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Abstract
Statistical phrase-based approach was dominating researches in
the field of machine translation for these last twenty years. Re-
cently, a new paradigm based on neural networks has been pro-
posed: Neural Machine Translation (NMT). Even there is still
challenges to deal with, NMT shows up promising results better
than the Statistical Machine Translation (SMT) on some lan-
guage pairs. The baseline architecture used in NMT systems
is based on a large and a single neural network to translate a
whole source sentence to a target one. Several powerful and ad-
vanced techniques have been proposed to improve this baseline
system and achieve a performance comparable to the state-of-
the-art approach. This article aims to describe some of these
techniques and to compare them with the conventional SMT ap-
proach on the task of Arabic-English machine translation. The
result obtained by the NMT system is close to the one obtained
by the SMT system on our data set.
Index Terms: Machine translation, Neural network, Phrase-
based machine translation, Neural machine translation.

1. Introduction
In machine translation several approaches were proposed.
Some of them are based on dictionaries [1], others on exam-
ples [2], rules [3] or statistical approaches [4]. The widely used
technique for these last twenty years is phrase-based statistical
machine translation [5]. The main principle of this approach
is the use of two components: translation and language mod-
els to maximize the likelihood of translating a source sentence
f to a target sentence e. The translation model, which is esti-
mated from a parallel corpus, expresses how well the sentence e
is an appropriate translation for the source sentence f . The lan-
guage model is learned by using a monolingual corpus in order
to measure how likely the proposed target sentence e is.

Recently deep learning became a powerful technique that is
widely used to achieve good performance on difficult problems
such as automatic speech recognition, visual object recognition,
sentiment analysis, etc. These methods have been known in
Natural Language Processing (NLP) topics and others for sev-
eral decades, but the bottleneck was the lack of data and the
power limitation of computers.

Having regard to these factors, it’s not surprising that deep
learning recently kicked up a storm in translation to create
a promising approach so-called Neural Machine Translation
(NMT) [6, 7, 8].

Unlike the old paradigm of SMT where one should explic-
itly model latent structures, namely: word alignment, phrase
segmentation, phrase reordering and language modeling, the
new paradigm NMT is end-to-end model [9]. It aims to directly
transform a source sentence into a target one by training a single
and a large neural network.

Current NMT models are essentially based on the encoder-
decoder framework [7], where the source language sentence is
encoded into a fixed length vector, from which the target lan-
guage sentence is decoded (generated). This basic idea has been
improved to achieve results comparable to those obtained by the
state-of-the-art approach. To do so, different techniques called
attention [10] have been proposed.

Recently, [11, 12, 13] perform a detailed analysis of NMT
vs. SMT in order to explore the challenges with the new
paradigm and understand what linguistic phenomena are best
modeled by neural models. In this article, we focus on some
advanced techniques that improve neural machine translation
systems. These techniques are described and compared with
the conventional SMT approach. Several experiments are car-
ried out, in this article, on the task of Arabic-English translation
by using small data from UN and they are compared, on the
same data set, with SMT.

In the next section, an overview about the conventional
SMT and the NMT approaches is reported. Section 3 summa-
rizes the data set used in the different experiments and discusses
the translation quality achieved by using several advanced tech-
niques.

2. NMT vs. SMT
From a probabilistic standpoint, the task of machine transla-
tion consists of finding a target sentence Ê = e1e2...e|E| that
maximizes the probability P (E|F, θ) of producing E given the
source sentence F = f1f2...f|F | and the model parameters θ,
as in Equation 1.

Ê = argmax
E

P (E|F, θ) (1)

The parameters θ are learned from parallel corpora, a set of
aligned sentences in the source and the target languages.

In the conventional SMT approach, the probabilityP (E|F )
is decomposed into two knowledge sources by applying Bayes
theorem [5]:

Ê = argmax
E

P (E)P (F |E) (2)

Where the probability P (E) represents the language model and
P (F |E) is the translation model. In practice, other models are
combined with these two knowledge sources in order to cal-
culate the cost assigned to a translation, namely the reordering
model and the word penalty. This combination is performed by
using the log-linear approach [5, 14] as it is shown in Equation
3.

logP (E|F ) =

|w|∑
i=1

wi × log(pi(E,F )) (3)
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Figure 1: The architecture of the encoder-decoder framework.

The probability P (E|F ) is broken up into multiple models
(language model, translation model, reordering model...); the
score of each model pi(E,F ) is weighted by a weight wi and
|w| is the number of models.

