
RDMA over Commodity Ethernet at Scale

Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitendra Padhye, Marina Lipshteyn

Microsoft
{chguo, hwu, zdeng, gasoni, jiye, padhye, malipsht}@microsoft.com

ABSTRACT
Over the past one and half years, we have been using
RDMA over commodity Ethernet (RoCEv2) to support
some of Microsoft’s highly-reliable, latency-sensitive ser-
vices. This paper describes the challenges we encoun-
tered during the process and the solutions we devised to
address them. In order to scale RoCEv2 beyond VLAN,
we have designed a DSCP-based priority flow-control
(PFC) mechanism to ensure large-scale deployment. We
have addressed the safety challenges brought by PFC-
induced deadlock (yes, it happened!), RDMA transport
livelock, and the NIC PFC pause frame storm problem.
We have also built the monitoring and management
systems to make sure RDMA works as expected. Our
experiences show that the safety and scalability issues
of running RoCEv2 at scale can all be addressed, and
RDMA can replace TCP for intra data center commu-
nications and achieve low latency, low CPU overhead,
and high throughput.

CCS Concepts
•Networks→ Network protocol design; Network
experimentation; Data center networks;

Keywords
RDMA; RoCEv2; PFC; PFC propagation; Deadlock

1. INTRODUCTION
With the rapid growth of online services and cloud

computing, large-scale data centers (DCs) are being
built around the world. High speed, scalable data cen-
ter networks (DCNs) [1, 3, 19, 31] are needed to connect
the servers in a DC. DCNs are built from commodity

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’16, August 22 - 26, 2016, Florianopolis , Brazil
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to

ACM. ISBN 978-1-4503-4193-6/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2934872.2934908

Ethernet switches and network interface cards (NICs).
A state-of-the-art DCN must support several Gb/s or
higher throughput between any two servers in a DC.

TCP/IP is still the dominant transport/network stack
in today’s data center networks. However, it is increas-
ingly clear that the traditional TCP/IP stack cannot
meet the demands of the new generation of DC work-
loads [4, 9, 16, 40], for two reasons.

First, the CPU overhead of handling packets in the
OS kernel remains high, despite enabling numerous hard-
ware and software optimizations such as checksum of-
floading, large segment offload (LSO), receive side scal-
ing (RSS) and interrupt moderation. Measurements in
our data centers show that sending at 40Gb/s using 8
TCP connections chews up 6% aggregate CPU time on
a 32 core Intel Xeon E5-2690 Windows 2012R2 server.
Receiving at 40Gb/s using 8 connections requires 12%
aggregate CPU time. This high CPU overhead is unac-
ceptable in modern data centers.

Second, many modern DC applications like Search
are highly latency sensitive [7, 15, 41]. TCP, however,
cannot provide the needed low latency even when the
average traffic load is moderate, for two reasons. First,
the kernel software introduces latency that can be as
high as tens of milliseconds [21]. Second, packet drops
due to congestion, while rare, are not entirely absent
in our data centers. This occurs because data center
traffic is inherently bursty. TCP must recover from the
losses via timeouts or fast retransmissions, and in both
cases, application latency takes a hit.

In this paper we summarize our experience in deploy-
ing RoCEv2 (RDMA over Converged Ethernet v2) [5],
an RDMA (Remote Direct Memory Access) technol-
ogy [6], to address the above mentioned issues in Mi-
crosoft’s data centers. RDMA is a method of accessing
memory on a remote system without interrupting the
processing of the CPU(s) on that system. RDMA is
widely used in high performance computing with In-
finiband [6] as the infrastructure. RoCEv2 supports
RDMA over Ethernet instead of Infiniband.

Unlike TCP, RDMA needs a lossless network; i.e.
there must be no packet loss due to buffer overflow at
the switches. RoCEv2 uses PFC (Priority-based Flow
Control) [14] for this purpose. PFC prevents buffer

http://dx.doi.org/10.1145/2934872.2934908

Figure 1: Our goal is to support RDMA for intra data
center (intra-DC) communications.

overflow by pausing the upstream sending entity when
buffer occupancy exceeds a specified threshold. While
some problems with PFC such as head-of-the line block-
ing and potential for deadlock are well known [22, 33],
we see several issues such as the RDMA transport live-
lock, the NIC PFC pause frame storm and the slow-
receiver symptom in our deployment that have not been
reported in the literature. Even the root cause of the
deadlock problem we have encountered is quite different
from the toy examples often discussed in the research
literature [22, 33].

We also note that VLAN [32] tags are typically used
to identify PFC-enabled traffic in mixed RDMA/TCP
deployments. As we shall discuss, this solution does
not scale for our environment. Thus, we introduce a
notion of DSCP (Differentiated Services Code Point)
based PFC to scale RDMA from layer-2 VLAN to layer-
3 IP.

Our RDMA deployment has now been running smoothly
for over one and half years, and it supports some of Mi-
crosoft’s highly-reliable and latency-sensitive online ser-
vices. Our experience shows that, by improving the de-
sign of RoCEv2, by addressing the various safety issues,
and by building the needed management and monitor-
ing capabilities, we can deploy RDMA safely in large-
scale data centers using commodity Ethernet.

2. BACKGROUND
Our data center network is an Ethernet-based multi-

layer Clos network [1, 3, 19, 31] as shown in Figure 1.
Twenty to forty servers connect to a top-of-rack (ToR)
switch. Tens of ToRs connect to a layer of Leaf switches.
The Leaf switches in turn connect to a layer of tens to
hundreds of Spine switches. Most links are 40Gb/s,
and we plan to upgrade to 50GbE and 100GbE in near
future [11, 25]. All switches use IP routing.

The servers typically use copper cables of around
2 meters to connect to the ToR switches. The ToR
switches and Leaf switches are within the distance of 10

Figure 2: How PFC works.

- 20 meters, and the Leaf and Spine switches are within
the distance of 200 - 300 meters. With three layers of
switches, tens to hundreds of thousands of servers can
be connected in a single data center. In this paper, we
focus on supporting RDMA among servers under the
same Spine switch layer.
RoCEv2: We deployed RDMA over Converged Eth-
ernet v2 (RoCEv2) [5] for both technical and econom-
ical reasons. RoCEv2 encapsulates an RDMA trans-
port [5] packet within an Ethernet/IPv4/UDP packet.
This makes RoCEv2 compatible with our existing net-
working infrastructure. The UDP header is needed for
ECMP-based [34] multi-path routing. The destination
UDP port is always set to 4791, while the source UDP
port is randomly chosen for each queue pair (QP) [5].
The intermediate switches use standard five-tuple hash-
ing. Thus, traffic belonging to the same QP follows the
same path, while traffic on different QPs (even between
the same pair of communicating end points) can follow
different paths.
PFC and buffer reservation: RoCEv2 uses PFC [14]
to prevent buffer overflow. The PFC standard speci-
fies 8 priority classes to reduce the head-of-line blocking
problem. However, in our network, we are able to use
only two of these eight priorities for RDMA. The reason
is as follows.

PFC is a hop-by-hop protocol between two Ethernet
nodes. As show in Figure 2, the sender’s egress port
sends data packets to the receiver’s ingress port. At the
sending egress port, packets are queued in up to eight
queues. Each queue maps to a priority. At the receiv-
ing ingress port, packets are buffered in corresponding
ingress queues. In the shared-buffer switches used in
our network, an ingress queue is implemented simply as
a counter – all packets share a common buffer pool.

Once the ingress queue length reaches a certain thresh-
old (XOFF), the switch sends out a PFC pause frame
to the corresponding upstream egress queue. After the
egress queue receives the pause frame, it stops sending
packets. A pause frame carries which priorities need to
be paused and the pause duration. Once the ingress
queue length falls below another threshold (XON), the
switch sends a pause with zero duration to resume trans-
mission. XOFF must be set conservatively to ensure
that there is no buffer overflow, while XON needs be
set to ensure that there is no buffer underflow.

