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Abstract

Although semi-supervised variational autoencoder (SemiVAE)
works in image classification task, it fails in text classification
task if using vanilla LSTM as its decoder. From a perspective
of reinforcement learning, it is verified that the decoder’s ca-
pability to distinguish between different categorical labels is
essential. Therefore, Semi-supervised Sequential Variational
Autoencoder (SSVAE) is proposed, which increases the capa-
bility by feeding label into its decoder RNN at each time-step.
Two specific decoder structures are investigated and both of
them are verified to be effective. Besides, in order to reduce
the computational complexity in training, a novel optimization
method is proposed, which estimates the gradient of the unla-
beled objective function by sampling, along with two variance
reduction techniques. Experimental results on Large Movie
Review Dataset (IMDB) and AG’s News corpus show that
the proposed approach significantly improves the classifica-
tion accuracy compared with pure-supervised classifiers, and
achieves competitive performance against previous advanced
methods. State-of-the-art results can be obtained by integrating
other pretraining-based methods.

1 Introduction
Semi-supervised learning is a critical problem in the text clas-
sification task due to the fact that the data size nowadays is
increasing much faster than before, while only a limited sub-
set of data samples has their corresponding labels. Therefore
lots of attention has been drawn from researchers over ma-
chine learning and deep learning communities, giving rise to
many semi-supervised learning methods (Socher et al. 2013;
Dai and Le 2015).

Variational autoencoder is recently proposed by Kingma
and Welling; Rezende, Mohamed, and Wierstra, and it has
been applied for semi-supervised learning (Kingma et al.
2014; Maaløe et al. 2016), to which we refer as SemiVAE.
Although it has shown strong performance on image clas-
sification task, its application in sequential text classifica-
tion problem has been out of sight for a long time. Since
variational autoencoder has been verified to be effective at
extracting global features from sequences (e.g., sentiment,
topic and style) (Bowman et al. 2016), it is also promising in
the semi-supervised text classification task.
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In this paper, Semi-supervised Sequential Variational Au-
toencoder (SSVAE) is proposed for semi-supervised sequen-
tial text classification. The SSVAE consists of a Seq2Seq
structure and a sequential classifier. In the Seq2Seq structure,
the input sequence is firstly encoded by a recurrent neural
network, e.g., LSTM network (Hochreiter and Schmidhuber
1997) and then decoded by another recurrent neural network
conditioned on both latent variable and categorical label.
However, if the vanilla LSTM network is adopted as the de-
coder, the SSVAE will fail to make use of unlabeled data and
result in a poor performance.

The explanation is given by carefully analyzing the gra-
dient of the classifier from a perspective of reinforcement
learning (RL), which reveals how the classifier is driven by
the decoder using unlabeled data. By comparing the gradient
of the classifier w.r.t. unlabeled objective function to REIN-
FORCE algorithm (Williams 1992), we realize that only if
the decoder is able to make difference between correct and
incorrect categorical labels, can the classifier be reinforced to
improve the performance. Vanilla LSTM setting will mislead
the decoder to ignore the label input and hence fails in the
sequence classification task.

To remedy this problem, the influence of categorical infor-
mation is increased by feeding label to the decoder RNN at
each time step. This minor modification turns out to bring
SSVAE into effect. Specifically, we made an investigation
on two potential conditional LSTM structures. Experimental
results on IMDB and AG’s News corpus show that their per-
formances are close and both of them are able to outperform
pure-supervised learning methods by a large margin. When
using only 2.5K labeled IMDB samples, 10.3% classification
error can still be obtained, which outperforms supervised
LSTM by 7.7%. The better one is able to achieve very com-
petitive results compared with previous advanced methods.
Combined with pretraining method, our model can obtain
the current best results on IMDB dataset. Although LSTM is
utilized as the classifier in this paper, it should be noted that
the classifier can be easily replaced by other more powerful
models to achieve better results.

