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ABSTRACT
Semi-supervised learning is a branch of machine learning tech-
niques that aims to make fully use of both labeled and unlabeled
instances to improve the prediction performance. The size of mod-
ern real world datasets is ever-growing so that acquiring label
information for them is extraordinarily difficult and costly. There-
fore, deep semi-supervised learning is becoming more and more
popular. Most of the existing deep semi-supervised learning meth-
ods are built under the generative model based scheme, where the
data distribution is approximated via input data reconstruction.
However, this scheme does not naturally work on discrete data, e.g.,
text; in addition, learning a good data representation is sometimes
directly opposed to the goal of learning a high performance pre-
diction model. To address the issues of this type of methods, we
reformulate the semi-supervised learning as a model-based rein-
forcement learning problem and propose an adversarial networks
based framework. The proposed framework contains two networks:
a predictor network for target estimation and a judge network for
evaluation. The judge network iteratively generates proper reward
to guide the training of predictor network, and the predictor net-
work is trained via policy gradient. Based on the aforementioned
framework, we propose a recurrent neural network based model
for semi-supervised text classification. We conduct comprehen-
sive experimental analysis on several real world benchmark text
datasets, and the results from our evaluations show that our method
outperforms other competing state-of-the-art methods.
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• Computing methodologies → Adversarial learning; Semi-
supervised learning settings; Neural networks; Policy itera-
tion;
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1 INTRODUCTION
In many real world applications, labeling data for a learning

problem often requires numerous efforts from skilled human ex-
perts. Therefore, it is very expensive or even impossible to acquire a
large amount of labeled data. However, acquiring a large amount of
unlabeled data is relatively easy and inexpensive. Semi-supervised
learning [41] is a branch of machine learning methods, which aims
at utilizing the surplus unlabeled data with a small amount of la-
beled data to improve the accuracy of prediction models.

The latest advances in deep learning technologies [17] provide
new sophisticated paradigms to obtain end-to-end learning models
from complex data. In the context of deep learning, most of the com-
monly used semi-supervised learning algorithms [8, 9, 15, 27, 30, 37]
are built based on the generative model based scheme. Under this
scheme, the deep generative model is employed as an approximator
of the data distribution, and the learned distribution is used as aux-
iliary information to augment the training process of classification
model [8, 30]. Goodfellow et al. introduce the generative adversarial
networks (GAN) [11] framework, where two networks are trained
to contest with each other and play a zero-sum game. Specifically, a
discriminator network D is trained to distinguish whether a given
data instance is real or not, and a generative network G is trained
to fool D by generating high quality data. This adversarial learning
framework has achieved great success in computer vision tasks,
and has been successfully extended to semi-supervised image clas-
sification [9, 27, 30]. However, this framework cannot be directly
extented to semi-supervised text classification as GAN is designed
for generating continuous data, which does not naturally work on
discrete data generation, e.g., text [39].

To overcome the natural limitation of GAN and take advan-
tage of the adversarial training framework in the context of semi-
supervised text classification, we propose a discriminative adver-
sarial networks (DAN) [28] based approach, which roots from self-
training. Self-training [25, 38] is the most straightforward scheme
for semi-supervised learning. It is built based on a heuristic ap-
proach where the model is bootstrapped with additional labeled
data obtained from its own highly confident predictions. Thus, its
performance is unstable since poor predictions might be reinforced.
In this paper, we bridge the idea of self-training and adversarial
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Figure 1: Illustration of the proposed framework. The pre-
dictor network P is trained with both labeled and unlabeled
data to predict a label ŷi given a data point xi . P is trained
by policy gradient where the reward signal is provided by
the judge network J , which determines whether a certain
input data-label pair has a predicted label or a true label.
The J is trained using both the real data-label pairs {(xi ,yi ) ∈
DL} as positive examples and the predicted data-label pairs
{(xi , ŷi )|xi ∈ DU } as negative examples.

networks to overcome their issues. Specifically, the model built un-
der self-training framework does not need to approximate the data
distribution via instance reconstruction and hence it overcomes the
limitation of GAN-based semi-supervised learning methods. On the
other hand, inspired by the adversarial networks, a judge network
J is introduced to self-training for telling apart whether a given
label of a certain data instance is real or not, and hence reduces
the risk of reinforce poor predictions and make the self-training
become more stable and robust.