From this standpoint, the SMT approach requires the inte-
gration of multiple components and processing steps in order to
find the best translation. This leads to a complex architecture
compared to the new paradigm of translation based on neural
networks.

NMT aims to train one single and large neural network in
order to translate a whole source sentence into a target one,
which means that all models used in the conventional SMT ap-
proach are implicitly modeled by the neural network. This idea
is carried out by using a sequence to sequence mapping models
[7]. These models are based on the encoder-decoder framework
where the encoder network takes as input a word sequence and
maps it to an encoded representation, which is then used by the
decoder network to generate an output word sequence. Each
component is based on the use of one or multiple hidden layers
of Recurrent Neural Networks (RNNs) [15] or Long Short-Term
Memory (LSTM) networks [16].

To have a good understanding, Figure 1 illustrates the
encoder-decoder architecture used in NMT with simple RNN.
The encoder looks up the word representation/embedding for
each word in F and calculates the output of the hidden state ht

according to Equation 4.

ht =

{
tanh (Wxhxt +Whhht−1 + bh), if t ≥ 1

0, otherwise.
(4)

WhereWxh,Whh and bh are the weights of the recurrent neural
network to learn during the training stage. xt is the vector rep-
resentation of the word ft and ht−1 is the output of the RNN.

Then, the decoder performs the treatment, in the same man-
ner, as for the encoder, but with the target sentence E. The dif-
ference between the two procedures is the initial vector h0. This
vector is initialized to zeros in the encoder (h(f)

0 = 0), however,
in the decoder, it is initialized to the output of the final state of
the encoder (h(e)

0 = h
(f)

|F |), which makes E depending on F .
This vector is called the context vector (c) [10]. Furthermore,
the first word in the target sequence refers to the symbol < s >
indicating the sentence start. The final output of the decoder
is the probability of translating F to E. More precisely, the
likelihood of E = (e1, e2, ..., e|E|) is get by multiplying the
probability of each word giving the context vector c and all the
previous words {e1, ..., et−1} as it is shown in Equation 5.

P (E) =

|E|∏
t=1

p(et|{e1, ..., et−1}, c). (5)

Each conditional probability is modeled as:

p(et|{e1, ..., et−1}, c) = NN output(et−1, h
(e)
t , c). (6)

where NN output is a function that generates the probability
of et, while h(e)

t is the output of the hidden state of the RNN.

3. Experimental setup
In the first instance, we decided to train a NMT baseline sys-
tem [17, 7] and compare the results with a conventional SMT
system. The architecture used in this baseline system is quite
simple, there are several techniques that are proposed in order
to improve the quality of translation. Some of these techniques
are described and tested to improve the results and achieve per-
formance close to the SMT system.

3.1. Data set

All experiments are carried out on the task of Arabic-English
translation. For training, we used a small corpus of 100K par-
allel sentences extracted from Multiun [18]. This corpus is a
part of the official documents of the United Nations between
2000 and 2010. In order to prevent the over-fitting issue, i.e.
the neural network models the training data too well, we used a
data set of 1000 parallel sentences (Dev). Likewise, for testing
the performance of our systems, another corpus of 1000 parallel
sentences is used (Test). These two corpora are also extracted
from Multiun [18].

All data sets are used after applying the normalization pro-
cess proposed in [19]. Also, in order to handle unknown words
that do not exist in the training data, all words that appear
only once in the training corpus are replaced by a special token
<unk>. This process leads to a vocabulary of size 47K words
for the source language and 20K words for the target language.

3.2. Experiment results

3.2.1. Baseline system

As it was mentioned before, the baseline system is a basic
encoder-decoder model without any improving mechanism as
it is proposed in [17, 7]. For this system, the architecture used
is as follows: one hidden layer, RNN blocs for both the encoder
and the decoder and each bloc has 100 hidden units. Further-
more, several optimization algorithms were tested in order to
update the model parameters, namely:



• Stochastic Gradient Descent (SGD): this technique is
based on the calculation of the derivative of the loss with
respect to each parameter. Afterwards, this derivative is
used to take a step in the direction that will reduce the
loss according to the objective function. During this step,
the weights are updated according a learning rate.

• Momentum [20]: SGD with momentum is used to help
the optimizer to explore more efficiently the parameter
space. It does that by keeping a fraction of the past gra-
dient and add it to the current gradient. It ensures a faster
convergence and reduces the oscillation when exploring
the parameter space [21].

• AdaGrad [22]: this technique is very useful in the case
of sparse data. Indeed, it adjusts dynamically the learn-
ing rate for each parameter separately in such a way that
larger updates are performed for infrequent updated pa-
rameters and smaller updates are performed for frequent
updated parameters.

