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Abstract

In just three years, Variational Autoencoders (VAEs) have emerged
as one of the most popular approaches to unsupervised learning of
complicated distributions. VAEs are appealing because they are built
on top of standard function approximators (neural networks), and
can be trained with stochastic gradient descent. VAEs have already
shown promise in generating many kinds of complicated data, in-
cluding handwritten digits [1, 2], faces [1, 3, 4], house numbers [5, 6],
CIFAR images [6], physical models of scenes [4], segmentation [7], and
predicting the future from static images [8]. This tutorial introduces the
intuitions behind VAEs, explains the mathematics behind them, and
describes some empirical behavior. No prior knowledge of variational
Bayesian methods is assumed.

Keywords: variational autoencoders, unsupervised learning, structured
prediction, neural networks

1 Introduction

“Generative modeling” is a broad area of machine learning which deals with
models of distributions P(X), defined over datapoints X in some potentially
high-dimensional space X . For instance, images are a popular kind of data
for which we might create generative models. Each “datapoint” (image) has
thousands or millions of dimensions (pixels), and the generative model’s job
is to somehow capture the dependencies between pixels, e.g., that nearby
pixels have similar color, and are organized into objects. Exactly what it
means to “capture” these dependencies depends on exactly what we want
to do with the model. One straightforward kind of generative model simply
allows us to compute P(X) numerically. In the case of images, X values
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which look like real images should get high probability, whereas images
that look like random noise should get low probability. However, models
like this are not necessarily useful: knowing that one image is unlikely does
not help us synthesize one that is likely.

Instead, one often cares about producing more examples that are like
those already in a database, but not exactly the same. We could start with a
database of raw images and synthesize new, unseen images. We might take
in a database of 3D models of something like plants and produce more of
them to fill a forest in a video game. We could take handwritten text and try
to produce more handwritten text. Tools like this might actually be useful
for graphic designers. We can formalize this setup by saying that we get
examples X distributed according to some unknown distribution Pgt(X),
and our goal is to learn a model P which we can sample from, such that P is
as similar as possible to Pgt.

Training this type of model has been a long-standing problem in the ma-
chine learning community, and classically, most approaches have had one of
three serious drawbacks. First, they might require strong assumptions about
the structure in the data. Second, they might make severe approximations,
leading to suboptimal models. Or third, they might rely on computation-
ally expensive inference procedures like Markov Chain Monte Carlo. More
recently, some works have made tremendous progress in training neural
networks as powerful function approximators through backpropagation [9].
These advances have given rise to promising frameworks which can use
backpropagation-based function approximators to build generative models.

One of the most popular such frameworks is the Variational Autoen-
coder [1, 3], the subject of this tutorial. The assumptions of this model are
weak, and training is fast via backpropagation. VAEs do make an approxi-
mation, but the error introduced by this approximation is arguably small
given high-capacity models. These characteristics have contributed to a
quick rise in their popularity.

This tutorial is intended to be an informal introduction to VAEs, and not
a formal scientific paper about them. It is aimed at people who might have
uses for generative models, but might not have a strong background in the
variatonal Bayesian methods and “minimum description length” coding
models on which VAEs are based. This tutorial began its life as a presentation
for computer vision reading groups at UC Berkeley and Carnegie Mellon,
and hence has a bias toward a vision audience. Suggestions for improvement
are appreciated.
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1.1 Preliminaries: Latent Variable Models

When training a generative model, the more complicated the dependencies
between the dimensions, the more difficult the models are to train. Take,
for example, the problem of generating images of handwritten characters.
Say for simplicity that we only care about modeling the digits 0-9. If the left
half of the character contains the left half of a 5, then the right half cannot
contain the left half of a 0, or the character will very clearly not look like any
real digit. Intuitively, it helps if the model first decides which character to
generate before it assigns a value to any specific pixel. This kind of decision
is formally called a latent variable. That is, before our model draws anything,
it first randomly samples a digit value z from the set [0, ..., 9], and then makes
sure all the strokes match that character. z is called ‘latent’ because given
just a character produced by the model, we don’t necessarily know which
settings of the latent variables generated the character. We would need to
infer it using something like computer vision.

