
IdentifyingOpenProblemsin DistributedSystems

Andrew Warfield,YvonneCoady, andNormHutchinson
Universityof British Columbia�

andy, ycoady, norm � @cs.ubc.ca

Thetechnology aboveandwithin the Internetcontinues
to advance, and has reached a point where the potential
benefitsof very large scale, finely distributedapplications
are more apparent than ever. Opportunitiesare emerging
to developlarge systemsthat cater to highly dynamicand
mobilesetsof participants,whodesire to interactwith each
otherandstoresof onlinecontentin a robustmanner. These
opportunitieswill inevitably dictate a substantialbody of
research in the years to follow. Althoughapplicationsin-
tendedto functionat this scalehaverecentlybegun to ap-
pear, there remaina broad setof openproblemsthat must
be facedbefore this emerging classof distributed system
canbecomea reality.

1 Introduction

Distributedsystemsresearchhashistoricallyavoidedmany
hardproblemsthroughthe carefully calculateduseof op-
eratingconstraints.Scalableresourceclustersareassumed
to be tuckedaway in protectedfacilities andconnectedby
reliableinfrastructure[12]. Large systemsareassumedto
havecooperatingnucleiof administrativeorganizationsthat
do not fail [10]. In peerenvironments,participantsareas-
sumedto behavefairly insteadof leachingresources[3]. As
thespecificationsof thesesystemsgrow to requireoperation
at a massive scalewith highly distributed administration,
theseassumptionswill be stronglychallengedasa means
of providing usefulsystems.In short,distributedsystems
researchis quickly approachingapointatwhichmany hard
problemscannotbeavoidedany longer.

Prior to embarkingon the constructionof a large-scale
distributedoperatingsystem,we felt thatit would beuseful
to survey thelandscapeof problemsthatwill befacedin the
constructionof this classof system. This paperis a sum-
mary of urgentproblemsthat must be addressedin order
for successfulsystemsof thiscaliberto berealized.

Our approachto identifying openproblemsis twofold.
First,we havedesigneda taxonomyto describethedomain
of existing andfuturedistributedsystems.This modelis a
two-dimensionalspacewhoseaxesdefine(1) the concur-
rency and conflict of resourceaccess,and (2) the degree
of distributionandmobility of resourceswithin thesystem.

Fromthis model,we draw four phylaof application:point-
to-point, multiplexed, fragmented,andpeerto peer. This
lastphylumdefinesour targetdomainandweapplylessons
learnedfrom theotherthreegroupsto it. Throughour tax-
onomy, we describeasetof architecturalsystemsproblems
thatmustbeaddressed.

The secondaspectof our examinationhasbeento step
backandexaminetheimplicationsinvolvedwith theadop-
tion of large-scaledistributedoperatingenvironments. In
this section,we are lessconcernedwith classicalsystems
issues(performance,robustness,andscale)andmorecon-
cernedwith pragmaticfactorsinvolved in building a good
system.We presenta broadsetof pertinentproblemsthat
will needto beaddressedfor thesesystemsto besuccessful
outsideof theresearchlaboratory.

2 A Taxonomy of Distributed Sys-
tems

This sectionpresentsa taxonomy, describingfour phylaof
distributedsystemsin a continuousspacealongtwo axes.
The axes, accessconcurrency and resourcedistribution,
stemfrom an examinationof the evolution of distributed
applications.Accessconcurrency considersthe numberof
simultaneousaccessesto a resourceandthedegreeof con-
flict betweentheseaccesses.Accessconcurrency problems
emergedasresearchersbeganto move towardstime shar-
ing on mainframes.Resourcedistribution representshow
broadlya systemis spreadacrossa network infrastructure.

Individually, eachof theseaxesrepresentsa steadilyin-
creasinggradientof complexity within systemarchitecture.
It is in thecaseswherebothaxeshavehighdegreethatsys-
tem complexity explodes. Indeed,distributedapplications
seemto all resideverycloseto theaxesin ourmodels.This
observationsuggeststhat theremustbe somelimiting fac-
tors thatexist, inhibiting the developmentof complex sys-
tems.We now considerthetwo axesandfour phylaof sys-
temsindividually.