It takes some time for the pause frame to arrive at
the upstream egress port, and for the switch to react to

it. During this time, the upstream port will continue to
transmit packets. Thus, the ingress port must reserve
buffer space for each priority to absorb packets that
arrive during this “gray period”. This reserved buffer is
called headroom. The size of the headroom is decided by
the MTU size, the PFC reaction time of the egress port,
and most importantly, the propagation delay between
the sender and the receiver.

The propagation delay is determined by the distance
between the sender and the receiver. In our network,
this can be as large as 300 meters. Given that our ToR
and Leaf switches have shallow buffers (9MB or 12MB),
we can only reserve enough headroom for two lossless
traffic classes even though the switches support eight
traffic classes. We use one lossless class for real-time
traffic and the other for bulk data transfer.
Need for congestion control: PFC works hop by
hop. There may be several hops from the source server
to the destination server. PFC pause frames propagate
from the congestion point back to the source if there is
persistent network congestion. This can cause problems
like unfairness and victim flow [42].

In order to reduce this collateral damage, flow based
congestion control mechanisms including QCN [13], DC-
QCN [42] and TIMELY [27] have been introduced. We
use DCQCN, which uses ECN for congestion notifica-
tion, in our network. We chose DCQCN because it di-
rectly reacts to the queue lengths at the intermediate
switches and ECN is well supported by all the switches
we use. Small queue lengths reduce the PFC generation
and propagation probability.

Though DCQCN helps reduce the number of PFC
pause frames, it is PFC that protects packets from being
dropped as the last defense. PFC poses several safety is-
sues which are the primary focus of this paper and which
we will discuss in Section 4. We believe the lessons we
have learned in this paper apply to the networks using
TIMELY as well.
Coexistence of RDMA and TCP: In this paper,
RDMA is designed for intra-DC communications. TCP
is still needed for inter-DC communications and legacy
applications. We use a different traffic class (which is
not lossless), with reserved bandwidth, for TCP. Differ-
ent traffic classes isolate TCP and RDMA traffic from
each other.

3. DSCP-BASED PFC
In this section we examine the issues faced by the

original VLAN-based PFC and present our DSCP-based
PFC solution. VLAN-based PFC carries packet prior-
ity in the VLAN tag, which also contains VLAN ID.
The coupling of packet priority and VLAN ID created
two serious problems in our deployment, leading us to
develop a DSCP-based PFC solution.

Figure 3(a) shows the packet formats of the PFC
pause frame and data packets in the original VLAN-
based PFC. The pause frame is a layer-2 frame, and

(a) VLAN-based PFC.

(b) DSCP-based PFC.

Figure 3: The packet formats of VLAN-based PFC and
DSCP-based PFC. Note that the PFC pause frame for-
mat is the same in both Figure 3(a) and Figure 3(b).

does not have a VLAN tag. The VLAN tag for the
data packet has four parts: TPID which is fixed to
0x8100, DEI (Drop Eligible Indicator), PCP (Priority
Code Point) which is used to carry packet priority, and
VID (VLAN identifier) which carries the VLAN ID of
the packet.

For our purpose, although we need only PCP, VID
and PCP cannot be separated. Thus, to support PFC,
we have to configure VLAN at both the server and the
switch side. In order for the switch ports to support
VLAN, we need to put the server facing switch ports
into trunk mode (which supports VLAN tagged pack-
ets) instead of access mode (which sends and receives
untagged packets). The basic PFC functionality works
with this configuration, but it leads to two problems.

First, the switch trunk mode has an undesirable inter-
action with our OS provisioning service. OS provision-
ing is a fundamental service which needs to run when
the server OS needs to be installed or upgraded, and
when the servers need to be provisioned or repaired.
For data centers at our scale, OS provisioning has to
be done automatically. We use PXE (Preboot eXecu-
tion Environment) boot to install OS from the network.
When a server goes through PXE boot, its NIC does
not have VLAN configuration and as a result cannot
send or receive packets with VLAN tags. But since
the server facing switch ports are configured with trunk
mode, these ports can only send packets with VLAN
tag. Hence the PXE boot communication between the

server and the OS provisioning service is broken. We
tried several “hacks” to fix this problem, including let-
ting the switches change the switch port configuration
based on the guessed state of the servers, and letting the
NICs accept all the packets with or without VLAN tag.
However, all these proved to be complex and unreliable,
and needless to say, non-standard.

Second, we have moved away from a layer-2 VLAN,
and all our switches including the ToR switches are
running layer-3 IP forwarding instead of MAC-based
layer-2 bridging. A layer-3 network has the benefits of
scalability, better management and monitoring, better
safety, all public and standard instead of proprietary
protocols. However, in a layer-3 network, there is no
standard way to preserve the VLAN PCP value when
crossing subnet boundaries.

In both problems, the fundamental issue is that VLAN-
based PFC unnecessarily couples packet priority and
the VLAN ID. We broke this coupling by introducing
DSCP-based PFC. Our key observation is that the PFC
pause frames do not have a VLAN tag at all. The VLAN
tag in data packets is used only for carrying the data
packet priority. In the IP world, there is a standard and
better way to carry packet priority information, which
is the DSCP field in the IP header.

The solution, as shown in Figure 3(b), is to move the
packet priority from the VLAN tag into DSCP. As we
can see, the change is small and only touches the data
packet format. The PFC pause frame format stays the
same. With DSCP-based PFC, data packets no longer
need to carry the VLAN tag, which solves both of the
problems mentioned earlier. The server facing ports no
longer need to be in trunk mode, which means that
PXE boot works without any issues. Also, the packet
priority information, in form of DSCP value, is correctly
propagated by IP routing across subnets.

Of course, DSCP-based PFC does not work for the
designs that need to stay in layer-2, e.g., Fibre Channel
over Ethernet (FCoE). This is not a problem for us since
we do not have any layer-2 networks in our data centers.

DSCP-based PFC requires both NICs and switches
to classify and queue packets based on the DSCP value
instead of the VLAN tag. In addition, the NIC needs to
send out data packets with the right DSCP value. For-
tunately, the switch and NIC ASICs are flexible enough
to implement this. Internally, at each port, the switch
or NIC maintains eight Priority Groups (PGs), with
each PG can be configured as lossless or lossy. If a PG
i (i ∈ [0, 7]) is configured as lossless, once its ingress
buffer occupation exceeds the XOFF threshold, pause
frame with priority i will be generated. The mapping
between DSCP values and PFC priorities can be flexible
and can even be many-to-one. In our implementation,
we simply map DSCP value i to PFC priority i.

Our DSCP-based PFC specification is publicly avail-
able, and is supported by all major vendors (Arista Net-
works, Broadcom, Cisco, Dell, Intel, Juniper, Mellanox,
etc.). We believe DSCP-based PFC provides a simpler

and more scalable solution than the original VLAN-
based design for IP networks.

4. THE SAFETY CHALLENGES
Use of PFC and RDMA transport lead to several

safety challenges. We now describe these challenges and
the solutions we devised to address them.

4.1 RDMA transport livelock
RDMA transport protocol is designed around the as-

sumption that packets are not dropped due to network
congestion. This is achieved by PFC in RoCEv2. How-
ever, packet losses can still happen for various other rea-
sons, including FCS errors, and bugs in switch hardware
and software [21]. Ideally, we want RDMA performance
to degrade gracefully in presence of such errors.