To bridge the aforementioned two learning frameworks together
and combine the merits of them, in this paper we propose the
RLANS framework, which stands for “Reinforcement Learning
based Adversarial Networks for Semi-supervised learning”. The
proposed framework formulates the predictor network P of semi-
supervised learning as a reinforcement learning (RL) agent [32],
where state is the input data and action is the label prediction. Thus,
the primary goal of learning problem is transformed as learning
a good policy of P , such that the generated predicted label can
maximize the expected total reward. The predictor network P is
learned via policy gradient [33]. The judge network J is used to
evaluate the predicted label and provide the feedback of evalu-
ation to guide the learning of predictor network. Adopting the
feedback of J as reward can iteratively improve the predictor net-
work P because the reward is updated dynamically. Specifically, let
DL = {(x1,y1), · · · , (xl ,yl )|xi ∈ X,yi ∈ Y} be a set of l labeled in-
stances and DU = {xl+1, · · · ,xl+u |xi ∈ X} be a set of u unlabeled
instances. The overall structure of the proposed model is shown in
Figure 1.

Reinforcement learning is known to be unstable or even to di-
verge when the action-value function is represented by a nonlinear
function, e.g., neural network [22]. In the model implementation,
for the sake of alleviating instability, the predictor P is pre-trained
via applying maximum likelihood estimation on the DL for several

iterations, and the judge J is pre-trained with several iterations
once the pre-training of predictor P is finished. In the experiment
part of this paper, we demonstrate the prediction performance of
the proposed RLANS framework using several well-known public
text datasets under the semi-supervised setting. Our model attains
very competitive prediction performance and outperforms some
state-of-the-art related methods especially when the number of
labeled instances is limited.

The main contributions of this paper can be summarized as
follows:
• Inspired by self-training, in order to take into account both la-
beled and unlabeled instances, we novelly formulate and interpret
the semi-supervised learning as a model-based reinforcement
learning problem.

• We propose an adversarial networks based framework for semi-
supervised learning. Unlike most of the other GAN-based semi-
supervised learning approaches, the proposed framework dose
not need to reconstruct input data and hence can be applied for
semi-supervised text classification.

• Based on the proposed RLANS framework, we propose a con-
crete model for semi-supervised text classification. In addition,
comprehensive experimental analysis is conducted on several
benchmark datasets.

The rest of this paper is organized as follows. Section 2 discusses
the related semi-supervised learning approaches. Section 3 presents
our proposed RLANS framework and a concrete model for semi-
supervised text classification. In section 4, we demonstrate our
experimental results on several real-world benchmark datasets
along with the implementation details. Finally, section 5 concludes
our discussion and gives some future research directions for the
proposed work.

2 RELATEDWORK
Semi-supervised learning can trace back to 1970s, and it attracts

extensive attention since 1990s [41]. Existing semi-supervised learn-
ing methods can be roughly categorized into the following dif-
ferent types, namely, self-training [25, 38], transductive learning
based [14], co-training [4], graph-based [3, 42], and generative
model based [23] schemes. In this section, we will first briefly de-
scribe the most important works under each category, and then
highlight the relationship and primary distinctions of our proposed
framework compared to the existing methods that are available in
the literature.

Among all aforementioned types of semi-supervised learning
schemes, the most straightforward scheme is self-training [25, 38],
where the predictor model is iteratively re-trained with both the
labeled instances and the most confident predictions. Transductive
support vector machine (TSVM) [14] is a well-known transductive
approach for semi-supervised learning. It extends support vector
machine (SVM) and aims at finding the discriminative decision
bounder that lies in a low density region and hence has the max-
imum margin on both original labeled data and unlabeled data.
Co-training [4] is a special case of multi-view learning [29], which
assumes the data has two views and each view is sufficient enough
to train a good predictor. Initially, a separate classifier for each
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view is trained with labeled instances. Then the most confident
predictions of each classifier on unlabeled data are combined with
labeled data to iteratively re-train the other classifier. Graph-based
semi-supervised methods [1, 3, 42] build a similarity graph for both
labeled and unlabeled instances, and the similar instances are as-
sumed to be in the same class. Different methods such as Gaussian
fields [42] and Hidden Markov Random Fields (HMRFs) [1] are
introduced to graph-based semi-supervised learning to model the
label propagation within the graph.