• Adaptive moment estimation (Adam) [23]: this is an-
other technique that computes individual adaptive learn-
ing rates for different parameters. It combines the ad-
vantages of momentum and AdaGrad by keeping a frac-
tion of the first and second moments (mean and variance)
of the past gradients. This is a popular technique for
optimization as its convergence is greatly speed but it
is highly recommended to compare it with the standard
SGD method [24].

The performance of the translation system is evaluated in
terms of BLEU [25]. The results according to the optimization
algorithms are reported in Table 1. On our data set, the standard

Table 1: Baseline NMT systems according to the optimization
algorithms: BLEU(%).

Methods Dev Test
SGD 7.83 5.35

Momentum 4.19 2.89
AdaGrad 6.27 4.61

Adam 6.33 4.49

SGD optimization algorithm achieves better performance. It
is shown that standard SGD optimization without momentum
tends to find the optimal parameters, but the issue is that it is
time consuming and there is a risk of getting stuck in saddle
points [21].We can also note that AdaGrad and Adam, which
are based on the same idea, gives similar results.

All these results are bad because they produce translations
that are not reliable. Also, it should be noted that, the conven-
tional SMT system achieved a BLEU of 33.72 on the Dev and
24.54 on the Test, which is much better than the NMT baseline
system. The translation model for the SMT system is trained
on the same parallel data set. The language model is a 3-gram
language model trained on the corpus of the target language.
In order to boost the baseline neural model, we tested an ad-
vanced technique that theoretically improves the baseline sys-
tem.

3.2.2. Attention technique

There are powerful techniques called attention, which are used
to fix some problems of the baseline encoder-decoder model.
In [10], the authors proposed to encode the source sentence into
a context vector that is dynamically produced according to the

target word being generated. For this, they change the architec-
ture of the encoder and the decoder as follows:

• Encoder Instead of encoding the input sequence F by
starting from the first word f1 up to the last one f|F |
(i.e. usual RNN), a bidirectional RNN is used. In
this kind of networks, the input sentence is, firstly, en-
coded as it is ordered to generate a sequence of hid-

den states (
−−→
h
(f)
1 , ...,

−−→
h
(f)

|F |). Afterwards, it is encoded in
the reverse order resulting a sequence of hidden states

(
←−−
h
(f)
1 , ...,

←−−
h
(f)

|F |). Finally, to obtain the annotation ht for

each word ft, the two output hidden states
−−→
h
(f)
t and

←−−
h
(f)
t

are concatenated as follow h
(f)
t = [

−−→
h
(f)
t ;
←−−
h
(f)
t ]′.

With this approach, each word ft will depend on both the
preceding words and the following words, which will re-
duce the distance between words of the source sentence
and those of the target sentence. This is very useful in the
case of pairs of languages that share the same Subject-
Verb-Object (SVO) structure (French-English for exam-
ple).

• Decoder From the Equation 6, it is clear that the con-
ditional probability is modeled by using the previous
predicted words {e1, ..., ei−1}1 and a fixed-length con-
text vector c generated from the source sentence. In the
model with attention, this probability is conditioned by
{e1, ..., ei−1} and a distinct context vector ci for each
target word ei as it is shown in the Equation 7

p(ei|{e1, ..., ei−1}, c) = NN output(ei−1, h
(e)
i , ci).

(7)
This context vector ci depends on the sequence of anno-
tations h(f)

1 , ...h
(f)

|F | generated by the encoder as it was
explained in the previous point. Hence, ci is computed
as a weighted sum of these annotations h(f)

j

ci =

|F |∑
j=1

αijh
(f)
j . (8)

The weight αij for each annotation h(f)
j represents the

probability of aligning a source word fj with a target
word ei. It is modeled by a feed-forward neural network,
which depends on the annotation h(f)

j of the input sen-
tence and the output of the previous RNN hidden state
h
(e)
i−1.

By applying attention technique on our data, the BLEU
score has been significantly improved: 28.10 on the Dev 20.63
on the Test. This improvement is essentially due to the explicit
modeling of the alignment between words of the source sen-
tence and those of the target sentence. Note that, contrary to
the baseline model, in this one, two neural networks have been
used, one for encoding and decoding and the second one for the
alignment.

3.2.3. Handling unknown and rare words

NMT operates on constrained vocabulary and in addition it re-
places a huge amount of rare words by the <unk> token. This

1Henceforth, we used i to index the target sentence words and j to
index those of the source sentence.



solution is the most used even in the statistical approach, how-
ever it suffers from some shortcomings. In fact, the produced
target sentence can contain <unk> that breaks the structure of
the sentence and consequently it changes its meaning.