Unfortunately, we found that the performance of RDMA
degraded drastically even with a very low packet loss
rate. We illustrate this with the following simple ex-
periment. We connected two servers A and B, via a
single switch (W), and carried out three experiments
for RDMA SEND, WRITE, and READ. In the first ex-
periment, A used RDMA SENDs to send messages of
size 4MB each to B as fast as possible. The second ex-
periment was similar, except A used RDMA WRITE.
In the third experiment B used RDMA READ to read
4MB chunks from A as fast as possible. The switch was
configured to drop any packet with the least significant
byte of IP ID equals to 0xff. Since our NIC hardware
generates IP IDs sequentially, the packet drop rate was
1/256 (0.4%).

We found that even with this low packet drop rate,
the application level goodput was zero. In other words,
the system was in a state of livelock – the link was
fully utilized with line rate, yet the application was not
making any progress.

The root cause of this problem was the go-back-0
algorithm used for loss recovery by the RDMA trans-
port. Suppose A is sending a message to B. The mes-
sage is segmented into packets 0, 1, · · · , i, · · · ,m. Sup-
pose packet i is dropped. B then sends an NAK(i)
to A. After A receives the NAK, it will restart sending
the message from packet 0. This go-back-0 approach
caused live-lock. A 4MB message is segmented into
4000 packets. Since the packet drop rate is a deter-
ministic 1/256, one packet of the first 256 packets will
be dropped. Then the sender will restart from the first
packet, again and again, without making any progress.

Note that TCP and RDMA transport make different
assumptions on the network. TCP assumes a best-effort
network, in which packets can be dropped. Thus, TCP
stacks incorporate sophisticated retransmission schemes
such as SACK [24] to deal with packet drops. On the
other hand, RDMA assumes a lossless network, hence
our vendor chose to implement a simple go-back-0 ap-
proach. In go-back-0, the sender does not need to keep
any state for retransmission.

Figure 4: An example to show that the interaction between Ethernet packet flooding and PFC pause frame propa-
gation can cause deadlock.

This experiment clearly shows that for large network
like ours, where packet losses can still occur despite en-
abling PFC, a more sophisticated retransmission scheme
is needed. Recall however, that the RDMA transport is
implemented in the NIC. The resource limitation of the
NIC we use meant that we could not implement a com-
plex retransmission scheme like SACK. SACK would
also be overkill, as packet drops due to network conges-
tion have been eliminated by PFC.

Our solution is to replace the go-back-0 with a go-
back-N scheme. In go-back-N, retransmission starts
from the first dropped packet and the previous received
packets are not retransmitted. Go-back-N is not ideal
as up to RTT ×C bytes , where C is the link capacity,
can be wasted for a single packet drop. But go-back-N
is almost as simple as go-back-0, and it avoids livelock.
We worked with our NIC provider to implement the
go-back-N scheme, and since doing that, we have not
observed livelock in our network. We recommend that
the RDMA transport should implement go-back-N and
should not implement go-back-0.

4.2 PFC Deadlock
We once believed that our network is deadlock-free

because of its Clos network topology and up-down rout-
ing [1, 3, 19]. In such a topology, when a source server
sends a packet to a destination server, the packets first
climb up to one of the common ancestors of the source
and the destination, then go down the path to the desti-

nation. Hence there is no cyclic buffer dependency. But
to our surprise, we did run into PFC deadlock when we
ran a stress test in one of our test clusters.

As we will see later, this occurred because the unex-
pected interaction between PFC and Ethernet packet
flooding broke the up-down routing.

Before diving into the details of this example, let’s
briefly review how a ToR switch forwards an IP packet
to a server. Typically servers connected to the same
ToR are in the same IP subnet. This subnet is then
advertised to the rest of the network, so the rest of the
network can forward packets to the ToR switch. Once
the ToR receives an IP packet which belongs to one
of its servers, it needs to query two tables. One is the
ARP table from which the ToR switch can figure out the
MAC address of the destination server. The second is
the MAC address table from which the ToR switch can
figure out with which physical port the MAC address
is associated. The ARP table is for layer-3 IP whereas
the MAC address table is for layer-2. The ARP table is
maintained by the ARP protocol. The switch watches
which packet comes from which port to establish the
MAC address table.

Both tables use timeout to retire outdated entries.
The typical timeout values for the ARP and MAC tables
are very different: 4 hours and 5 minutes, respectively.
The reason for using such disparate timeout values is
that the overhead of refreshing the entries in the two
tables is very different. The MAC table is automati-

cally refreshed by hardware as new packets are received,
while the ARP table is updated by ARP packets, which
are handled by the switch CPU. Hence the ARP table
maintenance is more costly and thus the ARP table has
a much longer timeout value. Such disparate timeout
values can lead to an “incomplete” ARP entry – i.e. a
MAC address is present in the ARP table, but there is
no entry in the MAC address table for that MAC ad-
dress. When a packet destined to such a MAC address
arrives, the switch cannot figure out to which port to
forward the packet. The standard behavior in this case
is for the switch to flood the packet to all its ports.

Below let’s use a simplified example as shown in Fig-
ure 4 to illustrate how the deadlock happens. We as-
sume all the packets in the example are lossless packets
protected by PFC.

1. Server S1 is sending packets to S3 and S5 via path
{T0, La, T1}. The purple packets are to S3 and
the black packets to S5. S3 is dead, so the purple
packets received at port T1.p3 are flooded to the
rest ports of T1 including p4. The egress queue
of T1.p4 will drop the purple packets once they
are at the head of the queue since the destina-
tion MAC does not match. But before that, these
purple packets are queued there. Also T1.p2 is
congested due to incast traffic from S1 and other
sources. Hence the black packets are queued in
T1. As a result, the ingress port of T1.p3 begins
to pause the egress port of La.p1.

2. Consequently, as the black and purple packets build
up queues in La, the ingress port of La.p0 begins
to pause the egress port of T0.p2. For the same
reason, T0.p0’s ingress port begins to pause S1.

3. Server S4 begins to send blue packets to S2 via
path {T1, Lb, T0}. S2, unfortunately, is also dead.
Port T0.p3 then floods the blue packets to the rest
ports including T0.p2. Since all packets, including
the blue packets, at the egress port of T0.p2 cannot
be drained, the ingress port of T0.p3 begins to
pause Lb.p0.

4. As a result, the ingress port of Lb.p1 begins to
pause T1.p4, and T1.p1 begins to pause S4.

Note that T1.p3 will continue to pause La.p1 even if
the black packets leave T1 to S5 after the congestion at
T1.p2 is gone. This is because the purple packets cannot
be drained as T1.p4 is paused by Lb. A PFC pause
frame loop among the four switches is then formed. A
deadlock therefore occurs. Once the deadlock occurs, it
does not go away even if we restart all the servers.

This deadlock is a concrete example of the well-known
cyclic buffer dependency (see [12, 18, 22, 36] and ref-
erences therein). The cause of the cyclic dependency,
however, is ‘new’. It is caused by the flooding behavior
of the switch. In an Ethernet switch, once the destina-
tion MAC address of a packet is unknown, the packet is

Figure 5: The PFC pause frame storm caused by the
malfunctioning NIC of one single server (server 0).

flooded to all the ports except the receiving port. This
‘legitimate’ behavior causes the dependency circle to be
formed as we have shown in the above example.

We need to stop flooding for lossless packets to pre-
vent deadlock from happening. There are several op-
tions for us to choose when an ARP entry becomes in-
complete (i.e., the IP address to MAC address mapping
is there, but the MAC address to port number mapping
is not). (1) We forward the packets to the switch CPU
and let the switch CPU figure out what to do. (2) We
set up the timeout value of the MAC table to be longer
than that of the ARP table, so that an ARP entry can-
not be incomplete. (3) We drop the lossless packets if
their corresponding ARP entry is incomplete.