The generative model based semi-supervised learning scheme
can be viewed as an extension of supervised learning combined
with auxiliary information of the data distribution, which is learned
via reconstruction of input samples. In the previous decade, some
traditional generative mixture models [7, 10] have been used for
semi-supervised learning. With the development of deep learning
methods, deep neural networks have been employed as density
estimator [26] and hence are more flexible and powerful than tra-
ditional generative models. Deep generative models such as varia-
tional autoencoder (VAE) [16] and GAN [11] have achieved impres-
sive success in recent years. As a result, several VAE based [15, 37]
and GAN based [9, 27, 30] deep semi-supervised learning meth-
ods have been proposed recently. In such reconstruction-based
semi-supervised learning methods, the generator is trained to learn
representations that preserve all information of the input examples
to achieve perfect data reconstruction, and it is used to pre-train the
classification network. However, learning a classifier is a process of
mining valuable information for label prediction which is opposed
to the goal of perfect data reconstruction [30], so that sometimes
the learned representations may even hinder the performance of
prediction model [6]. For example, in [27] users have to choose a
model either to get a good data representation or to obtain a high
performance classifier, but not both; moreover, in [9] the authors
provide an argument that good semi-supervised learning requires
a bad GAN.

Based on the reconstruction-based semi-supervised learning
scheme, in [8] a two-stage approach is proposed for semi-supervised
sequence learning. Firstly, in the pre-training stage, a conventional
unsupervised language model [2] is built to learn a vector represen-
tation of sequence, which predicts what comes next in a sequence.
Secondly, the model parameters obtained from the pre-training
stage is used as a starting point for the supervised training models
in text classification. Based on this scheme, in [20] the authors
augment the second stage via introducing adversarial perturba-
tions [12] in the training step to further improve the model perfor-
mance. Note that, different from adversarial networks, introduc-
ing adversarial perturbations is a recent proposed regularization
method for classifiers to improve model robustness [12]. In these
papers, unlabeled instances are not directly involved in the sec-
ond stage to train the classifier. Recently in [28] a DAN based
approach is proposed for semi-supervised learning; however, la-
beled instances are only used to train the judge network, but not
used in the predictor network.

In this paper, different from all the above mentioned deep semi-
supervised learning models, we formulate the semi-supervised
learning as a model-based reinforcement learning problem, and pro-
pose an adversarial networks based framework to improve the train-
ing process. The main differences between the proposed RLANS

and the aforementioned deep semi-supervised learning approaches
can be summarized as follows:

• Different from deep generative semi-supervised learning models,
the proposed RLANS framework does not need to perform in-
stances reconstruction for distribution approximation. Therefore,
the proposed RLANS framework can be easily applied in the
semi-supervised text classification.

• Different from the existing deep semi-supervised text classifica-
tion algorithms, the proposed RLANS framework takes advan-
tage of both reinforcement learning and adversarial networks.
Therefore, it can be updated iteratively and both labeled and
unlabeled samples are directly used to train the classifier.

3 METHODS
In this section, we introduce the proposed adversarial learning

framework for semi-supervised learning in detail. We first describe
the overall structure of the proposed RLANS framework and then
describe a corresponding concrete model for semi-supervised text
classification.

3.1 Model Overview
The primary goal of semi-supervised learning is to learn a pre-

dictor model Pθ parameterized by θ from both labeled data DL
and unlabeled data DU , such that the predicted label is as close as
possible to the true label. As the labeling information of unlabeled
instances is unknown, it is not straightforward to train the predictor
Pθ based on the commonly used maximum likelihood estimation
(MLE). Instead, in this work we formulate the semi-supervised
learning as a reinforcement learning problem.

3.1.1 Training the predictormodel Pθ . We interpret the pre-
diction problem based on reinforcement learning, where x can be
viewed as the state and its corresponding predicted label ŷ is the
action. Predictor Pθ (ŷ |x) can be viewed as a policy model, which
determines the probability that action ŷ is chosen given the state
x with the model parameter θ . The objective of policy model is
to generate the proper predicted label to maximize its expected
reward:

R(θ ) = E[R |X ,θ ] =
∑
ŷ∈Y

Pθ (ŷ |x)V (ŷ,x), (1)

where Y is the feasible action space and V (·) is the action-value
function of choosing ŷ as an action. In the semi-supervised learning,
given the input data a good predictor should generate a predicted
label that is as close as possible to the true label. Therefore, the
action-value function in our problem is defined as the similarity
between the predicted label ŷ and the true label y.