Before we can say that our model is representative of our dataset, we
need to make sure that for every datapoint X in the dataset, there is one (or
many) settings of the latent variables which causes the model to generate
something very similar to X. Formally, say we have a vector of latent
variables z in a high-dimensional space Z which we can easily sample
according to some probability density function (PDF) P(z) defined over Z .
Then, say we have a family of deterministic functions f (z; θ), parameterized
by a vector θ in some space Θ, where f : Z ×Θ→ X . f is deterministic, but
if z is random and θ is fixed, then f (z; θ) is a random variable in the space
X . We wish to optimize θ such that we can sample z from P(z) and, with
high probability, f (z; θ) will be like the X’s in our dataset.

To make this notion precise mathematically, we are aiming maximize the
probability of each X in the training set under the entire generative process,
according to:

P(X) =
∫

P(X|z; θ)P(z)dz. (1)

Here, f (z; θ) has been replaced by a distribution P(X|z; θ), which allows us
to make the dependence of X on z explicit by using the law of total probabil-
ity. The intuition behind this framework—called “maximum likelihood”—
is that if the model is likely to produce training set samples, then it is
also likely to produce similar samples, and unlikely to produce dissimilar
ones. In VAEs, the choice of this output distribution is often Gaussian, i.e.,
P(X|z; θ) = N (X| f (z; θ), σ2 ∗ I). That is, it has mean f (z; θ) and covariance
equal to the identity matrix I times some scalar σ (which is a hyperparam-
eter). This replacement is necessary to formalize the intuition that some z
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Figure 1: The standard VAE model represented as a graphical model. Note
the conspicuous lack of any structure or even an “encoder” pathway: it is
possible to sample from the model without any input. Here, the rectangle is
“plate notation” meaning that we can sample from z and X N times while
the model parameters θ remain fixed.

needs to result in samples that are merely like X. In general, and particularly
early in training, our model will not produce outputs that are identical to
any particular X. By having a Gaussian distribution, we can use gradient
descent (or any other optimization technique) to increase P(X) by making
f (z; θ) approach X for some z, i.e., gradually making the training data more
likely under the generative model. This wouldn’t be possible if P(X|z) was
a Dirac delta function, as it would be if we used X = f (z; θ) deterministi-
cally! Note that the output distribution is not required to be Gaussian: for
instance, if X is binary, then P(X|z) might be a Bernoulli parameterized by
f (z; θ). The important property is simply that P(X|z) can be computed, and
is continuous in θ. From here onward, we will omit θ from f (z; θ) to avoid
clutter.

2 Variational Autoencoders

The mathematical basis of VAEs actually has relatively little to do with
classical autoencoders, e.g. sparse autoencoders [10, 11] or denoising au-
toencoders [12, 13]. VAEs approximately maximize Equation 1, according
to the model shown in Figure 1. They are called “autoencoders” only be-
cause the final training objective that derives from this setup does have
an encoder and a decoder, and resembles a traditional autoencoder. Unlike
sparse autoencoders, there are generally no tuning parameters analogous to
the sparsity penalties. And unlike sparse and denoising autoencoders, we
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Figure 2: Given a random variable z with one distribution, we can create
another random variable X = g(z) with a completely different distribution.
Left: samples from a gaussian distribution. Right: those same samples
mapped through the function g(z) = z/10 + z/||z|| to form a ring. This is
the strategy that VAEs use to create arbitrary distributions: the deterministic
function g is learned from data.

can sample directly from P(X) (without performing Markov Chain Monte
Carlo, as in [14]).

To solve Equation 1, there are two problems that VAEs must deal with:
how to define the latent variables z (i.e., decide what information they
represent), and how to deal with the integral over z. VAEs give a definite
answer to both.