We have chosen option (3). Option (1) may increase
the switch CPU overhead. Option (2) needs to either re-
duce the ARP table timeout value or increase the MAC
address table timeout value. If we reduce the ARP table
timeout value, we increase the switch CPU overhead for
ARP handling. If we increase the MAC address table
timeout value, we need longer time to tell when a server
becomes disconnected from the switch. Option (3) is a
better way to prevent deadlock as it directly prevents
the cyclic buffer dependency.

The lesson we have learned from the PFC deadlock is
that broadcast and multicast are dangerous for a lossless
network. To prevent deadlock from happening, we rec-
ommend that broadcast and multicast packets should
not be put into lossless classes.

4.3 NIC PFC pause frame storm
PFC pause frames prevent packets from been dropped

by pausing the upstream devices. But PFC can cause
collateral damage to innocent flows due to the head-of-
line blocking. We illustrate the worst-case scenario in
Figure 5 1:

1. The malfunctioning NIC of server 0 continually
sends pause frames to its ToR switch;

2. The ToR switch in turn pauses all the rest ports in-
cluding all the upstream ports to the Leaf switches;

1The scenario involves a malfunctioning NIC.

3. The Leaf switches pause the Spine switches;

4. The Spine switches pause the rest of the Leaf switches;

5. The rest of the Leaf switches pause their ToR switches;

6. The ToR switches pause the servers that connect
to them.

In this case, a single malfunctioning NIC may block
the entire network from transmitting. We call this NIC
PFC pause frame storm, or PFC storm for abbrevia-
tion. To our surprise, we observed PFC storms in our
networks multiple times and PFC storms caused several
incidents which we will describe in Section 6.

The root-cause of the PFC storm problem is a bug in
the NIC’s receiving pipeline. The bug stopped the NIC
from handling the packets it received. As a result, the
NIC’s receiving buffer filled, and the NIC began to send
out pause frames all the time.

We have worked with the NIC provider to fix this NIC
bug. Furthermore, to prevent PFC storms from hurting
the network, we have implemented two watchdogs at
both the NIC and the ToR switches as follows.

On the NIC side, we worked with the NIC provider to
build a PFC storm prevention watchdog. This is pos-
sible because the NIC has a separate micro-controller
which can be used to monitor the NIC receiving side
pipeline. Once the NIC micro-controller detects the re-
ceiving pipeline has been stopped for a period of time
(default to 100ms) and the NIC is generating the pause
frames, the micro-controller will disable the NIC from
generating pause frames. Our experience with PFC
storm is that once the NIC enters the storm mode, the
server is disconnected from the network since the NIC
is not functioning well anymore. The NIC watchdog is
not able to rescue the server. Instead, its goal is to pre-
vent the pause frame storms from hurting the rest of
the network.

On the ToR switch side, we worked with the switch
providers to build a switch watchdog to monitor the
server facing ports. Once a server facing egress port
is queuing packets which cannot be drained, and at the
same time, the port is receiving continuous pause frames
from the NIC, the switch will disable the lossless mode
for the port and discard the lossless packets to and from
the NIC. Similar to the NIC side watchdog, it is to
prevent pause frames from the malfunctioning NIC from
propagating into the network. Once the switch detects
that the pause frames from the NIC disappear for a
period of time (default to 200ms), it will re-enable the
lossless mode for the port.

These two watchdogs are complementary to each other.
One of them should be sufficient to stop the NIC PFC
storm. We have implemented both for double insurance.

Note that there is a small difference in the two watch-
dog implementations. The switch watchdog will re-
enable the lossless mode once pause frames are gone,
whereas the NIC watchdog does not re-enable the loss-
less mode. This is because we have observed once the

NIC enters the PFC storm mode, it never comes back.
Hence re-enabling the lossless mode is not needed for
the NIC.

We also have observed that the NIC PFC storm prob-
lem typically can be fixed by a server reboot. Hence
once the NIC is not functioning, our server manage-
ment system will try to repair (reboot, reimage etc.)
the server. Repairing takes tens of minutes. The NIC
watchdog is to limit the damage of the problematic NIC
to hundreds of milliseconds before server repair kicks
in. Once the server is repaired successfully and pause
frames from the servers are gone, the switch can re-
enable the lossless mode for the corresponding switch
port automatically.

Knowledgable readers may wonder about the interac-
tions between the two watchdogs. Once the NIC watch-
dog disables the NIC pause frames, the switch watchdog
will re-enable the lossless mode for the corresponding
switch port. The packets to the NIC will either dropped
by the switch (if the MAC address of the NIC times out)
or dropped by the NIC (since the NIC receiving pipeline
is not functioning). In either case, the NIC PFC storm
cannot cause damage to the whole network.

We recommend both switches and NICs should im-
plement the watchdogs for NIC PFC storm prevention.

4.4 The Slow-receiver symptom
In our data centers, a server NIC is connected to a

ToR switch using a point-to-point cable. The NIC is
connected to the CPU and memory systems via PCIe.
For a 40 GbE NIC, it uses PCIe Gen3x8 which provides
64Gb/s raw bidirectional bandwidth which is more than
the 40Gb/s throughput of the NIC. Hence there seems
to be no bottleneck between the switch and the server
CPU and memory. We thought that the server NIC
should not be able to generate PFC pause frames to
the switch, because there is no congestion point at the
server side.

But this was not what we have observed. We found
that many servers may generate up to thousands of PFC
pause frames per second. Since RDMA packets do not
need the server CPU for processing, the bottleneck must
be in the NIC. It turned out that this is indeed the case.
The NIC has limited memory resources, hence it puts
most of the data structures including QPC (Queue Pair
Context) and WQE (Work Queue Element) in the main
memory of the server. The NIC only caches a small
number of entries in its own memory. The NIC has a
Memory Translation Table (MTT) which translates the
virtual memory to the physical memory. The MTT has
only 2K entries. For 4KB page size, 2K MTT entries
can only handle 8MB memory.

If the virtual address in a WQE is not mapped in
the MTT, it results in a cache miss, and the NIC has
to replace some old entries for the new virtual address.
The NIC has to access the main memory of the server
to get the entry for the new virtual address. All those
operations take time and the receiving pipeline has to

wait. The MTT cache miss will therefore slow down the
packet processing pipeline. Once the receiving pipeline
is slowed down and the receiving buffer occupation ex-
ceeds the PFC threshold, the NIC has to generate PFC
pause frames to the switch.

We call this phenomenon the slow-receiver symptom.
Though its damage is not as severe as the NIC PFC
storm, it may still cause the pause frames to propagate
into the network and cause collateral damage.

The slow-receiver symptom is a ‘soft’ bug caused by
the NIC design. We took two actions to mitigate it. On
the NIC side, we used a large page size of 2MB instead
of 4KB. With a large page size, the MTT entry miss
becomes less frequent. On the switch side, we enabled
dynamic buffer sharing among different switch ports.
Compared with static buffer reservation, dynamic buffer
sharing statistically gives RDMA traffic more buffers.
Hence even if the NICs are pausing the switch ports
from time to time, the switches can absorb additional
queue buildup locally without propagating the pause
frames back into the network. Compared with static
buffer allocation, our experience showed that dynamic
buffer sharing helps reduce PFC pause frame propaga-
tion and improve bandwidth utilization.

5. RDMA IN PRODUCTION
We added new management and monitoring capabili-

ties to debug the various RDMA and PFC safety issues
described in Section 4, and to detect RDMA related
bugs and incidents. We now discuss these new capabili-
ties which include the RDMA/PFC configuration mon-
itoring, the PFC pause frame and lossless traffic moni-
toring, and the active RDMA latency monitoring. We
also present the latency and throughput measurements.

5.1 Configuration management and mon-
itoring

To enable RDMA, we need to configure PFC at the
switch side, and RDMA and PFC at the server side.
At the switch side, the PFC configuration is part of the
QoS configuration. The PFC configuration has a global
part which reserves buffer size, classifies packets into
different traffic classes based on the DSCP value, maps
different traffic classes into different queues, and assigns
different bandwidth reservations for different queues.
The PFC configuration also has a per port part which
enables PFC for every individual physical port.