Now the key problem is how to define a proper similarity func-
tion between ŷ and y, especially for the unlabeled instances whose
true labels are unknown. To address this issue, inspired by the ad-
versarial learning framework GAN [11] we train a ϕ-parameterized
discriminative model Jϕ as the judge to provide a guidance for
improving predictor Pθ , which will be discussed in detail in the
following section. Jϕ (x , ŷ) is a probability that indicates how likely
the (x , ŷ) is considered as true data-label pair. Therefore, in our
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proposed framework we define the action-value function as:

V (ŷ,x) =


1 if x ∈ DL & ŷ = y,

0 if x ∈ DL & ŷ , y,

Jϕ (x , ŷ) if x ∈ DU .

(2)

The key advantage of employing Jϕ (x , ŷ) in the action-value
function is that Jϕ is dynamically updated and hence it can further
improve the predictor Pθ iteratively. Note that, the above defined
action-value function provides an immediate reward per iteration;
thus, we do not need to employ additional techniques, e.g., Monte
Carlo (MC) tree search [5] and Temporal-Difference (TD) learn-
ing [34], to approximate the long-term rewards.

Maximizing the objective in Eq. (1) requires computation of its
gradient w.r.t. the model parameter θ :

▽θR(θ ) =
∑
ŷ∈Y

▽θ Pθ (ŷ |x)V (ŷ,x). (3)

Using likelihood ratio trick proposed in the REINFORCE algorithm
[36], Eq. (3) can be further rewritten as:

▽θR(θ ) =
∑
ŷ∈Y

Pθ (ŷ |x)
▽θ Pθ (ŷ |x)

Pθ (ŷ |x)
V (ŷ,x)

=
∑
ŷ∈Y

Pθ (ŷ |x) ▽θ log Pθ (ŷ |x)V (ŷ,x)

= EPθ (ŷ |x ) [▽θ log Pθ (ŷ |x)V (ŷ,x)] . (4)

Eq.(4) is an unbiased estimation for Eq.(3). In practice, when we
apply mini-batch training withm number of labeled instances and
m number of unlabeled instances, an approximated gradient can be
computed as:

▽θR(θ ) ≈
1
2m

2m∑
i=1

[▽θ log Pθ (ŷi |xi )V (ŷi ,xi )] , (5)

and then the predictor’s model parameter θ can be updated as:

θ+ = θ− + α ▽θ R(θ−), (6)

where α ∈ R+ denotes the corresponding learning rate, θ+ and θ−
indicate the updated and current model parameters, respectively.

3.1.2 Training the judgemodel Jϕ . As mentioned above, the
judge model Jϕ is introduced to estimate the probability that an
input data-label pair is a true data-label pair. In the proposed frame-
work, Jϕ is trained via using a set of true labeled instances {(xi ,yi ) ∈
DL} as positive examples and a set of unlabeled instances with their
corresponding predicted labels {(xi , ŷi )|xi ∈ DU , ŷi = Pθ (xi )} as
negative examples. Jϕ should discriminate the positive and negative
examples as clear as possible. Therefore, the judge model is trained
to minimize the cross-entropy:

min
ϕ

−E(x,y)∈DL

[
log Jϕ (x ,y)

]
− Ex ∈DU

ŷ∼Pθ

[
log(1 − Jϕ (x , ŷ))

]
. (7)

Algorithm 1 summarizes the overall learning process of the pro-
posed framework. Before the adversarial training, in Line 1 the
predictor model Pθ is pre-trained via MLE on the labeled dataset
DL , and in Line 3 the judge model Jϕ is pre-trained via minimizing
the cross entropy on both true labeled instances and fake/predicted
labeled instances (generated in Line 2). After the pre-training, in

Algorithm 1: RLANS algorithm.
Input: DL and DU
Output: Pθ and Jϕ

1 Pre-train the predictor Pθ via MLE on DL ;
2 Generate the predicted labels for all instances in DU via Pθ ;
3 Pre-train the judge Jϕ via minimizing the cross entropy ;
4 for number of training iterations do
5 Samplem labeled instances from DL ;
6 Samplem unlabeled instances from DU and predict their

coresponding label via Pθ ;
7 for k steps do
8 Update the judge model Jϕ via Eq.(7) ;
9 Update V (ŷ,x) based on Eq. (2);

10 Calculate the gradient of expected reward via Eq. (5);
11 Update the predictor Pθ via policy gradient Eq. (6);
12 end
13 end

each adversarial training loop, the predictor model Pθ will be ap-
plied onm number of unlabeled samples to get the predicted labels
(Line 6). The judge model Jϕ will be trained according to both the
true data-label pairs, i.e., {(xi ,yi ) ∈ DL}, and the predicted data-
label pairs, i.e., {(xi , ŷi )|xi ∈ DU } (Line 8). Each time when a new
judge model is obtained, we can calculate the updated action-value
function in Eq.(5), and then in Line 11 the predictor model Pθ is
updated via the policy gradient method.