1



2.1 Access Concurrency

Accessconcurrency originated with the desire to allow
usersto sharethe resourcesof original mainframecom-
puters. Concurrency mechanismsallow clients to sharea
resourcewhile preservingthe stateof that resourceduring
simultaneousaccesses.It is worthnothingthatwithoutare-
quirementto avoid conflict, concurrency mechanismsneed
only act asstatelessrequestmultiplexers. Although there
arecomplexity issuesin simplemultiplexing at theInternet
scale,it is conflictavoidancethatmakesaccessconcurrency
especiallyhard.In orderto avoid conflictsbetweenconcur-
rentaccess,extra mechanismsmustbeput in place.These
mechanismsaddoverheadandcomplexity to thesystem.

Mechanismsto support accessconcurrency involve
tradeoffs betweenefficiency and effectiveness.Very effi-
cientconcurrency controltechniquesaim to allow thehigh-
est possibleamountof simultaneousaccess,but may do
so at the cost of poorly preservingresourcestateor un-
fairly schedulingthisaccess.Techniquesthatareoptimized
for effectivenessprotectresourcestate,but may do so by
severely limiting concurrency of access.As an example,
considerthelocking of files to preserveconsistency in con-
currentsystems. Pessimisticlocking is most effective at
preservingstate,but resultsin a completelossof concur-
rency whenever the file is locked for writing. Optimistic
lockingallowsahigherdegreeof concurrency, but mayper-
form worsein a high stateof conflict asmany transactions
mustbe aborted. In the extremecaseof efficient concur-
rency, conflictsmaysimplybeflaggedandleft for aseparate
mechanismto resolve later. This is how inconsistenciesare
addressedafter a disconnectionin distributedfile systems
suchasCoda[?]. Similar analogiesfor accessconcurrency
exist with respectto otherresourcessuchasmemorypro-
tectionandprocessscheduling.

In this emerging classof large distributedsystems,the
issueis that a high degreeof concurrency within a system
demandsefficiency, while individual userswill expectef-
fectiveconsistency preservation.Measures,suchasconflict
resolution,have not beenwell explored. It is a non-trivial
problemto automaticallyresove conflicts on information
thatdoesnot have a high degreeof structure,suchasfiles
andad hoc databases(i.e. the Windows registry). Addi-
tionally, thereexist a setof resourcesfor whom resolution
maynot beappropriateafterthefact,andlargescaleactive
conflictavoidanceis anecessity.

2.2 Resource Distribution

Resourcedistribution describesthe degreeto which a sys-
tem hasbeenspreadacrossa network, andhow dynamic
resourcesare within it. Even the smallestdegreeof re-
sourcedistribution mandatesa substantialamountof over-
headwithin a system.Considerthedifferencebetweenac-

cessesto a local file versusa remotefile servicesuchas
NFS: both casescontainall of the complexity involved in
readinga file from disk, however the remoteaccesshas
the additionalresponsibilitiesof locatingthe service,mar-
shallingdatain andout of messagestructures,interacting
acrossthe network, andhandlinga considerablylargerset
of potentialerrorcases.

Transparency, a hallmark goal of distributed systems
only obfuscatesthis problemby concealingthe detailsof
distribution. Mechanismssuchas remoteprocedurecalls
(RPC),which wereintendedto simplify applicationdevel-
opment,force distribution to be implementeddeepwithin
the system. This resultsdirectly in many of the problems
traditionally associatedwith distributed systemssuch as
fragility andinflexibility .

The troublingaspectin this line of considerationis that
theseissuesindicatea fundamentalflaw at the very onset
of approachesto distribution. RPCreallyonly providesone
degreeof distribution, by passinga call to a singleremote
host. With RPC, we have only just enteredthe arenaof
distributedsystems,andalreadycomplexity is overbearing.

Assumingthat resourcescanbe accessedin an expres-
siveandreliablemanner, alargerproblemexistsin theirdis-
tribution. In orderto accessresources,it mustbe possible
to first locatethem.Furthermore,if resourcesarenot static
within a system,mechanismsmustexist to find themin an
ongoingmanner. For instance,the location of a resource
mayhave to bedeterminedthrougha directoryserviceand
refreshedwith eachsuccessive access.In very large scale
or highly dynamicsystems,a centralizedservicemay not
be sufficient to track resourcelocationandothermethods,
suchasforwardingpointers[5], mayhaveto beemployed.