In addition, motivated by the aforementioned interpreta-
tion, we reduce the computational complexity of SemiVAE by
estimating the gradient of unlabeled objective function using
sampling. In order to reduce the high variance caused by sam-
pling, the baseline method from the RL literature is adopted.
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For SSVAE, two kinds of baseline methods are studied, with
which the training becomes stable.

In summary our main contributions are:

• We make the SSVAE effective by using conditional LSTM
that receives labels at each step, and give the explana-
tion from the RL perspective. Two plausible conditional
LSTMs are investigated.

• We propose an optimization method to reduce the com-
putational complexity of SSVAE via sampling. And two
different baseline methods are proposed to reduce the opti-
mization variance. By sampling with these baselines, the
model can be trained faster without loss of accuracy.

• We demonstrate the performance of our approach by pro-
viding competitive results on IMDB dataset and AG’s news
corpus. Our model is able to achieve very strong perfor-
mance against current models.

The article is organized as follows. In the next section,
we introduce several related works. And then our model is
presented in section 3. In section 4, we obtain both quantita-
tive results and qualitative analysis of our models. At last we
conclude our paper with a discussion.

2 Preliminaries
2.1 Semi-supervised Variational Inference
Kingma et al. firstly introduced a semi-supervised learning
method based on variational inference. The method consists
of two objectives for labeled and unlabeled data. Given a
labeled data pair (x, y), the evidence lower bound with corre-
sponding latent variable z is:

log pθ(x, y) ≥ Eqφ(z|x,y)[log pθ(x|y, z)] + log pθ(y)

−DKL(qφ(z|x, y)||p(z)) = −L(x, y) ,
(1)

where the first term is the expectation of the conditional
log-likelihood on latent variable z, and the last term is the
Kullback-Leibler divergence between the prior distribution
p(z) and the learned latent posterior qφ(z|x, y).

For the unlabeled data, the unobserved label y is predicted
from the inference model with a learnable classifier qφ(y|x).
The lower bound is hence:

log pθ(x) ≥
∑
y

qφ(y|x)(−L(x, y)) +H(qφ(y|x))

= −U(x) .

(2)

The objective for entire dataset is now:

J =
∑

(x,y)∈Sl

L(x, y) +
∑
x∈Su

U(x)

+ αE(x,y)∈Sl [− log qφ(y|x)] ,

(3)

where Sl and Su are labeled and unlabeled data set respec-
tively, α is a hyper-parameter of additional classification loss
of labeled data.

2.2 Semi-supervised Variational Autoencoder
This semi-supervised learning method can be implemented by
variational autoencoder (Kingma and Welling 2014; Rezende,
Mohamed, and Wierstra 2014) (SemiVAE). The SemiVAE is
typically composed of three main components: an encoder
network, a decoder network and a classifier, corresponding
to qφ(z|x, y), pθ(x|y, z) and qφ(y|x).

In the encoder network, each data pair (x, y) is encoded
into a soft ellipsoidal region in the latent space, rather than a
single point, i.e., the distribution of z is parameterized by a
diagonal Gaussian distribution qφ(z|x, y):

x̂ = fenc(x) , (4)

qφ(z|x, y) = N (µ(x̂, y), diag(σ2(x̂, y))) , (5)
z ∼ qφ(z|x, y) . (6)

The decoder is a conditional generative model that esti-
mates the probability of generating x given latent variable z
and categorical label y:

pθ(x|y, z) = D(x|fdec(y, z)) , (7)

where fdec(y, z) is used to parameterize a distribution D,
typically a Bernoulli or Gaussian distribution for image data.

In the applications, fenc(·), fdec(·) and the classifier
qφ(y|x) can be implemented by various models, e.g., MLP or
CNN networks (Maaløe et al. 2016; Yan et al. 2016). Overall,
the SemiVAE is trained end-to-end with reparameterization
trick (Kingma and Welling 2014; Rezende, Mohamed, and
Wierstra 2014).