First, how do we choose the latent variables z such that we capture latent
information? Returning to our digits example, the ‘latent’ decisions that the
model needs to make before it begins painting the digit are actually rather
complicated. It needs to choose not just the digit, but the angle that the digit
is drawn, the stroke width, and also abstract stylistic properties. Worse, these
properties may be correlated: a more angled digit may result if one writes
faster, which also might tend to result in a thinner stroke. Ideally, we want
to avoid deciding by hand what information each dimension of z encodes
(although we may want to specify it by hand for some dimensions [4]). We
also want to avoid explicitly describing the dependencies—i.e., the latent
structure—between the dimensions of z. VAEs take an unusual approach to
dealing with this problem: they assume that there is no simple interpretation
of the dimensions of z, and instead assert that samples of z can be drawn
from a simple distribution, i.e., N (0, I), where I is the identity matrix. How
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(a) (b) (c)

Figure 3: It’s hard to measure the likelihood of images under a model using
only sampling. Given an image X (a), the middle sample (b) is much closer
in Euclidean distance than the one on the right (c). Because pixel distance is
so different from perceptual distance, a sample needs to be extremely close
in pixel distance to a datapoint X before it can be considered evidence that
X is likely under the model.

is this possible? The key is to notice that any distribution in d dimensions can
be generated by taking a set of d variables that are normally distributed and
mapping them through a sufficiently complicated function1. For example,
say we wanted to construct a 2D random variable whose values lie on a
ring. If z is 2D and normally distributed, g(z) = z/10 + z/||z|| is roughly
ring-shaped, as shown in Figure 2. Hence, provided powerful function
approximators, we can simply learn a function which maps our independent,
normally-distributed z values to whatever latent variables might be needed
for the model, and then map those latent variables to X. In fact, recall that
P(X|z; θ) = N (X| f (z; θ), σ2 ∗ I). If f (z; θ) is a multi-layer neural network,
then we can imagine the network using its first few layers to map the
normally distributed z’s to the latent values (like digit identity, stroke weight,
angle, etc.) with exactly the right statitics. Then it can use later layers to map
those latent values to a fully-rendered digit. In general, we don’t need to
worry about ensuring that the latent structure exists. If such latent structure
helps the model accurately reproduce (i.e. maximize the likelihood of) the
training set, then the network will learn that structure at some layer.

Now all that remains is to maximize Equation 1, where P(z) = N (z|0, I).
As is common in machine learning, if we can find a computable formula
for P(X), and we can take the gradient of that formula, then we can opti-

1In one dimension, you can use the inverse cumulative distribution function (CDF) of
the desired distribution composed with the CDF of a Gaussian. This is an extension of
“inverse transform sampling.” For multiple dimensions, do the stated process starting with
the marginal distribution for a single dimension, and repeat with the conditional distribution
of each additional dimension. See the “inversion method” and the “conditional distribution
method” in Devroye et al. [15]
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mize the model using stochastic gradient ascent. It is actually conceptually
straightforward to compute P(X) approximately: we first sample a large
number of z values {z1, ..., zn}, and compute P(X) ≈ 1

n ∑i P(X|zi). The prob-
lem here is that in high dimensional spaces, n might need to be extremely
large before we have an accurate estimate of P(X). To see why, consider
our example of handwritten digits. Say that our digit datapoints are stored
in pixel space, in 28x28 images as shown in Figure 3. Since P(X|z) is an
isotropic Gaussian, the negative log probability of X is proportional squared
Euclidean distance between f (z) and X. Say that Figure 3(a) is the target
(X) for which we are trying to find P(X). A model which produces the
image shown in Figure 3(b) is probably a bad model, since this digit is not
much like a 2. Hence, we should set the σ hyperparameter of our Gaussian
distribution such that this kind of erroroneous digit does not contribute to
P(X). On the other hand, a model which produces Figure 3(c) (identical to
X but shifted down and to the right by half a pixel) might be a good model.
We would hope that this sample would contribute to P(X). Unfortunately,
however, we can’t have it both ways: the squared distance between X and
Figure 3(c) is .2693 (assuming pixels range between 0 and 1), but between
X and Figure 3(b) it is just .0387. The lesson here is that in order to reject
samples like Figure 3(b), we need to set σ very small, such that the model
needs to generate something significantly more like X than Figure 3(c)! Even
if our model is an accurate generator of digits, we would likely need to
sample many thousands of digits before we produce a 2 that is sufficiently
similar to the one in Figure 3(a). We might solve this problem by using
a better similarity metric, but in practice these are difficult to engineer in
complex domains like vision, and they’re difficult to train without labels
that indicate which datapoints are similar to each other. Instead, VAEs alter
the sampling procedure to make it faster, without changing the similarity
metric.