Distribution equatesalmostexactly to extra mechanism,
andthereforecomplexity, within a system.The largerand
more distributeda systembecomes,the more mechanism
will be requiredto locate,track,andaccessobjectswithin
it.

2.3 Four Phyla of Distributed Applications

Fromthetwo axesdescribedabove,we draw four phylaof
distributedapplications,shown in Figure1. Note that the
respective sizesof thesedomainsare by no meansequal,
werepresentthis divisionasit is for simplicity.

What follows is a very brief presentationof eachof the
four classes. In eachcase,we supply an exampleof the
phylum to demonstrateits characteristics.We also try to
identify weaknessesthat exist within the domainthat may
not beacceptablewithin moreadvancedsystems.

2.3.1 Point-to-point

The point-to-pointphylum representsa very simplesetof
applicationsin whichaclientconnectsto aresourcefor un-

2



R
es

o
u

rc
e 

D
is

tr
ib

u
ti

o
n

Point−to−Point

Fragmented Peer−to−Peer
Resource

Multiplexed

Access Concurrency

Figure1: Taxonomyof DistributedApplications

sharedaccess.Point-to-pointexamplesexist primarily as
componentsof morecomplex applications,for instancethe
datachannelof anFTPsessionis point-topoint, in thatall
of theassociatedresourcesareallocatedat bothendsof the
connectionat the beginning of a transfer. We would also
considersimpleRPCto beprimarily a point-to-pointappli-
cation, provided that the RPC server handlesa single re-
questata time.

Point-to-pointapplicationsarecharacterizedby the fact
thatthedistributionaspectsof thesystemaretypically quite
visible. As such,whenfailure doesoccurit canbe identi-
fied andresolvedprimitively by theuser. If anFTPserver
doesnot respondor crashesduringa transfer, theusercan
attempta connectionsomewhereelse. Clearly this is not
a good systemproperty, however it is generallytolerable
within thedomainof simpleapplications.

2.3.2 Multiplexed

Multiplexed applicationsare thosein which resourcesare
deliveredwith a high degreeof concurrency, andpossibly
conflictcontrol,overarelatively smallscaleof distribution.
File andwebserversareexcellentexamplesof this phylum
asthey oftenprovide a setof centralizedresourcesto large
numberof concurrentusers.Note that in our model,both
file andweb servershave a high degreeof accessconcur-
rency, but arestill barelydistributed. This is becauseusers
typically needonly connectto a singlepoint to accessre-
sources.More distributedexamplesof a multiplexedappli-
cationsaredistributedstripedfile systems[14], andscalable
datastructures[12]. In bothof thesecases,usersmaystill
connectto a singleresource,but thatresourcemayforward
requeststhroughan additionallink to an appropriatesec-
ondaryserver.

Therisk of failureis moresignificantin multiplexedsys-
temsbecause,ontheresourceprovisionside,failurehasthe
potentialto affect a muchlargernumberof users.To miti-

gatethis problem,very largemultiplexedservicesareoften
served by specializedhostingfacilities wherea very high
degreeof resourcereliability maybeassumed.Furtherpre-
cautionsmayinvolvetheinstallationof redundantresources
thattakeover in therarecaseof systemfailure.

2.3.3 Fragmented Resource

Fragmentedsystemsarethosein whichresourcesarespread
across,or movewithin, asetof connectedendpoints.Com-
municationis substantiallymorecomplex in thesesystems
asmessagesmay not travel directly to a resource,but in-
steadmay leadto a cascadeof interactionsacrossthe sys-
tem. Existing fragmentedsystems,such as the domain
nameservice(DNS), are frequently structuredas a hier-
archyof coupledadministrative domains. Note that there
do not exist many examplesof highly fragmentedsystems.
Consideredas a whole, the global DNS databaseis frag-
mentedacrossa considerablenumberof hosts. However
this is doubtlesslyordersof magnitudesmaller than the
scopedesiredby advocatesof universalInternet-scaledi-
rectoryservices,suchasLDAP, whichhaveyet to seebroad
acceptancewithin thenetwork.