3 Sequential Variational Autoencoder for
Semi-supervised Learning

Based on SemiVAE, we propose Semi-supervised Sequen-
tial Variational Autoencoder (SSVAE) for semi-supervised
sequential text classification, sketched in Fig. 1. In contrast
to the implementation for image data, the sequential data is
instead modelled by recurrent networks in our model. Con-
cretely, the encoder fenc(·) and the classifier qφ(y|x) are
replaced by LSTM networks.

3.1 Learning from Unlabeled Data
However, problem occurs if the vanilla LSTM is used for
fdec(·) in the decoder, i.e., the latent variable z and the cat-
egorical label y are concatenated as the initial state for a
standard LSTM network and the words in x are predicted
sequentially. With this setting, the resulting performance is
poor and the training is very unstable (cf. Sec. 4).

To obtain a theoretical explanation, the gradient of the
classifier qφ(y|x;wc), parameterized by wc, is investigated.
Its gradient w.r.t. Equ. 3 consists of three terms:

∆wc =
∑

(x,y)∈Sl

α∇wc log qφ(y|x;wc)

+
∑
x∈Su

∇wcH(qφ(y|x;wc))

+
∑
x∈Su

Eqφ(y|x;wc)[(−L(x, y))∇wc log qφ(y|x;wc)] .

(8)



Figure 1: This is the sketch of our model. Left Bottom: The
sequence is encoded by a recurrent neural network. The
encoding and the label y are used to parameterize the the
posterior qφ(z|x, y). Right: A sample z from the posterior
qφ(z|x, y) and label y are passed to the generative network
which estimates the probability pθ(x|y, z). Left Top: When
using unlabeled data, the distribution of y is provided by the
sequential classifier (dashed line).

The first term comes from the additional classification loss of
labeled data, and the other two terms come from the unlabeled
objective function (Equ. 2). The first term is reliable as the
gradient is provided by a standard classifier qφ(y|x) with
labeled data. The second term is a regularization term and it
is negligible. The third term, with the summation omitted,

Eqφ(y|x;wc)[−L(x, y)∇wc log qφ(y|x;wc)] , (9)

is the expectation of ∇wc log qφ(y|x;wc) on classifier’s pre-
diction, multiplied by −L(x, y). Since the evidence lower
bound −L(x, y) largely determines the magnitude of gradi-
ent for each label y, it is supposed to play an important role
in utilizing the information of unlabeled data.

To verify this assumption, we investigate the term (Equ. 9)
by analogy to REINFORCE algorithm. It adapts the parame-
ters of a stochastic model to maximize the external reward
signal which depends on the model’s output. Given a policy
network P (a|s;λ), which gives the probability distribution
of action a in current state s, and a reward signal r(s, a),
REINFORCE updates the model parameters using the rule:

∆λ ∝ EP (a|s;λ)[r(s, a)∇λ logP (a|s;λ)], (10)

which has the same format with Equ. 9. Comparing Equ. 9
to Equ. 10, the classifier qφ(y|x) can be seen as the policy
network while the variational autoencoder gives the reward
signal −L(x, y). Actually, the SemiVAE can be seen as a
generative model with continuous latent variable z and dis-
crete latent variable y, combining both variational autoen-
coder (Kingma and Welling 2014) and neural variational
inference learning (NVIL) (Mnih and Gregor 2014). The
whole model is guided by labeled data and reinforced using
unlabeled data.

A prerequisite for RL is that the rewards between actions
should make difference, i.e., more reward should be given
when the agent takes the right action. Similarly, in the Semi-
VAE, only if −L(·, y) can distinguish between correct and
incorrect labels, can the classifier be trained to make better
predictions. And since −L(x, y) is largely determined by the
conditional generative probability pθ(x|y, z), it requires us

to design a conditional generative model that has to be aware
of the existence of label y.

In vanilla LSTM setting, the label is fed only at the first
time step. And it is found that the model tends to ignore the
class feature y, because minimizing the conditional likelihood
of each class according to language model (i.e., predicting
next word according to a small context window) is the best
strategy to optimize the objective function (Equ. 2).