One way to handle this issue is to take benefit from an exter-
nal dictionary containing a list of words with their translations
and a score for each translation.

The first approach, proposed by [26], consists of using the
alignment function to map unknown words in the target sen-
tence with their corresponding words in the source sentence.
Afterwards, an external dictionary is used to translate each un-
known word. This solution is known as the<unk> replacement
technique, refered in the following as RepUnk.

Another approach [27] handles the issue of the translation
of infrequent words, in the training data. To do so, the proba-
bility of each target word of the vocabulary is recalculated by
taking into account the probability of words in an external lex-
icon. With this, the probability of an infrequent word in the
vocabulary is ajusted by the one calculated from the external
lexicon. The probabiliy of a word ei of the external lexicon is
estimated as follows:

plex(ei|{e1, ..., ei−1}, F ) =

|F |∑
j=1

αijPlex(ei|fj) (9)

Afterwards, this probability is added as a bias to the
softmax probabilities calculated by the neural network. This
technique of adjustment will be named in the following
ProbAdjust.

In order to test these two approaches, we built automatically
a dictionary of 10M entries from a corpus of 9M parallel sen-
tences. By incorporating our lexicon in the NMT system with
attention, we achieved the results reported in Table 2. Using an

Table 2: BLEU(%) after incorporating an external lexicon in
NMT system with attention.

Methods Dev Test
Attention 28.1 20.63
RepUnk 28.09 21.03

ProbAdjust 25.88 19.79

external lexicon to replace unknown words improves a little bit
the translation on the Test. However, by adjusting translation
probabilities, the system performance decreases on our data set.
One reason of this could be that the external probabilities may
improve the likelihood of infrequent events, but they can also
collapse the probabilities of those that are frequent.

3.2.4. NMT architecture

For the purpose of better modeling and learning long-term de-
pendencies, we used LSTM blocs rather than recurrent neural
networks. The advantage of LSTM, among others, is to prevent
the Vanishing gradient issue [24] for which RNNs suffer from.

Testing this architecture by varying the number of hidden
layers from 2 to 6 and by using LSTM has not shown an im-
provement on our data set.

3.2.5. Beam search

Beam search is an heuristic search technique that is used by the
decoder to generate the best translation. The idea is to explore
in each step a subset of possible translations of sizem (the beam
size). This size has a strong impact on the translation quality; by

increasing the beam size, the decoder explores a larger subset of
possible translations and consequently it ensures a better trans-
lation. In the previous tests, the beam size was fixed to 1, which
we consider as too restrictive. The experiments show also that
the word penalty score may have a positive impact on the qual-
ity of translation. The translation performance in accordance to
the beam size and the word penalty is presented in Figure 2.

A word penalty of 1 means that no alteration is done on
the probability of the generated sentence, since it is multiplied
by 1. By decreasing this parameter, the decoder tends to pro-
duce longer sentences and specially when the beam size gets
longer. In this case the results could be improved. The curves
of Figure 2 show that the best size of the beam is 20 and the best
word penalty is 0.5, which leads to a BLEU of 32.05 on the Dev
corpus. With these parameters, the Recurrent Neural Network
method with the following features: one hidden layer, Atten-
tion technique and Replacement <unk> approach, achieves a
BLEU score of 24.37 on the test corpus. Even this sophisti-
cated method, it does not outperform the statistical approach
that achieves a BLEU score of 24.54. This is due to the size of
training corpus which is rather limited [12].
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Figure 2: The translation quality on the Dev with respect to the
beam size and the word penalty.

4. Conclusions
Neural machine translation is a new paradigm that uses deep
learning to build a single large artificial neural network translat-
ing a whole source sentence to a target one. In this paper, we
described the baseline architecture proposed for this approach,
namely the encoder-decoder framework. This baseline system
was compared with the conventional SMT approach on the task
of Arabic-English machine translation; the results showed that
SMT performs much better than NMT (an absolute difference of
19% in the BLEU score). Afterwards, in the aim of improving
the performance of the baseline NMT system, several advanced
techniques were detailed and tested. Although these techniques
reduced significantly the gap between SMT and NMT (an abso-
lute difference of 0.17% in BLEU), there is still several issues
to deal with. The advantage of NMT is to use a component
that encodes and decodes, but through the experiments we did
in this paper, we show that this architecture needs external com-
ponents and some alteration of probabilities to come closer the
performance of SMT.
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