The distribution of administrationpresentsa difficulty
within the ongoingprovision of fragmentedsystems.In a
centralizedresource,a singleadministrative body is capa-
ble of quickly affectingchangesacrossthe scopeof a sys-
tem. In a fragmentedresource,issuesarisein how changes
shouldbe appliedandwho is allowed to do them. In the
caseof DNS, updatesmustfrequentlybe submittedto hu-
manadministrators,whoauthenticateandapplychangesby
hand. In existing systemsthis is an acceptableproperty,
DNS lookupsarehandledwith anacceptabledegreeof ex-
pedience,andthefrequency of changeis smallenoughtyp-
ically to be handledoff-line. This is not, however, an ap-
proachthatprovidesa highdegreeof scalability.

2.3.4 Peer to peer

Peerto peerapplicationsarehighly distributedandinvolve
ahighdegreeof potentiallyconflicting,concurrentaccessto
resources.This is a fairly hypotheticaldescription,asvery
few suchapplicationscurrentlyexist at the Internetscale.
Peer-basedfile sharingapplications,suchasGnutella[1],
areinitial stepswithin this domainbut only begin to enter
thephylum. Gnutelladoesnot needto addressany conflict
issues,norhasit provenableto scale.

In this classof application,the acceptableweaknesses
within the other phyla compoundand cannotbe avoided.
Failurehasahighpotentialimpact,but resourcescannotbe
protected. Administrationis distributed and the coupling
betweenadministrative domainsmay becomemuch more
dynamic. We discusstheseissuesmoreextensively in the
next section.

3



3 Open Architectural Problems

Basedon our taxonomyanda survey of existing systems,
we identify a set of four prevalentarchitecturalproblems
that currently inhibit the developmentof advanceddis-
tributed systems. Theseproblemsare failure resolution,
resourcemanagement,administration,andcommunication
infrastructure.

3.1 Failure Resolution

Despitetheadvancedstateof systemsresearch,we arestill
unableto definitively tell whena resourcehasfailed. Non-
terminalfailurestates,suchaslivelockandByzantinefail-
ure are incredibly difficult to detectandresolve. Further-
more, in large distributedsystems,small failureshave the
potentialto cascadeacrossa system,snowballing towards
disaster.

Traditionaldesigngoals,suchastransparency andlay-
ering,forcefailureto beresolvedinappropriately, oftenre-
quiring thatit bemaskedwithin a system.Generalpurpose
failure handlerscannotpredictall possiblefail states,and
soareunableto effectively addressout-of-bandfailure.

Theredoesnot currentlyexist anaccepted,universalap-
proachto expressing,detecting,andresolvingfailurein dis-
tributedsystems.Clearly, not all failurescanbe detected
andresolved,but in this situation,it is not clearwhat sys-
temsshoulddo to copeandmaintaina degreeof sanity.

3.2 Resource Management

In order to carry reliable servicesbeyond the confinesof
lockedfacilities,weneedto beableto expectthesamereli-
ablelevelsof servicefrom endnodesandconnectiveinfras-
tructurein thedistributedenvironment.Applicationsdesir-
ing a high degreeof reliability mustbe ableto reserve re-
sourcesandcomfortablyexpectthatthosereservationswill
be upheld. Unfortuantely, the useof reservation systems
suchas RSVP [16] presentssupportfor this problembut
do not solve it. Reservationschemesinevitably presentthe
possibilityof a reductionin availableresources,a situation
akin to partial failure, to which thereis no real analogyin
a local high speednetwork. Toleratinga reductionin ser-
vicequality, or othersuddenchangein resourceavailability
requiressa fundamentalchangein systemdesign.

Furthermore,in a highly distributed environment it is
naiveto assumethatresourceswill remainavailable.Appli-
cationsmustbeableto gracefullyhandleresourcelossand
reallocation.Additional mechanisms,suchasredundancy,
mustbe supportedwithin the systemto guardagainstfail-
ure.

3.3 Administration

Thefragmentationof resourcesmandatesa needto provide
adaptable,configurablesystemsin an environmentwhere
control itself is distributed.Modelsmustbedevelopedthat
allow thescalingof administrationin systemswith arbitrary
(i.e. non-hierarchical)structure.Systemsmustdefineand
supporttechniquesfor allowing a variety of levelsof trust
in relationshipsbetweenparticipants.