3.2 RLANS for Semi-supervised Text
Classification

Based on the above mentioned RLANS framework, we propose
a concrete model for semi-supervised text classification.

3.2.1 The predictor network for text. In this paper, we use a
standard Long Short Term Memory (LSTM) network [13, 31] based
model as our predictor model, shown in Figure 2.

Figure 2: LSTM based text classification model.

Let an instance xxx = {www(1), · · · ,www(T ) |www(t ) ∈ {0, 1}k } be a se-
quence of one-hot representation vectors of T words, and its corre-
sponding targetyyy ∈ {0, 1}c is encoded as the one-hot representation
of the c-class classification label, where k is the number of unique
words in the vocabulary. An embedding matrix EEE ∈ R(k+1)×p is
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used to transform the original one-hot encoding word represen-
tation into the corresponding p-dimensional continuous vector
{vvv(1), · · · ,vvv(T )}, and the (k + 1)-th word embedding is used as
an “end of sequence (eos)” indicator token,vvveos . Given the input
word www(t ), long term cell state ccc(t−1) ∈ R1×q and hidden state
hhh(t−1) ∈ R1×q at the (t − 1)-th step, ccc(t ) and hhh(t ) will be calcu-
lated at the t-th step. At the final step, given the final hidden state
hhheos , the model first calculates a hidden vector hhhc ∈ R1×d through
fully connected layer with the rectified linear unit (ReLU) active
function, and then a softmax output layer is used to calculate the
corresponding estimated label distribution:

Pθ (ŷyyi = 1|xxx) = Pθ (ŷyyi = 1|www(1), · · · ,www(T ))

=
exp(hhhc ·BBB(:,i )+bbb

(i )
p )∑c

j=1 exp(hhhc ·BBB(:, j )+bbb
(j )
p )
,

, ∀i = 1, · · · , c (8)

where the weight matrix BBB ∈ Rd×c and bias vector bbbp ∈ R1×c are
the corresponding parameters in the softmax layer. Moreover, BBB(:,i)
indicates the i-th column of BBB and bbb(i)p indicates the i-th element of
bbbp .

3.2.2 The judge network for text. In this paper, we use a
LSTM based model as our judge model, shown in Figure 3.

Figure 3: LSTM based judge model.

At the t-th step, a current estimated label vector ooo(t ) ∈ R1×c is
generated via a sub-network, which has a structure same as the
output part of the aforementioned predictor network. We then
concatenate ooo(t ) with the one-hot embedded target vector yyy (or
with the estimated target vector ŷyy of unlabeled instances). Once
this type of concatenated vectors has been generated at all time
steps, a weighted combination:

[ooo,yyy]βββ =
T∑
t=1

βt
[
ooo(t ),yyy

]
is treated as the input of output network of the judge model, where
βββ ∈ RT is the trainable weight vector.

The goal of the judge model is to estimate the probability that
how likely the (yyy;www(1), · · · ,www(T )) is from the set of labeled instances
DL , which is the joint probability of the two components in the
[ooo,yyy]βββ . A single-layer neural network treats all the input features
independently and hence fails to take into account feature interac-
tion. Therefore, the designed output network should have multiple

layers. In our model, the designed output network has two layers.
The first layer is:

ooo1 = ReLu([ooo,yyy]βββ ·WWW o1 +bbbo1), (9)

which uses ReLU as active function with the corresponding weight
matrixWWW o1 ∈ R2c×2c and the bias vector bbbo1 ∈ R1×2c . The second
layer is a sigmoid function:

J (yyy;www(1), · · · ,www(T )) =
1

1 + exp(−(ooo1 ·WWW o2 + b J ))
, (10)

which calculates how likely the (yyy;www(1), · · · ,www(T )) is a true labeled
instance, whereWWW o2 ∈ R2c×1 is the corresponding coefficient vec-
tor and b J is a bias scalar.

