hundreds of megabits and serve a thousand hosts, we
are aware that the state overhead will need to be carefully
minimized.

Second, are there benign applications that we have missed?
Our analysis is based on a 24 hour traffic at a major non-
university research institution. We are fairly confident that
virtually all predominant applications, both benign and ma-
licious, are represented. We have not yet found any applica-
tions that would be adversely effected by symmetry-based
classification. The solitary example we are aware of is that
of unacknowledged broadcast and multicast transmission,
which are easy to treat specially and could be made confor-
mant by low-rate acknowledgement streams.
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