At the server side, there are configurations to en-
able/disable RoCEv2, PFC configuration, DCQCN con-
figuration, and traffic configuration. In traffic configu-
ration, users specify which type of traffic they would like
to put into PFC protection. The specification is based
on the destination transport port which is similar to the
TCP destination port.

We have a configuration monitoring service to check
if the running configurations of the switches and the
servers are the same as their desired configurations. Our

RDMA management and monitoring service handles the
complexities introduced by the combinations of multi-
ple switch types, multiple switch and NIC firmware ver-
sions, and different configuration requirements for dif-
ferent customers.

5.2 PFC pause frame and traffic monitor-
ing

Besides configuration monitoring, we have also built
monitoring for the PFC pause frames and the two RDMA
traffic classes. For pause frame, we monitor the number
of pause frames been sent and received by the switches
and servers. We further monitor the pause intervals at
the server side. Compared with the number of pause
frames, pause intervals can reveal the severity of the
congestion in the network more accurately. Pause in-
tervals, unfortunately, are not available for the switches
we currently use. We have raised the PFC pause in-
terval monitoring requirement to the switching ASIC
providers for their future ASICs.

For RDMA traffic monitoring, we collect packets and
bytes been sent and received per port per priority, packet
drops at the ingress ports, and packet drops at the
egress queues. The traffic counters can help us under-
stand the RDMA traffic pattern and trend. The drop
counters help us detect if there is anything wrong for
the RDMA traffic: normally no RDMA packets should
be dropped.

5.3 RDMA Pingmesh
We have developed an active latency measurement

service for RDMA similar to the TCP Pingmesh service
[21]. We let the servers ping each other using RDMA
and call the measurement system RDMA Pingmesh.
RDMA Pingmesh launches RDMA probes, with pay-
load size 512 bytes, to the servers at different locations
(ToR, Podset, Data center) and logs the measured RTT
(if probes succeed) or error code (if probes fail).

From the measured RTT of RDMA Pingmesh, we can
infer if RDMA is working well or not.

Our RDMA management and monitoring took a prag-
matic approach by focusing on configurations, coun-
ters, and end-to-end latency. We expect this approach
works well for the future 100G or higher speed networks.
RDMA poses challenges for packet-level monitoring due
to the high network speed and NIC offloading, which we
plan to address in our next step.

5.4 RDMA Performance
In what follows, we present the RDMA performance

results in both testbed and production networks.
Latency reduction: Figure 6 shows the end-to-end
latency comparison of TCP and RDMA for a highly-
reliable, latency-sensitive online service. This service
has multiple instances in Microsoft global data centers
and it has 20K servers in each data center. The mea-
surements are from one of the data centers. At the
time of measurement, half of the traffic was TCP and

Figure 6: The comparison of the measured TCP and
RDMA latencies for a latency-sensitive service.

half of the traffic was RDMA. The RDMA and TCP
latencies were all measured by Pingmesh. The latency
measurements for both TCP and RDMA were for intra-
DC communications. Since the online service is latency
sensitive, the peak traffic volume per sever was around
350Mb/s, and the aggregate server CPU load of the ser-
vice was around 20% - 30% during the measurement.
The network capacity between any two servers in this
data center is several Gb/s. The network was not the
bottleneck, but the traffic was bursty with the typical
many-to-one incast traffic pattern.

As we can see, the 99th percentile latencies for RDMA
and TCP were 90us and 700us, respectively. The 99th

percentile latency for TCP had spikes as high as several
milliseconds. In fact, even the 99.9th latency of RDMA
was only around 200us, and much smaller than TCP’s
99th percentile latency. Although the network was not
the bottleneck, TCP’s latency was high at the 99th per-
centile. This is caused by the kernel stack overhead and
occasional incast packet drops in the network. Although
RDMA did not change the incast traffic pattern, it elim-
inated packet drops and kernel stack overhead. Hence
it achieved much smaller and smoother high percentile
latency than TCP.
Throughput: The following experiment shows the RDMA
performance with hundreds of servers in a three-tier
Clos network. We ran this experiment using two pod-
sets after a data center was online but before it was
handed to the customer – i.e. there is no customer traf-
fic during the experiment.

The network topology is shown in Figure 7(a). All
the ports in the network are 40GbE. A podset is com-
posed of 4 Leaf switches, 24 ToR switches, and 576
servers. Each ToR switch connects 24 servers. The
4 Leaf switches connect to a total of 64 Spine switches.
The oversubscription ratios at the ToR and the Leaf are
6:1 and 3:2, respectively. The aggregate bandwidth be-
tween a podset and the Spine switch layer is 64x40Gb/s
= 2.56Tb/s.

We used a ToR-to-ToR traffic pattern. We paired
the ToRs in the two podsets one by one. ToR i in
podset 0 was paired with ToR i in podset 1. In each
ToR, we selected 8 servers, and let each server estab-

(a) The network topology.

(b) The aggregate RDMA throughput.

Figure 7: The aggregate RDMA throughput in a three-
layer Clos network. The y-axis shows the number of
frames/second. A frame size is 1086 bytes.

lish 8 RDMA connections to the corresponding server
in the other ToR. All these RDMA connections needed
to traverse the Leaf-Spine links. All the RDMA con-
nections sent data as fast as possible. In total we had
3074 connections distributed among the 128 Leaf-Spine
links, which were the bottlenecks in this experiment.

Figure 7(b) shows the aggregate throughput mea-
sured from the servers. The unit of the y-axis is frames
per second. The RDMA frame size is 1086 bytes with
1024 bytes as payload. The aggregate throughput is
3.0Tb/s. This is 60% network utilization of the total
5.12Tb/s network capacity. During the whole experi-
ment, not a single packet was dropped. Every server
was sending and receiving at 8Gb/s with the CPU uti-
lization close to 0%.

Since we use ECMP for multi-path routing in our net-
work, 60% utilization is what we can achieve for this ex-
periment. This 60% limitation is caused by ECMP hash
collision, not PFC or HOL blocking. Both our simula-
tion and the results in [2], in which no PFC was used,
showed similar utilization numbers for ECMP routing
in three-tier Clos networks.

Figure 8: The end-to-end RDMA latency jumped up
as the experiment started and network throughput in-
creased.

We unfortunately did not record the end-to-end RDMA
latency in the above throughput experiment. To fur-
ther investigate the relationship between network la-
tency and throughput, we conducted the following ex-
periment in our testbed with a two-tier network. We
had two ToR switches in this testbed. Each ToR switch
had 24 servers, and each ToR used 4 uplinks to con-
nect to four Leaf switches. All the links were 40GbE.
The oversubscription ratio was 6:1. We mimicked The
traffic pattern in Figure 7. We chose 20 servers in ev-
ery ToR and paired every server in one ToR with one
server in another ToR and let every server-pair estab-
lish 8 RDMA connections. Every server achieved 7Gb/s
sending/receiving throughput. We show the RDMA la-
tency measured in Pingmesh in Figure 8. Once the
experiment started, the end-to-end RDMA latencies in-
creased from 50us at the 99th percentile and 80us at the
99.9th percentile to 400us and 800us, respectively.

Note that the 99th percentile latency of TCP did not
change during the experiment in Figure 8. This is be-
cause we put RDMA and TCP packets into two different
queues in the switches. Hence RDMA and TCP did not
interfere with each other. We note that the 99th per-
centile latency of TCP was 500us in Figure 8, whereas
it was 700us in Figure 6. The difference was caused by
the fact that the servers in Figure 6 were servicing real-
world workload whereas the servers in Figure 8 were al-
most idle (except running the RDMA traffic generator).
Figure 8 also demonstrated that the RDMA latency in-
crease was due to the network congestion created by the
RDMA traffic.