3.2 Conditional LSTM Structures
To remedy this problem, the influence of label is increased
by proposing a slight modification to the decoder RNN, i.e.,
feeding label y at each time step as in (Wen et al. 2015;
Ghosh et al. 2016). Although this kind of implementation is
simple, it turns out to bring the SSVAE into effect.

This paper studies two potential conditional LSTM struc-
tures. The first one concatenates word embedding and label
vector at each time-step, which is widely used in (Ghosh et
al. 2016; Serban et al. 2016). We call this structure CLSTM-I
and its corresponding model SSVAE-I.

The second conditional LSTM network is motivated by
Wen et al.. It is defined by the following equations:

it = σ(Wwiwt +Whiht−1) , (11)
ft = σ(Wwfwt +Whfht−1) , (12)
ot = σ(Wwowt +Whoht−1) , (13)
ĉt = tanh(Wwcwt +Whiht−1) , (14)
ct = ft ⊗ ct−1 + it ⊗ ĉt + tanh(Wycy) , (15)
ht = ot ⊗ tanh(ct) , (16)

where the equations are the same as in standard LSTM net-
works except that Equ. 15 has an extra term about y. The label
information is directly passed to the memory cell, without
the process of four gates in LSTM. This structure is denoted
as CLSTM-II and the model with this structure is called
SSVAE-II.

3.3 Optimizing via Sampling
A limitation of the SemiVAE is that they scale linearly in the
number of classes in the data sets (Kingma et al. 2014). It is an
expensive operation to re-evaluate the generative likelihood
for each class during training. Actually, the expectation term
in Equ. 9 can be estimated using Monte Carlo sampling
from the classifier to reduce the computational complexity of
SemiVAE.

However, the variance of the sampling-based gradient es-
timator can be very high due to the scaling of the gradi-
ent inside the expectation by a potentially large term. To
reduce the variance, the baseline method (Williams 1992;
Weaver and Tao 2001), which has been proven to be very
efficient for reinforcement learning tasks, is adopted. The
baseline can be added without changing the expect gradient.
With baseline b introduced, the Equ. 9 is transformed to:

1

K

K∑
k=1

[(−L(x, y(k))− b(x))∇wc log qφ(y(k)|x;wc)] ,

(17)



where y(k) ∼ qφ(y|x;wc). We investigate two kinds of base-
line methods in this paper for SSVAE:
• S1 Since the term log pθ(x|y, z) in −L(x, y) is approx-

imately proportional to the sentence length, we imple-
ment a sequence-length-dependent baseline b(x) = c|x|,
where |x| stands for the length of input sequence. Dur-
ing the training, the scalar c is learned by minimize MSE
(log pθ(x|y, z)/|x| − c)2. In practice, the log pθ(x|y, z) is
divided by |x| and use c directly as the baseline to reduce
the variance introduced by various sentence lengths.

• S2 The second one samples K ≥ 2 labels and simply
use the averaged −L(x, ·) as the baseline, i.e., b(x) =
1
K

∑K
k=1−L(x, y(k)). Although it is a little more compu-

tationally expensive, this baseline is more robust.
To avoid confusion, the S1 and S2 tags are used to indicate
that the model is trained by sampling using two different
baselines, while the SSVAE-I,II are two implementations of
SSVAE using two different conditional LSTMs.

4 Experimental Results and Analysis
The system was implemented using Theano (Bastien et al.
2012; Bergstra et al. 2010) and Lasagne (Dieleman et al.
2015). And the models were trained end-to-end using the
ADAM (Kingma and Ba 2015) optimizer with learning rate
of 4e-3. The cost annealing trick (Bowman et al. 2016;
Kaae Sønderby et al. 2016) was adopted to smooth the train-
ing by gradually increasing the weight of KL cost from zero
to one. Word dropout (Bowman et al. 2016) technique is
also utilized and the rate was scaled from 0.25 to 0.5 in our
experiments. Hyper-parameter α was scaled from 1 to 2. We
apply both dropout (Srivastava et al. 2014) and batch normal-
ization (Ioffe and Szegedy 2015) to the output of the word
embedding projection layer and to the feature vectors that
serve as the inputs and outputs to the MLP that precedes the
final layer. The classifier was simply modelled by a LSTM
network. In all the experiments, we used 512 units for mem-
ory cells, 300 units for the input embedding projection layer
and 50 units for latent variable z.