2.1 Setting up the objective

Is there a shortcut we can take when using sampling to compute Equation 1?
In practice, for most z, P(X|z) will be nearly zero, and hence contribute
almost nothing to our estimate of P(X). The key idea behind the variational
autoencoder is to attempt to sample values of z that are likely to have
produced X, and compute P(X) just from those. This means that we need a
new function Q(z|X) which can take a value of X and give us a distribution
over z values that are likely to produce X. Hopefully the space of z values
that are likely under Q will be much smaller than the space of all z’s that are
likely under the prior P(z). This lets us, for example, compute Ez∼QP(X|z)
relatively easily. However, if z is sampled from an arbitrary distribution
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with PDF Q(z), which is not N (0, I), then how does that help us optimize
P(X)? The first thing we need to do is relate Ez∼QP(X|z) and P(X). We’ll
see where Q comes from later.

The relationship between Ez∼QP(X|z) and P(X) is one of the corner-
stones of variational Bayesian methods. We begin with the definition of
Kullback-Leibler divergence (KL divergence or D) between P(z|X) and
Q(z), for some arbitrary Q (which may or may not depend on X):

D [Q(z)‖P(z|X)] = Ez∼Q [log Q(z)− log P(z|X)] . (2)

We can get both P(X) and P(X|z) into this equation by applying Bayes rule
to P(z|X):

D [Q(z)‖P(z|X)] = Ez∼Q [log Q(z)− log P(X|z)− log P(z)] + log P(X).
(3)

Here, log P(X) comes out of the expectation because it does not depend on
z. Negating both sides, rearranging, and contracting part of Ez∼Q into a
KL-divergence terms yields:

log P(X)−D [Q(z)‖P(z|X)] = Ez∼Q [log P(X|z)]−D [Q(z)‖P(z)] . (4)

Note that X is fixed, and Q can be any distribution, not just a distribution
which does a good job mapping X to the z’s that can produce X. Since we’re
interested in inferring P(X), it makes sense to construct a Q which does
depend on X, and in particular, one which makes D [Q(z)‖|P(z|X)] small:

log P(X)−D [Q(z|X)‖P(z|X)] = Ez∼Q [log P(X|z)]−D [Q(z|X)‖P(z)] .
(5)

This equation serves is the core of the variational autoencoder, and it’s worth
spending some time thinking about what it says2. In two sentences, the left
hand side has the quantity we want to maximize: log P(X) (plus an error
term, which makes Q produce z’s that can reproduce a given X; this term
will become small if Q is high-capacity). The right hand side is something
we can optimize via stochastic gradient descent given the right choice of
Q (although it may not be obvious yet how). Note that the framework—in
particular, the right hand side of Equation 5—has suddenly taken a form
which looks like an autoencoder, since Q is “encoding” X into z, and P is
“decoding” it to reconstruct X. We’ll explore this connection in more detail
later.

2 Historically, this math (particularly Equation 5) was known long before VAEs. For
example, Helmholtz Machines [16] (see Equation 5) use nearly identical mathematics, with
one crucial difference. The integral in our expectations is replaced with a sum in Dayan et
al. [16], because Helmholtz Machines assume a discrete distribution for the latent variables.
This choice prevents the transformations that make gradient descent tractable in VAEs.
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Now for a bit more detail on Equatinon 5. Starting with the left hand side,
we are maximizing log P(X) while simultaneously minimizingD [Q(z|X)‖|P(z|X)].
P(z|X) is not something we can compute analytically: it describes the val-
ues of z that are likely to give rise to a sample like X under our model in
Figure 1. However, the second term on the left is pulling Q(z|x) to match
P(z|X). Assuming we use an arbitrarily high-capacity model for Q(z|x),
then Q(z|x) will hopefully actually match P(z|X), in which case this KL-
divergence term will be zero, and we will be directly optimizing log P(X).
As an added bonus, we have made the intractable P(z|X) tractable: we can
just use Q(z|x) to compute it.