The above measurement results show that, compared
to TCP, RDMA achieves low latency and high through-
put by bypassing the OS kernel and by eliminating
packet drops. But RDMA is not a panacea for achiev-
ing both low latency and high throughput. The RDMA
latency can still increase as the network becomes con-
gested and queues build up.

6. EXPERIENCES

6.1 RDMA Deployment
RoCEv2 was a new technology to us when we began

this work three years ago. We were unaware of any
large-scale RoCEv2 deployment at that time. Though
the benefits (zero packet drops, low latency, and low
CPU overhead) were attractive, we were concerned about
the maturity of RoCEv2. We devised a step-by-step
procedure to onboard RDMA.

For the first step, we built a small lab network with
tens of servers. This step helped us eliminate most of
the bugs at early stage. In the second step, we used
test clusters to improve the maturity of RoCEv2. The
test clusters’ setup and management were the same as
their production counterparts. In the third step, we
enabled RDMA in production networks at ToR level
only. In the fourth step, we enabled PFC at the Podset
level, i.e., we enabled PFC in the ToR and Leaf switches
within the Podsets. In the last step, we enabled PFC
up to the Spine switches. In every step when we carried
out deployment in production, we followed our safe de-
ployment procedure to enable RDMA through several
phases in our global data centers.

This step-by-step procedure turned out to be effec-
tive in improving the maturity of RoCEv2. The RDMA
transport livelock and most of the bugs were detected
in lab tests. The PFC deadlock and slow-receiver symp-
tom were detected in the test clusters. Only the NIC
PFC pause frame storm and a few other bugs hit our
production networks.

Using the same management and monitoring for both
the test clusters and the production networks turned
out to be invaluable. It made our life easier as the
test clusters were always well managed. At the same
time, it let us thoroughly test RoCEv2 as well as the
management and monitoring systems before RoCEv2
went into production.

6.2 Incidents
NIC PFC storm. The following is one of the few NIC
PFC storm incidents we have encountered. In this inci-
dent, one of our customers experienced a service avail-
ability issue. Many of their servers became unavailable
as shown in Figure 9(a). At the same time, we ob-
served that many of the servers were continuously re-
ceiving large number of PFC pause frames as shown by
our monitoring system in Figure 9(b). The y-axis shows
the number of PFC pause frames sent/received in every
five minutes.

We were able to trace down the origin of the PFC
pause frames to a single server. That server was unre-
sponsive and was in Failing (F) state as detected by
our data center management system. But from the
connected ToR switch, we could observe the number
of pause frames from the server was always increasing,
at more than two thousands pause frames per second.

(a) Server availability reduction. H (healthy), F (fail-
ing), and P (probation) are server states.

(b) The PFC pause frames received by the servers.

Figure 9: An incident caused by the NIC PFC storm
problem of a single server.

We also observed that the server was not sending or re-
ceiving any data packets. After we power-cycled that
server, the server came back up and the pause frames
were gone.

NIC PFC storms happened very infrequently. With
hundreds of thousands of servers in production, the
number of the NIC PFC storm events we have expe-
rienced is still single digit. Nonetheless, once NIC PFC
storm happens, the damage is huge due to the PFC
pause frame propagation. As we can see from this in-
cident, half of our customers servers were affected and
put into non healthy state.

After we put the NIC PFC storm prevention watch-
dogs at both the servers and the ToR switches, we did
not experience NIC PFC storms anymore.
Switch buffer misconfiguration. The ToR and Leaf
switches we use have a small and limited buffer size of
9MB or 12MB. To better utilize the scarce buffer space,
we need to enable dynamic buffer sharing. In dynamic
buffer sharing, the ports allocate memory from a shared
buffer pool. The shared buffer allocation per port per
traffic class is controlled by a parameter called α. As
long as α × UB > Bp,i, where UB is the unallocated
shared buffer size and Bp,i is the allocated buffer size for
traffic class i of ingress port p, we can allocate memory
from the shared buffer for traffic class i from ingress
port p. Hence a large α can help reduce the chance of
PFC pause frames from been generated. But a large α
may cause imbalanced and unfair buffer allocation.

We have found that the default α value (α = 1
16)

for a type of ToR switch worked well in our production
network. When we onboarded a new type of switch
from the same switch provider, we took it for granted
that it would use the same default settings as before.

Then in the midnight of 07/12/2015, we ran into an
incident. As shown in Figure 10(a), the latencies of
many latency-sensitive services increased dramatically.
Also we have observed that many servers were receiving

(a) Services latency increase caused by the PFC pause
frame propagation. Every color here represents an im-
pacted service.

(b) The PFC pause frames received by the servers.

Figure 10: An incident caused by the buffer misconfig-
uration of a newly introduced switch type.

a large number of PFC pause frames, up to 60000 pause
frames in 5 minutes (Figure 10(b)).

Further analysis revealed the origins of the pause frames.
The pause frames were generated by two ToR switches,
then propagated into the rest of the network, and af-
fected thousands of servers.

Why there were so many pause frames been gener-
ated? There were two reasons. The first was the incast
traffic pattern. These two ToR switches hosted many
chatty servers, which sent queries to more than one
thousand servers simultaneously. Once the responses
came back to the chatty servers, incast happened, which
created network congestion condition for PFC pause
frame generation.

The second reason was that we found the α value of
the new type of ToR switch was changed to 1

64 , though
these two types of switches were from the same provider.
A much smaller α made the dynamic buffer allocated
to the congested ingress ports much smaller. Hence the
PFC pause frames could be triggered much more easily.

We could not change the traffic pattern, so we tuned
the α value back to 1

16 for these switches.
The lesson we learned from this incident is that PFC

pause frames did propagate and cause collateral damage
in our production network. To reduce the damage, we
need to reduce PFC pause frames from being generated.
Our work on the NIC PFC storm and the slow-receiver
symptom prevent servers from been generating pauses.
Moreover, parameter tuning of the dynamic buffer shar-
ing and the per-flow based DCQCN [42] congestion con-
trol reduce the pauses generated by the switches.

6.3 Lessons learned and discussion
During the three years period of designing, building,

and deploying RoCEv2, we have learned several lessons
which we share as follows.

Deadlock, livelock, and PFC pause frames prop-
agation did happen. The PFC deadlock we met was
a surprise to us, as we once believed that our Clos-based
network topology was free of cyclic buffer dependency
hence free of deadlock. We did not expect the slow-
server symptom, though we were fully aware that PFC
backpressure can cause PFC pause frame propagation
in the network. We did not foresee the RDMA transport
livelock either. The lesson we learned is that a design
works in theory is not enough, as there may be many
hidden details which invalidate the design. We have to
use well designed experiments, test clusters, and staged
production deployments, to verify the designs and to
unveil the unexpected facets methodologically.

NICs are the key to make RDMA/RoCEv2
work. Most of the RDMA/RoCEv2 bugs we ran into
were caused by the NICs instead of the switches. We
spent much more time on the NICs than on the switches.
In hindsight, this happened for two reasons. The first
reason is because the NIC implements the most compli-
cated parts of the RDMA functionalities, including the
RDMA verbs and the RDMA transport protocol. As a
comparison, the switch side functionalities are relatively
simple (e.g., PFC implementation) or well tested (e.g.,
ECN implementation). The second reason is that the
NICs we use are resource constrained. The NIC lever-
ages the server’s DRAM to store its data structures and
uses its own local memory as the cache. Cache manage-
ment then becomes a big part of the NIC and introduces
bugs as well as performance bottlenecks, e.g., the slow-
receiver symptom.