4.1 Benchmark Classification
This section will show experimental results on Large Movie
Review Dataset (IMDB) (Maas et al. 2011) and AG’s News
corpus (Zhang, Zhao, and LeCun 2015). The statistic of
these two datasets is listed in Table 1. The data set for semi-
supervised learning is created by shifting labeled data into
unlabeled set. We ensure that all classes are balanced when
doing this, i.e., each class has the same number of labeled
points. In both datasets we split 20% samples from train set
as valid set.

Table 1: The statistic for IMDB and AG’s News dataset
Dataset #labeled #unlabeled #testset #classes
IMDB 25K 50K 25K 2

AG’s News 120K 0 7.6k 4

Table 2 and Table 3 show classification results on IMDB
and AG’s News datasets respectively. The model using vanilla

LSTM, referred as SSVAE-vanilla, fails to improve the classi-
fication performance. In contrast, our models, i.e., SSVAE-I
and SSVAE-II, are able to outperform pure-supervised LSTM
by a large margin, which verifies the SSVAE as a valid semi-
supervised learning method for sequential data. With fewer
labeled samples, more improvement can be obtained. When
using 2.5K labeled IMDB samples, 10.3% classification error
can still be obtained, in contrast to 10.9% error rate using full
20K labeled data for supervised LSTM classifier.

In addition we compare our models with previous state-of-
the-art pretraining-based method (Dai and Le 2015). Since
their codes have not been published yet, the LM-LSTM and
SA-LSTM models were re-implemented. Although the LM-
LSTM was successfully reproduced and equivalent perfor-
mance reported in their paper was achieved, we are unable
to reproduce their best results of the SA-LSTM. Therefore,
the LM-LSTM was used as a baseline for this comparison.
Experimental results show the SSVAEs perform worse than
LM-LSTM, indicating that pretraining is very helpful in prac-
tice, considering the difficulty in optimizing the recurrent
networks. Fortunately, since the classifier is separated in SS-
VAE, our method is compatible with pretraining methods.
When integrating LM-LSTM, additional improvement can
be achieved and the model obtains a tie result to the state-
of-the-art result. A summary of previous results on IMDB
dataset are listed in Table 4, including both supervised and
semi-supervised learning methods. It should be noted that the
classifier in our model can be easily replaced with other more
powerful methods to get better results. Since only a subset of
AG’s News corpus is used as labeled data, there is no other
comparative results on AG’s News corpus.

Table 2: Performance of the methods with different amount of
labeled data on IMDB dataset. LM denotes that the classifier
is initialized by LM-LSTM.

Method 2.5K 5K 10K 20K
LSTM 17.97% 15.67% 12.99% 10.90%
SSVAE-vanilla 17.76% 15.81% 12.54% 11.86%
SSVAE-I 10.38% 9.93% 9.61% 9.37%
SSVAE-II 10.28% 9.50% 9.40% 8.72%
LM-LSTM 9.41% 8.90% 8.45% 7.65%
SSVAE-II,LM 8.61% 8.24% 7.98% 7.23%
SSVAE-II,S1 16.87% 15.28% 11.62% 9.75%
SSVAE-II,S1,LM 9.40% 9.00% 8.00% 7.60%

4.2 Analysis of Conditional LSTM Structures

From Table 2 and Table 3, the model with CLSTM-II out-
performs CLSTM-I slightly. We suppose that CLSTM-II
receives label information more directly than CLSTM-I and
hence can learn to differentiate various categories much eas-
ier. Both of them surpass the model using vanilla LSTM
evidently.