It is very likely thata solutionto this particularareain-
volvesthelocalizationof administrationto thehighestpos-
sible degree. More specifically, individual usersandlocal
administrativebodieswill beresponsiblefor configuringall
aspectsof their local systems.However, in distributedsys-
temswhereresourcescanpotentiallybesharedwith remote,
administratively disjoint parties,mechanismsmustexist to
effectively handleandexpresschangesacrossadministra-
tive boundaries.Thesemechanismsnecessarilymustallow
the delegationof trust andresponsibilityin an appropriate
manner.

3.4 Communication Infrastructure

Distributed systemsare dependenton, and arguably de-
finedby, theircommunicationsinfrastructure.Althoughthe
existing TCP/IPnetwork andoverlying network interfaces
within operatingsystemshavesurpassedall expectationsof
scalability, they have alsoremainedessentiallyunchanged
for the life of the Internet. The existing network presents
many hinderancesto advanceddistributedsystemsandsev-
eralareworth addressingbriefly here.

Thereexists no well-developedinfrastructurefor group
communications.IP multicast,althougha substantialim-
provementto the existing network, hasquestionablescal-
ability and performancefor use in a large and dynamic
systemand may possesssignificantvulnerabilities. Non-
multicastcommunicationremainsinextricably tied to (and
identifiedby) endpoints,makingmobility andmanagement
extremelydifficult.

More importantly though,methodsof collaborationin-
volving more than two participantsare not yet available.
Interactingwith asetof resourcesis almostuniversallyhan-
dledthroughacoordinatingresource,which typically leads
to a singlepoint of failure andcongestionwithin systems.
In order for peerto peerapplicationsto becomea reality,
mechanismsthatallow groupsto work togetherin efficient
waysmustbedeveloped.

4 Open Adoptional Problems

Through the useof the taxonomy, we have beenable to
identify structuralissuesrestrainingthedevelopmentof ad-
vanceddistributedsystems.If all of theseissueswereto be

4



solvedanda systemconstructed,it would doubtlesslybea
covetedcontribution to distributedsystemsresearch.How-
ever, we feel that sucha systemwould inevitably flounder
wereit to bemadeavailablefor broadusewithin theInter-
net. In this section,we identify a setof openproblemsthat
arenot identifiedby our taxonomy. Theseproblemsarenot
defineddirectly by thestructureof a system,but ratherare
necessarypropertiesfor it to beusefulin arealenvironment.

Our explorationof existing systemshasuncovereda set
of six significantopenproblems.We describeeachbriefly
in theremainderof this section.

4.1 Physical Resource Discovery and Naming

It is incredibly difficult to provide a useful integrationbe-
tweendistributedsystemsandthephysicalworld. Network
topologies,especiallyasexposedby existingprotocols,pro-
vide anentirelyunrepresentativeview of resourcelocation.
A stronglydesiredpropertyof advanceddistributedsystems
for ubiquitous[11] andpervasive[13] computingis to allow
mobile usersto adaptto locally available resources.For
instance,it is desirableto easily locateandaccessa hotel
printer. Although muchwork hasemergedin recentyears
addressingthenaminganddiscoveryof resourcesin aphys-
ical dimension[4, 8], the problemhashardlybeensolved.
The emergenceof mobile devicesthat provide geographic
informationwill doubtlesslymake this problemevenmore
relevant.

4.2 Security and Privacy

Concernsover privacy andsecurityclearly escalateasre-
sourcesbecomemore distributed. Centralized,and even
lightly distributedsystemshave proven able to useaccess
control lists (ACLs) and encryptionto effectively protect
resources.However, assystems(or perhapsadministration)
becometoo distributed for centralizedsolutions,alternate
mechanismsmust be considered. Capabilitieshave been
toutedasasolutionwithin thedistributedcasethathaveyet
to seea successfulbroadapplication.Capabilitieshave in-
herentproblemswith respectto accessrevocation,which
typically requirestherekeying of resourcesandreauthoriz-
ing clients.