Be prepared for the unexpected. Our experi-
ences of running one of the largest data center networks
in the world taught us that network incidents happen.
From day one when we began to work on RoCEv2,
we put RDMA/RoCEv2 management and monitoring
as an indispensable part of the project. We upgraded
our management and monitoring system for RDMA sta-
tus monitoring and incidents handling at the same time
when we worked on the DSCP-based PFC design and
the safety and performance bugs. As a result, when our
customers began to use RDMA, the RDMA manage-
ment and monitoring capabilities were already in pro-
duction. This RDMA management and monitoring sys-
tem is essential for RDMA health tracking and incident
troubleshooting. It helped us detect, localize, and root-
cause the RoCEv2 bugs and incidents as we have shown
in Sections 6.2 and 4.

Is lossless needed? RoCEv2 depends on a loss-
less network to function well. In this work, we have
demonstrated that we indeed can build a lossless net-
work using PFC, and all the real-world scalability and
safety challenges can be addressed. Looking forward

into the future, the question we would like to ask is:
do we really need a lossless network to get the bene-
fits of RoCEv2? Given the progress on programmable
hardware, e.g., FPGA and FPGA integrated CPU [8],
it may become feasible and economical to build much
faster and more advanced transport protocols and for-
ward error correction algorithms directly in commodity
hardware, hence relieving RoCEv2 from been depend-
ing on lossless network.

7. RELATED WORK
This paper focuses on how to safely deploy RoCEv2

on a large-scale. Besides RoCEv2, there are two other
RDMA technologies: Infiniband [6] and iWarp [30].

Infiniband is a complete networking protocol suite,
which has its own layer-1 to layer-7 protocols. An Infini-
band network is composed of multiple Infiniband sub-
nets which are connected via Infiniband routers. Within
a subnet, servers are connected via Infiniband switches.
However, to the best of our knowledge, there are still no
Infiniband routers in production. Hence Infiniband does
not meet our scalability requirement. Furthermore, In-
finiband is not compatible with Ethernet, which is the
dominant networking technology for data centers.

iWarp runs RDMA over TCP/IP. The TCP/IP pro-
tocol is offloaded to the NIC. Since TCP guarantees
reliable delivery even if some of the packets are dropped,
iWarp does not necessarily need a lossless network. iWarp
has one advantage over RoCE in that it can be use for
inter-DC communications. But since iWarp uses TCP
for packet transmission, it faces the same issue of TCP:
long latency caused by packet drops and retransmission
timeout. As we have discussed in 6.3, we expect new
transport protocols different from the Infiniband trans-
port and TCP to be introduced in the future driven by
new hardware innovations.

Deadlock is well studied in the literature and it is
well known cyclic buffer dependency is necessary for
deadlock [12, 18, 22, 33, 36]. Due to the specific Clos
network topology, we once thought our network should
be free from deadlock since it should be free of cyclic
buffer dependency. But the ‘conspiracy’ of PFC and
Ethernet packet flooding has shown that deadlock can
happen in Clos networks.

TCP performance issues such as TCP incast [35, 38,
39] and long latency tail [41] have been studied exten-
sively. These solutions are still within the existing TCP
framework. They either tune the retransmission timer
(as in [35]), or control the TCP receiving window ([39]),
or tune the ECN parameter ([38]). RDMA provides
a different approach.Compared to [41] which still uses
TCP, RDMA bypasses the OS kernel, so that the la-
tency introduced by the kernel is eliminated. Our work
shows that RDMA can be safely deployed at scale for
intra-DC communications. As we have shown in Fig-
ure 5.4, RDMA greatly reduces the high percentile la-
tency compared with TCP.

RDMA has been used to build systems including stor-
age, key-value stores, and distributed transaction sys-
tems [17, 26, 28, 37]. Most of these systems use In-
finiband or RoCE with tens of servers. In this paper,
we have shown that we can scale RDMA to much larger
networks using RoCEv2. Hence much larger in-memory
systems can be built in the future.

8. CONCLUSION
In this paper, we have presented our practices and ex-

periences in deploying RoCEv2 safely at large-scale in
Microsoft data centers. Our practices include the intro-
ducing of DSCP-based PFC which scales RoCEv2 from
layer-2 VLAN to layer-3 IP and the step-by-step on-
boarding and deployment procedure. Our experiences
include the discoveries and resolutions of the RDMA
transport livelock, the RDMA deadlock, the NIC PFC
storm and the slow-receiver symptom. With the RDMA
management and monitoring in place, some of our highly-
reliable, latency-sensitive services have been running
RDMA for over one and half years.

8.1 Future Work
There are several directions for our next steps. The

hop-by-hop distance for PFC is limited to 300 meters.
Hence RoCEv2 works only for servers under the same
Spine switch layer. To this end, RoCEv2 is not as
generic as TCP. We need new ideas on how to extend
RDMA for inter-DC communications.

Our measurement showed ECMP achieves only 60%
network utilization. For TCP in best-effort networks,
there are MPTCP [29] and per-packet routing [10] for
better network utilization. How to make these designs
work for RDMA in the lossless network context will be
an interesting challenge.

The deadlock we have discovered in this paper re-
minds us that deadlock in data centers may be worthy
of more systematic study. Even though the up-down
routing in Clos network can prevent deadlock, designs
like F10 [23] may break the assumption by introducing
local rerouting. Many other network topologies [20] do
not even have the up-down routing property. How can
deadlocks be avoided in those designs?

Last but not least, we have shown that RDMA pro-
vides low latency and high throughput by eliminating
OS kernel packet processing overhead and by relying on
a lossless network. A lossless network, however, does
not guarantee low latency. When network congestions
occur, queues build up and PFC pause frames may still
be generated. Both queues and PFC pause frames in-
crease network latency. How to achieve low network
latency and high network throughput at the same time
for RDMA is still an open problem.

9. ACKNOWLEDGEMENTS
Yan Cai contributed to the design and experimen-

tations of DSCP-based PFC. Gang Cheng and Daniel

Firestone worked on the RDMA project at its early
stage. Yibo Zhu helped us on the RDMA transport live-
lock experiments. We were supported by many mem-
bers of Azure Networking. We have worked closely with
our partners Charlie Gu, Sorabh Hamirwasia, Madhav
Pandya, Passaree Pasarj, Veselin Petrov, Xin Qian, Jun-
hua Wang, Chenyu Yan to onboard RDMA for several
key online services in Microsoft. We received technical
support from the engineers of Arista Networks, Broad-
com, Cisco, Dell, and Mellanox. Our shepherd Nan-
dita Dukkipati and the anonymous SIGCOMM review-
ers gave us many constructive feedback and comments
which improved the content and presentation of this pa-
per. We thank them all.

10. REFERENCES
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A

Scalable, Commodity Data Center Network
Architecture. In Proc. SIGCOMM, 2008.

[2] Mohammad Al-Fares, Sivasankar Radhakrishnan,
Barath Raghavan, Nelson Huang, and Amin
Vahdat. Hedera: Dynamic Flow Scheduling for
Data Center Networks. In NSDI, 2010.

[3] Alexey Andreyev. Introducing Data Center
Fabric, The Next-generation Facebook Data
Center Network. https:
//code.facebook.com/posts/360346274145943/,
Nov 2014.

[4] Hadoop. http://hadoop.apache.org/.

[5] Infiniband Trade Association. RoCEv2.
https://cw.infinibandta.org/document/dl/7781,
September 2014.

[6] Infiniband Trade Association. InfiniBandTM
Architecture Specification Volume 1 Release 1.3,
March 2015.

[7] Luiz Barroso, Jeffrey Dean, and Urs Hölzle. Web
Search for a Planet: The Google Cluster
Architecture. IEEE Micro, March-April 2003.

[8] Diane Bryant. Disrupting the Data Center to
Create the Digital Services Economy.
https://communities.intel.com/community/
itpeernetwork/datastack/blog/2014/06/18/
disrupting-the-data-center-to-create-the-digital-
services-economy.