4 EXPERIMENTS
In this section, we will first describe the datasets used in our

evaluation and then provide the performance results along with
the implementation details.

4.1 Dataset description
To compare our proposed method with other semi-supervised

text classification methods, we conduct comprehensive empirical
analysis on several public benchmark datasets:

• AG’s news corpus1, contains news articles frommore than 2,000
news sources. In the experiment, we use the dataset with 4 largest
classes constructed in [40]. The original dataset contains 30,000
training samples and 1,900 testing samples in each class.

• DBPedia ontology dataset1, is a dataset of Wikipedia pages
for category classification. Specifically, we use the dataset con-
structed in [18] that picks 14 non-overlapping classes from DB-
pedia 2014. The original dataset contains 40,000 training samples
and 5,000 testing samples in each class.

• IMDB movie review dataset2, is a benchmark movie review
dataset for binary sentiment classification [19]. The original
dataset contains 12,500 training samples, 12,500 testing samples
in each class, and additional 50,000 unlabeled samples.

• Yelp full reviews dataset1, is obtained from the Yelp Dataset
Challenge in 2015, which contains the reviewer texts and the
corresponding rating range from 1 star to 5 stars. The original
dataset contains 130,000 training samples and 10,000 testing sam-
ples in each class.

Table 1 summarizes the details of the experimental datasets. The
column titled “# Classes” corresponds to the number of classes,
the column titled “ # Test /Class” is the number of testing samples
per class. “Ave. Len” and “Max Len” correspond to the average
sequence lengths and maximum sequence lengths, respectively.
We conduct the experiment with different number of labeled and
unlabeled instances, and the detailed information can be found in
the experiment setup.

1Download from: http://goo.gl/JyCnZq
2Download from: http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz
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Table 1: Summary of experimental datasets.

Dataset #Classes # Test /Class Ave. Len Max Len
AG’s News 4 1,900 34 211
DBpedia 14 5,000 49 953
IMDB 2 12,500 239 2,506

Yelp-Full 5 10,000 152 1,199

4.2 Experiment setup
We compare our proposed method with several popular state-

of-the-art LSTM based semi-supervised text classification meth-
ods. Moreover, these competing methods are all built based on the
scheme of the generative based semi-supervised learning, which
can be summarized as a two-stage framework.

In the first stage, based on both labeled text data and unlabeled
text data, a LSTM based language model (shown in Figure 4) is
trained to model the data distribution explicitly through reconstruc-
tion of input texts. This language model is used as a “pre-training”
stage for the prediction model. More specifically, the embedding
matrix and the parameters of the LSTM model obtained from the
first stage are considered as a starting point of the corresponding
parameters in the prediction model [8].

Figure 4: LSTM based language model.

In the second stage, different learning methods are used to
train the text classification model, and the corresponding semi-
supervised text classification algorithms are:
• Semi-supervised sequence learning (SeqSSL) [8]. The SeqSSL
algorithm employs the aforementioned language model at the
first stage and then trains a LSTM based classification model via
a standard MLE approach.

• Training semi-supervised sequence learning with random per-
turbations (SeqSSL+RP). Introducing random perturbations to
the input and hidden layers during training could help alleviate
model over-fitting [24]; therefore, it has been used to augment
the training process in the second stage of SeqSSL.

• Semi-supervised sequence learning with adversarial training (Se-
qSSL+AT). In [12], an adversarial training technique is used to
approximate the worst case perturbations, and in [20] it has been
introduced for the semi-supervised text classification.

• Semi-supervised sequence learning with virtual adversarial train-
ing (SeqSSL+VAT). Different from [12], in [21] a virtual adver-
sarial training technique employs a Kullback-Leibler divergence
(KL divergence) based regularization method to approximate the
adversarial perturbation.

• Semi-supervised sequence learning with both adversarial train-
ing and virtual adversarial training (SeqSSL+ATVAT). Recently,
in [20] the authors have combined aforementioned two adver-
sarial learning methods for semi-supervised text classification.

Besides the aforementioned semi-supervised text classificationmeth-
ods, we also use the standard LSTM based text classification method
as a baseline comparison method, which is shown in section 3.2.1.
Moreover, to analyze the effect of judge network in proposedRLANS,
a standard self-training framework with SeqSSL as base model, ab-
breviated as SeqSSL+SELF, is introduced as another comparison
method.