Furthermore,capabilitiesarevery difficult to administer
andtrackwithin the context of broaddistribution. Finally,
aslong-livedresourcesthatareprotectedby encryption,ca-
pabilitiesmaybevulnerableto attack.

4.3 Economies of Sharing

A frequently cited benefit to the developmentof fine-
graineddistributedsystemsis the opportunityto shareun-
usedresourceswith others[6, 7]. The reasoningbehind

this approachis that no oneusesall of their resourcesall
of the time, so a low-overheadsharingschemeshouldbe
globally beneficial.Gnutellarepresentsthefirst real-world
test of this philosophy, in that usersare able, but not re-
quired,to sharelocal files with others.A studyfrom Xerox
PARC [3] shows that usersin this environmentdo not be-
havefairly andthataverysmallpercentageof hostsactually
shareatall. OcenStore[10] proposesautility-basedsystem
for file storagein which resourceswouldbeexchangedand
billed betweenadministrationsin amanneranalogousto the
powersystem.Othersystemsfor informationsharing[2] on
thenethave involvedartificial economiesof karma,that is
exchangedbetweenparticipants.

Thereisconsiderableopportunityto explorehow sharing
shouldbe provided within distributedsystems.An effec-
tivesolutionto thisproblemwill haveastrongeffecton the
overall successof thesesystems.Additionally, in a system
whereresourcessuchasnetwork bandwidtharesharedar-
bitrarily andperhapsanonymously, thereremainquestions
regardingthepaymentfor theseservices.Theeconomyof
theInternethingeslargely aroundthetraffic patternsof ex-
isting applications,theemergenceof a widely adoptedsys-
temthatdrasticallychangesthesepatternshasthepotential
to drasticallyeffect thefinancialoperationof thenetitself.

4.4 System Evolution

Simply providing a large scalesystemis a considerable
feat.Theongoingmaintenanceandevolutionof suchasys-
temis considerablymoredifficult. The Internetis plagued
with evolution issues. Systemssimply have not beende-
signedwith changein mind; the Hypertext Markup Lan-
guage(HTML) has evolved through several generations,
but authorsmuststill provide backwards-compatibilityfor
legacy browsersat the expenseof being able to usenew
features.TheInternetitself is thesinglelargestexampleof
this problem: The next generationInternetprotocol,IPv6,
hasbeenin developmentandlimited usefor years.Theim-
plicationsof rolling out theprotocolacrosstheentireInter-
netareincredible,andthenew protocolprovidesno easier
mechanismfor its own inevitableevolution.

Systemsmustbe designedwith evolution in mind. Ar-
chitecturalassumptionsandapplicationcouplingsmustbe
minimizedwhereverpossible.Methodsmustbedeveloped
that allow completesystemsto be upgradedand changed
drasticallywith a low negative impacton the environment
asawhole.

4.5 Heterogeneity

In massive distributedsystems,it is not reasonableto ex-
pector mandateuniformity acrossresources.To do solim-
its innovationandflexibility andalsoinhibits evolution, as

5



describedabove. In orderfor systemsto beflexible andim-
prove over time, the implementationrequirementsof indi-
vidual resourcesmustbeaslight aspossible.Furthermore,
the requirementsmust themselvesbe able to changeover
time.

4.6 Software Structure

Therepresentationof thenetwork within applicationcodeis
oftenanabstractandindependantfunctionalunit; clientand
server sourceare completelydisjoint, obscuringthe cou-
pling that is inherentwithin the system. As statedabove,
attemptsto build systemsthattransparentlyhandledistribu-
tion make it impossibleto appropriatelyexposeandresolve
failure.However, exposingdistributioncompletelyleadsto
systemswhosecomplexity makesapplicationdevelopment
considerablymoredifficult.

Recently, theaspect-orientedprogramming(AOP)com-
munity [15] hasfocusedattentionon the conceptof cross-
cutting concerns, which areelementsof a systemthat cut
through the primary systemmodularity. They have pro-
posedlinguisticmechanismsintendedto allow implementa-
tion of theseconcernsasfirst classmodules,calledaspects.
AOPmaypresentthepotentialto write codethatdescribes
functionalityacrossthenetwork, while addressingfaultand
controlissuesappropriately. In AOP, we seewhatmaybea
new meansof gainingthebenefitsof transparency without
theassociatedweaknesses.