[9] Brad Calder et al. Windows Azure Storage: A
Highly Available Cloud Storage Service with
Strong Consistency. In SOSP, 2011.

[10] Jiaxin Cao et al. Per-packet Load-balanced,
Low-Latency Routing for Clos-based Data Center
Networks. In ACM CoNEXT, 2013.

[11] Cisco. Cisco Nexus 3232C Switch Data Sheet.
http://www.cisco.com/c/en/us/products/
collateral/switches/nexus-3232c-switch/
datasheet-c78-734883.html.

[12] William Dally and Charles Seitz. Deadlock-Free
Message Routing in Multiprocessor

https://code.facebook.com/posts/360346274145943/
https://code.facebook.com/posts/360346274145943/
http://hadoop.apache.org/
https://cw.infinibandta.org/document/dl/7781
https://communities.intel.com/community/itpeernetwork/datastack/blog/2014/06/18/disrupting-the-data-center-to-create-the-digital-services-economy
https://communities.intel.com/community/itpeernetwork/datastack/blog/2014/06/18/disrupting-the-data-center-to-create-the-digital-services-economy
https://communities.intel.com/community/itpeernetwork/datastack/blog/2014/06/18/disrupting-the-data-center-to-create-the-digital-services-economy
https://communities.intel.com/community/itpeernetwork/datastack/blog/2014/06/18/disrupting-the-data-center-to-create-the-digital-services-economy
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-3232c-switch/datasheet-c78-734883.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-3232c-switch/datasheet-c78-734883.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-3232c-switch/datasheet-c78-734883.html

Interconnection Networks. IEEE trans.
Computers, C-36(5), 1987.

[13] IEEE DCB. 802.1Qaz - Quantized Congestion
Notification.
http://www.ieee802.org/1/pages/802.1au.html.

[14] IEEE DCB. 802.1Qbb - Priority-based Flow
Control.
http://www.ieee802.org/1/pages/802.1bb.html.

[15] Jeffrey Dean and Luiz André Barroso. The Tail at
Scale. CACM, Februry 2013.

[16] Jeffrey Dean and Sanjay Ghemawat. MapReduce:
Simplified Data Processing on Large Clusters. In
OSDI, 2004.

[17] Aleksandar Dragojević et al. No compromises:
distributed transactions with consistency,
availability, and performance. In SOSP, 2015.

[18] José Duato. A Necessary and Sufficient Condition
for Deadlock-Free Routing in Cut-Through and
Store-and-Forward Networks. IEEE trans Parallel
and Distributed Systems, 7(8), 1996.

[19] Albert Greenberg et al. VL2: A Scalable and
Flexible Data Center Network. In SIGCOMM,
August 2009.

[20] Chuanxiong Guo et al. BCube: a high
performance, server-centric network architecture
for modular data centers. In SIGCOMM, 2009.

[21] Chuanxiong Guo et al. Pingmesh: A Large-Scale
System for Data Center Network Latency
Measurement and Analysis. In ACM SIGCOMM,
2015.

[22] Mark Karol, S. Jamaloddin Golestani, and David
Lee. Prevention of Deadlocks and Livelocks in
Lossless Backpressured Packet Networks.
IEEE/ACM trans Networking, 11(6), Dec 2003.

[23] Vincent Liu, Daniel Halperin, Arvind
Krishnamurthy, and Thomas Anderson. F10: A
Fault-Tolerant Engineered Network. In NSDI,
2013.

[24] M. Mathis, J. Mahdavi, S. Floyd, and
A. Romanow. TCP Selective Acknowledgment
Options, 1996. IETF RFC 2018.

[25] Mellanox. ConnectX-4 EN Adapter Card
Single/Dual-Port 100 Gigabit Ethernet Adapter.
http://www.mellanox.com/page/products
dyn?product family=204&mtag=
connectx 4 en card.

[26] Christopher Mitchell, Yifeng Geng, and Jinyang
Li. Using One-Sided RDMA Reads to Build a
Fast, CPU-Efficient Key-Value Store. In USENIX
ATC, 2013.

[27] Radhika Mittal et al. TIMELY: RTT-based
Congestion Control for the Datacenter. In ACM
SIGCOMM, 2015.

[28] Diego Ongaro, Stephen M. Rumble, Ryan

Stutsman, John Ousterhout, and Mendel
Rosenblum. Fast Crash Recovery in RAMCloud.
In SOSP, 2013.

[29] Costin Raiciu, Sebastien Barre, Christopher
Pluntke, Adam Greenhalgh, Damon Wischik, and
Mark Handley. Improving Datacenter
Performance and Robustness with Multipath Tcp.
In SIGCOMM, 2011.

[30] R. Recio, B. Metzler, P. Culley, J. Hilland, and
D. Garcia. A Remote Direct Memory Access
Protocol Specification. IETF RFC 5040, October
2007.

[31] Arjun Singh et al. Jupiter Rising: A Decade of
Clos Topologies and Centralized Control in
Google’s Datacenter Network. In SIGCOMM,
2015.

[32] IEEE Computer Society. 802.1Q - 2014: Virtual
Bridged Local Area Networks, 2014.

[33] Brent Stephens, Alan L. Cox, Ankit Singla, John
Carter, Colin Dixon, and Wesley Felter. Practical
DCB for Improved Data Center Networks. In
Infocom, 2014.

[34] D. Thaler and C. Hopps. Multipath Issues in
Unicast and Multicast Next-Hop Selection, 2000.
IETF RFC 2991.

[35] Vijay Vasudevan et al. Safe and Effective
Fine-grained TCP Retransmissions for Datacenter
Communication. In SIGCOMM, 2009.

[36] Freek Verbeek and Julien Schmaltz. A Fast and
Verified Algorithm for Proving Store-and-Forward
Networks Deadlock-Free. In Proceedings of The
19th Euromicro International Conference on
Parallel, Distributed and Network-Based
Computing (PDP’11), 2011.

[37] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong
Chen, and Haibo Chen. Fast In-memory
Transaction Processing using RDMA and HTM.
In SOSP, 2015.

[38] Haitao Wu et al. Tuning ECN for Data Center
Networks. In ACM CoNEXT, 2012.

[39] Haitao Wu, Zhenqian Feng, Chuanxiong Guo, and
Yongguang Zhang. ICTCP: Incast Congestion
Control for TCP in Data Center Networks. In
ACM CoNEXT, 2010.

[40] Matei Zaharia et al. Resilient Distributed
Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing. In NSDI, 2012.

[41] David Zats, Tathagata Das, Prashanth Mohan,
Dhruba Borthakur, and Randy Katz. DeTail:
Reducing the Flow Completion Time Tail in
Datacenter Networks. In SIGCOMM, 2012.

[42] Yibo Zhu et al. Congestion Control for
Large-Scale RDMA deployments. In ACM

SIGCOMM, 2015.

http://www.ieee802.org/1/pages/802.1au.html
http://www.ieee802.org/1/pages/802.1bb.html
http://www.mellanox.com/page/products_dyn?product_family=204&mtag=connectx_4_en_card
http://www.mellanox.com/page/products_dyn?product_family=204&mtag=connectx_4_en_card
http://www.mellanox.com/page/products_dyn?product_family=204&mtag=connectx_4_en_card

	Introduction
	Background
	DSCP-based PFC
	The Safety Challenges
	RDMA transport livelock
	PFC Deadlock
	NIC PFC pause frame storm
	The Slow-receiver symptom

	RDMA in Production
	Configuration management and monitoring
	PFC pause frame and traffic monitoring
	RDMA Pingmesh
	RDMA Performance

	Experiences
	RDMA Deployment
	Incidents
	Lessons learned blackand discussion

	Related work
	Conclusion
	Future Work

	Acknowledgements
	References