In our experiment, for the sake of fairness, in a certain dataset
the model hyperparameters, e.g., embedding dimension and the
dimension of LSTM hidden unit, are set to be consistent in different
methods. Table 2 summarizes the details of the model hyperparam-
eters. We use the batch normalization and dropout techniques in
the model implementation, and the row titled “Dropout rate” is the
corresponding dropout rate of the word embedding layer. For all the
methods we employ a standard single-layer LSTM as base model.
Moreover, for each dataset its corresponding dimension of hidden
state and cell state can be found in row titled “# LSTM hidden unit”.
We use the backpropagation through time (BPTT) technique [35] to
speed up the training process, for each dataset the corresponding
maximum BPTT is listed in the row titled “Maximun BPTT”. The
row titled “# hidden unit of classifier” is the dimension of the fully
connected layer, i.e., the dimension of hhhc in Eq.(10). All the models
are trained with the mini-batch Adam Optimizer, and we set the
batch size as 64 for all datasets. The row titled “# training step of
LM” represents the number of training steps in the first stage of the
aforementioned semi-supervised sequences classification models.

Table 2: Summary of model hyperparameters associated
with each dataset.

AG’s News Dbpedia IMDB Yelp-Full
Embedding dimension 256 256 256 256
Dropout rate 0.5 0.5 0.5 0.5
# LSTM layers 1 1 1 1
# LSTM hidden unit 512 1024 1024 1024
Maximun BPTT 200 400 400 400
# hidden unit of classifier 30 128 30 30
batch size 64 64 64 64
# training step of LM 20,000 100,000 100,000 100,000

4.3 Result and Analysis
In our experiments, we observe that both convergence and per-

formance of RLANS are strongly affected by the pre-training of
predictor and judge (refer to Line 1 and Line 3 of Algorithm 1). Note
that, the pre-training stage of RLANS is different from the one of
SeqSSL. In SeqSSL, the pre-training stage aims at training a good
language model for sequence representation, while in RLANS the
pre-training of predictor aims to find a good start point for the ad-
versarial training steps. Moreover, the model learned from SeqSSL
can be considered as a pre-trained predictor for RLANS. Figure 5
demonstrates the performance ofRLANSwith different pre-trained
predictors, i.e., standard LSTM and SeqSSL. We can observe that a
good pre-trained predictor can dramatically improve the prediction
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Table 3: Performance comparison of the proposed RLANS methods and other existing related methods using accuracy (along
with their standard deviations). For each dataset we vary the number of labeled training samples per class, which is shown
in the column titled “# Labeled/Class”, and the corresponding number of unlabeled training samples is shown in the column
titled “# Unlabeled".

Dataset # Labeled/Class # Unabeled LSTM SeqSSL SeqSSL+RP SeqSSL+AT SeqSSL+VAT SeqSSL+ATVAT SeqSSL+SELF RLANS

100 119,600
0.3925 0.7623 0.7436 0.7295 0.7485 0.7673 0.7854 0.8174
(0.0046) (0.0009) (0.0009) (0.0007) (0.0011) (0.0010) (0.0235) (0.0127)

AG’s
500 118,000

0.6909 0.8740 0.8601 0.8610 0.8743 0.8699 0.8925 0.9152
News (0.0022) (0.0011) (0.0007) (0.0006) (0.0007) (0.0012) (0.0173) (0.0118)

1000 116,000
0.7558 0.8731 0.8720 0.8712 0.8845 0.8818 0.9034 0.9256
(0.0023) (0.0012) (0.0008) (0.0009) (0.0004) (0.0006) (0.0136) (0.0109)

Dbpedia

100 558,600
0.6871 0.9611 0.9761 0.9666 0.9778 0.9684 0.9813 0.9847
(0.0035) (0.0012) (0.0013) (0.0012) (0.0006) (0.0006) (0.0106) (0.0051)

500 553,000
0.9432 0.9848 0.9801 0.9766 0.9814 0.9770 0.9825 0.9883
(0.0017) (0.0004) (0.0002) (0.0001) (0.0005) (0.0006) (0.0126) (0.0036)

1000 546,000
0.9558 0.9802 0.9835 0.9806 0.9918 0.9790 0.9817 0.9896
(0.0037) (0.0002) (0.0001) (0.0001) (0.0003) (0.0013) (0.0063) (0.0009)

IMDB

100 50,000
0.53875 0.77355 0.79495 0.75645 0.4314 0.48635 0.7974 0.8205
(0.0093) (0.0008) (0.0073) (0.0091) (0.0082) (0.0086) (0.0052) (0.0033)