To obtain a better understanding of these structures, we
investigated the model using vanilla LSTM, CLSTM-I or
CLSTM-II as its decoder quantitatively. At first we define
the following index for the decoder to explore its relationship



Table 3: Performance of the methods with different amount
of labeled data on AG’s News dataset.

Method 8K 16K 32K
LSTM 12.74% 10.97% 9.28%
SSVAE-vanilla 12.69% 10.62% 9.49%
SSVAE-I 10.22% 9.32% 8.54%
SSVAE-II 9.71% 9.12% 8.30%
LM-LSTM 9.37% 8.51% 7.99%
SSVAE-II,LM 8.97% 8.33% 7.60%
SSVAE-II,S1 11.92% 10.59% 9.28%
SSVAE-II,S2 9.89% 9.25% 8.49%
SSVAE-II,S1,LM 9.74% 8.92% 8.00%
SSVAE-II,S2,LM 9.05% 8.35% 7.68%

Table 4: Performance of the methods on the IMDB sentiment
classification task.

Model Test error rate
LSTM (2015) 13.50%
LSTM initialize with word2vec (2015) 10.00%
Full+Unlabeled+BoW (2011) 11.11%
WRRBM+BoW (bnc) (2011) 10.77%
NBSVM-bi (2012) 8.78%
seq2-bown-CNN (2015) 7.67%
Paragraph Vectors (2014) 7.42%
LM-LSTM (2015) 7.64%
SA-LSTM (2015) 7.24%
SSVAE-I 9.37%
SSVAE-II 8.72%
SSVAE-II,LM 7.23%

with classification performance:

D =
1

Nl

Nl∑
i=1

1{arg max
y
−L(x(i), y) = y(i)} , (18)

where (x(i), y(i)) is a sample in labeled set, Nl is the num-
ber of total labeled data and −L(x, y) is the lower bound in
Equ. 1. This equation denotes the ratio of samples that the
decoder can produce higher evidence lower bound of gen-
erative likelihood with correct labels, in other words, “how
many rewards are given correctly”. We use this index to eval-
uate decoder’s discrimination ability. The curves of models
using these conditional LSTMs, together with classification
accuracy A, are shown in Fig. 2.

By using CLSTMs, the accuracy improves rapidly as well
as D index, which indicates the strong correlation between
the accuracy of classifier and discrimination ability of condi-
tional generative model. At the early phase of training, the
accuracy of vanilla LSTM improves quickly as well, but di-
verges at epoch 13. Meanwhile the D index improves very
slowly, indicating that not enough guiding information is
provided by the decoder. Therefore, the classifier is unable to
utilize the unlabeled data to improve the accuracy, resulting
in an unstable performance.

4.3 Sampling with Baseline Methods
Table 2 and 3 also list the results of models trained by sam-
pling, as described in Sec. 3.3. In the implementation, sam-
pling number K is set to 1 when using S1 and 2 for S2. The

Table 5: Time cost of training 1 epoch using different opti-
mization methods on Nvidia GTX Titan-X GPU.

Method SSVAE-II SSVAE-II,S1 SSVAE-II,S2
IMDB,2.5K 4050(s) 2900(s) -
AG,8K 1880(s) 1070(s) 1205(s)

Figure 2: The discrimination index of decoder and classifi-
cation accuracy between models using vanilla LSTM and
conditional LSTMs, with 5K labeled data samples.

results of S2 for IMDB dataset are omitted, since the models
using S2 are similar with the SSVAEs on the datasets with
only two classes. The SSVAE-II is used as the basic model
for this comparison.

Experimental results demonstrate that the sampling-based
optimization is made available by using two proposed base-
lines. However, the models using S1 perform worse than
the models without sampling, indicating that the variance is
still high even using this baseline. By using S2, the models
achieve the performance on par with the SSVAEs without sam-
pling, which verifies the S2 as an efficient baseline method
for SSVAEs. Besides, the time cost using S1 or S2 is less
than that without sampling on both IMDB dataset and AG’s
News corpus (cf. Table 5). For both S1 and S2, the adoption
of pre-trained weights makes the optimization more stable
during the experiments.