5 Conclusion

Thepurposeof thispaperhasbeento identify problemsthat
necessarilymustbeaddressedin orderto developadvanced,
Internet-scaledistributedsystems.Througha taxonomical
observation of existing systems,we have identified a set
of openarchitecturalproblemsincludingfailureresolution,
resourcemanagement,administration,andcommunication
infrastructure. We then presenteda set of six adoptional
problemswhosesolutionswill stronglysupportthe accep-
tanceof large distributedapplicationswithin the network.
Projectsto developenvironmentsfor ubiquitous[11], invis-
ible [9], and pervasive [13] distributed applicationshave,
andcontinueto be,very exciting researchthatwill needto
addressmany of theseissuesin orderto realizetheirvisions.

References
[1] Gnutella.http://gnutella.wego.com.

[2] Mojo nation.http://www.mojonation.com/.

[3] E. AdarandB. Huberman.Freeriding on Gnutella.Techni-
cal report,Xerox PARC, August2000.

[4] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan,
and JeremyLilley. The designand implementationof an
intentionalnamingsystem.In SymposiumonOperatingSys-
temsPrinciples, pages186–201,1999.

[5] C. Amza andA. Cox. Treadmarks:Sharedmemorycom-
puting on networks of workstations. IEEE Computer, Feb
1996.

[6] T. E. Anderson,M. D. Dahlin,J.M. Neefe,D. A. Patterson,
D. S. Roselli,andR. Y. Wang. Serverlessnetwork file sys-
tems. ACM Transactionson ComputerSystems, 14(1):41–
79,February1996.

[7] J.Basney, M. Livny, andT. Tannenbaum.Deploying a high
throughputcomputingcluster. In High PerformanceCluster
Computing. PrenticeHall, 1999.

[8] Steven E. Czerwinski,Ben Y. Zhao, Todd D. Hodes,An-
thony D. Joseph,andRandyH. Katz. An architecturefor a
secureservicediscovery service. In Mobile Computingand
Networking, pages24–35,1999.

[9] Mike Esler, Jeffrey Hightower, TomAnderson,andGaetano
Borriello. Next centurychallenges:Data-centricnetworking
for invisiblecomputing.In MobileComputingandNetwork-
ing, pages256–262,1999.

[10] JohenKubiatowicz et. al. Oceanstore: An architecture
for global-scalepersistantstorage. In Proceedingsof the
Ninth InternationalConferenceonArchitectural Supportfor
ProgrammingLanguagesand Operating Systems(ASPLOS
2000), November2000.

[11] S. Gribble,M. Welsh,R. von Behren,E. Brewer, D. Culler,
N. Borisov, S.Czerwinski,R. Gummadi,J.Hill, A. Josheph,
R.Katz,Z. Mao,S.Ross,andB. Zhao.Theninjaarchitecture
for robustinternet-scalesystemsandservices,2000.

[12] Steven D. Gribble, Eric A. Brewer, JosephM. Hellerstein,
andDavid Culler. Scalable,distributed datastructuresfor
internetserviceconstruction.In FourthSymposiumonOper-
ating SystemDesignandImplementation(OSDI2000), Oc-
tober2000.

[13] RobertGrimm, Tom Anderson,Brian Bershad,andDavid
Wetherall.A systemarchitecturefor pervasivecomputing.In
Proceedingsof the 9th ACM SIGOPSEuropeanWorkshop,
September2000.

[14] JohnH. HartmanandJohnK. Ousterhout.TheZebrastriped
network file system. ACM Transactionson ComputerSys-
tems, 13(3):274–310,1995.

[15] Gregor Kiczales,JohnLamping,AnuragMendhekar, Chris
Maeda,Cristina Videira Lopes, Jean-MarcLoingtier, and
John Irwin. Aspect-orientedprogramming. In European
Conference on Object-OrientedProgramming (ECOOP),
1997.

[16] Lixia Zhang,Steve Deering,DeborahEstrin,ScottShenker,
andDanielZappala.RSVP:A new resourcereservationpro-
tocol. IEEENetworkMagazine, September1993.

6