500 50,000
0.6152 0.87025 0.8654 0.8636 0.65675 0.7884 0.8924 0.9029
(0.0067) (0.0025) (0.0008) (0.0001) (0.0031) (0.0005) (0.0049) (0.0023)

1000 50,000
0.6361 0.853 0.885 0.8895 0.81485 0.85535 0.8926 0.9163
(0.0045) (0.0014) (0.0021) (0.0047) (0.0005) (0.0025) (0.0063) (0.0032)

100 649,500
0.2673 0.4538 0.4668 0.4724 0.4486 0.4869 0.4604 0.5374
(0.0029) (0.0027) (0.0007) (0.0009) (0.0014) (0.0016) (0.0274) (0.0265)

Yelp-
500 647,500

0.3353 0.5248 0.5278 0.5340 0.4779 0.5306 0.5428 0.5522
Full (0.0023) (0.0003) (0.0005) (0.0004) (0.0031) (0.0005) (0.0236) (0.0157)

1000 645,000
0.3979 0.5489 0.5463 0.5677 0.4952 0.5768 0.5516 0.5725
(0.0014) (0.0007) (0.0006) (0.0019) (0.0088) (0.0012) (0.0335) (0.0163)

performance, convergence speed and stability of RLANS. There-
fore, in the experiment we use SeqSSL as the pre-trained predictor
of RLANS.
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Figure 5: The performance of RLANS with different pre-
trained predictors, i.e., standard LSTM and SeqSSL. The fig-
ure is drawnbased on theAG’sNews datasetwith 100 labeled
instances per class.

In Table 3, we provide the performance results of accuracy on
the four benchmark text datasets with various number of labeled
instances in each training dataset. We report the average accuracy
of five trials and the corresponding standard deviations. The best
results are highlighted in bold. The results show that our proposed
model outperforms the other state-of-the-art related models. Espe-
cially, the proposedRLANS provides significantly better prediction
results compared to other semi-supervised text classification meth-
ods when the number of labeled training instances is limited.

In Figure 6, we present the convergence performance of LSTM,
SeqSSL, SeqSSL+SELF and the proposed RLANS. Comparing with
the LSTM and SeqSSL, RLANS is less stable, which is an inherent
flaw of deep reinforcement learning. However, RLANS is more
stable than SeqSSL+SELF, which shows the benefits of introducing
judge model in RLANS framework. Moreover, in RLANS, high
prediction performance is always observed along with fast con-
vergence and good stability, it is because a good prediction model
generates less incorrect predicted labels and hence alleviates bad
distraction.

5 CONCLUSION
In this paper, we formulate the semi-supervised learning as a

model-based reinforcement learning problem and propose a new
adversarial learning framework, RLANS. The RLANS framework
contains two networks: a predictor network and a judge network.
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Figure 6: Empirical convergence study of baseline LSTM, SeqSSL, SeqSSL+SELF, and RLANR w.r.t. training steps. Each sub-
figure is drawn based on the test result of one dataset, and we use 100 labeled samples from each class to train the aforemen-
tioned methods. Note that in RLANS, we use the first 200 training steps of SeqSSL as the pre-training of predictor model (refer
to Line 1 of Algorithm 1) in the datasets AG’s News and IMDB. We use first 400 training steps of SeqSSL as the pre-training of
predictor model in the datasets DBpedia and Yelp-full, since SeqSSL in these two datasets converge slowly. And then we take
another 100 training steps to pre-train the judge model in RLANS (refer to Line 3 of Algorithm 1) for all four datasets.

The judge network is used to dynamically evaluate the perfor-
mance of the predictor network and provide a feedback as reward
to dynamically guide the learning process (policy iteration) of the
predictor network. The RLANS framework does not require data
generation and hence can be easily applied to the discrete data,
e.g., text. Based on this framework we propose a concrete model
for semi-supervised text classification. We extensively compare
the performance of the proposed algorithm with some state-of-
the-art deep semi-supervised text classification algorithms using
several benchmark text datasets. In the future, based on the pro-
posed framework, we first plan to design more concrete models
with more sophisticated predictor and judge networks for differ-
ent types of data. We then plan to develop more advanced deep
semi-supervised learning methods based on different reinforcement
learning schemes, and we also plan to conduct some corresponding
theoretical analysis to further improve the stability of the proposed
framework.
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