4.4 Generating Sentences from Latent Space
To investigate whether the model has utilized the stochastic
latent space, we calculated theKL-divergence for each latent
variable unit zi during training, as seen in Fig. 3. This term is
zero if the inference model is independent of the input data,
i.e., qφ(zi|x, y) = p(zi), and hence collapsed onto the prior
carrying no information about the data. At the end of training
process, about 10 out of 50 latent units in our model keep an
obviously non-zero value, which may indicate that the latent
variable z has propagated certain useful information to the
generative model.

To qualitatively study the latent representations, t-
SNE (Maaten and Hinton 2008) plots of z ∼ qφ(z|x, y)
from IMDB dataset are seen in Fig. 4. The distribution is
Gaussian-like due to its normal prior p(z) and the distribu-



Table 6: Nice generated sentences conditioned on different categorical label y and same latent state z.
Negative Positive
this has to be one of the worst movies I’ve seen in a long time. this has to be one of the best movies I’ve seen in a long time.
what a waste of time ! ! ! what a great movie ! ! !
all i can say is that this is one of the worst movies i have seen. anyone who wants to see this movie is a must see ! !
UNK is one of the worst movies i’ve seen in a long time . UNK is one of my favorite movies of all time.
if you haven’t seen this film , don’t waste your time ! ! ! if you haven’t seen this film , don’t miss it ! ! !
suffice to say that the movie is about a group of people who
want to see this movie , but this is the only reason why this
movie was made in the united states .

suffice to say that this is one of those movies that will appeal
to children and adults alike , but this is one of the best movies
i have ever seen .

Figure 3: logDKL(qφ(z|x, y)||p(z)) for each latent unit is
shown at different training epochs. High KL (white) unit
carries information about the input text x.

tions of two classes are not separable. When digging into
some local areas (cf. supplementary materials), it’s interest-
ing to discover that sentences sharing similar syntactic and
lexical structures are learned to cluster together, which indi-
cates that the shallow semantic context and the categorical
information are successfully disentangled.

Another good explorative evaluation of the model’s ability
to comprehend the data manifold is to evaluate the genera-
tive model. We selected several z and generate sentences for
IMDB using trained conditional generative model pθ(x|y, z).
Table 6 demonstrates several cases using the same latent
variable z but with opposite sentimental labels. Sentences
generated by the same z share a similar syntactic structure
and words, but their sentimental implications are much differ-
ent from each other. The model seems to be able to recognize
the frequent sentimental phrases and remember them accord-
ing to categorical label y. While faced with the difficulty for
a model to understand real sentiment implication, it is inter-
esting that some sentences can even express the sentimental
information beyond the lexical phrases, e.g., “but this is the
only reason why this movie was made in the United States”.
Similar interesting sentences can be also generated on AG’s
News dataset.

5 Conclusion
The SSVAE has been proposed for semi-supervised text classi-
fication problem. To explain why SSVAE fails if using vanilla
LSTM as its decoder, we provided an angle for SemiVAE

Figure 4: The distribution of IMDB data set in latent space
using t-SNE.

from the perspective of reinforcement learning. Based on
this interpretation, the label information is enhanced in the
SSVAE by feeding labels to the decoder RNN at each time
step. This minor modification brings the SSVAE into effect.
Two specific conditional LSTMs, i.e., CLSTM-I and CLSTM-
II, are investigated. Experimental results on IMDB dataset
and AG’s News corpus demonstrate that our method can
achieve competitive performance compared with previous
advanced models, and achieve state-of-the-art results by com-
bining pretraining method. In addition, the sampling-based
optimization method has been proposed to reduce the compu-
tational complexity in training. With the help of the baseline
methods suggested in this paper, the model can be trained
faster without loss of accuracy.
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