2.2 Optimizing the objective

So how can we perform stochastic gradient descent on the right hand
side of Equation 5? First we need to be a bit more specific about the
form that Q(z|X) will take. The usual choice is to say that Q(z|X) =

N (z|µ(X; ϑ), Σ(X; ϑ)), where µ and Σ are arbitrary deterministic functions
with parameters ϑ that can be learned from data (we will omit ϑ in later
equations). In practice, µ and Σ are again implemented via neural networks,
and Σ is constrained to be a diagonal matrix. The advantages of this choice
are computational, as they make it clear how to compute the right hand
side. The last term—D [Q(z|X)‖P(z)]—is now a KL-divergence between
two multivariate Gaussian distributions, which can be computed in closed
form as:

D[N (µ0, Σ0)‖N (µ1, Σ1)] =
1
2

(
tr
(

Σ−1
1 Σ0

)
+ (µ1 − µ0)

> Σ−1
1 (µ1 − µ0)− k + log

(
det Σ1
det Σ0

))
(6)

where k is the dimensionality of the distribution. In our case, this simplifies
to:

D[N (µ(X), Σ(X))‖N (0, I)] =
1
2

(
tr (Σ(X)) + (µ(X))> (µ(X))− k− log det (Σ(X))

)
.
(7)

The first term on the right hand side of Equation 5 is a bit more tricky.
We could use sampling to estimate Ez∼Q [log P(X|z)], but getting a good
estimate would require passing many samples of z through f , which would
be expensive. Hence, as is standard in stochastic gradient descent, we
take one sample of z and treat P(X|z) for that z as an approximation of
Ez∼Q [log P(X|z)]. After all, we are already doing stochastic gradient descent
over different values of X sampled from a dataset D. The full equation we
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Figure 4: A training-time variational autoencoder implemented as a feed-
forward neural network, where P(X|z) is Gaussian. Left is without the
“reparameterization trick”, and right is with it. Red shows sampling opera-
tions that are non-differentiable. Blue shows loss layers. The feedforward
behavior of these networks is identical, but backpropagation can be applied
only to the right network.

want to optimize is:

EX∼D [log P(X)−D [Q(z|X)‖P(z|X)]] =

EX∼D [Ez∼Q [log P(X|z)]−D [Q(z|X)‖P(z)]] .
(8)

If we take the gradient of this equation, the gradient symbol can be moved
into the expectations. Therefore, we can sample a single value of X and a
single value of z from the distribution Q(z|X), and compute the gradient of:

log P(X|z)−D [Q(z|X)‖P(z)] . (9)

We can then average the gradient of this function over arbitrarily many
samples of X and z, and the result converges to the gradient of Equation 8.

There is, however, a significant problem with Equation 9. Ez∼Q [log P(X|z)]
depends not just on the parameters of P, but also on the parameters of Q.
However, in Equation 9, this dependency has disappeared! In order to make
VAEs work, it’s essential to drive Q to produce codes for X that P can reliably
decode. To see the problem a different way, the network described in Equa-
tion 9 is much like the network shown in Figure 4 (left). The forward pass of
this network works fine and, if the output is averaged over many samples
of X and z, produces the correct expected value. However, we need to
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Sample    from 

Figure 5: The testing-time variational “autoencoder,” which allows us to
generate new samples. The “encoder” pathway is simply discarded.

back-propagate the error through a layer that samples z from Q(z|X), which
is a non-continuous operation and has no gradient. Stochastic gradient
descent via backpropagation can handle stochastic inputs, but not stochastic
units within the network! The solution, called the “reparameterization trick”
in [1], is to move the sampling to an input layer. Given µ(X) and Σ(X)—the
mean and covariance of Q(z|X)—we can sample from N (µ(X), Σ(X)) by
first sampling ε ∼ N (0, I), then computing z = µ(X) + Σ1/2(X) ∗ ε. Thus,
the equation we actually take the gradient of is:

EX∼D

[
Eε∼N (0,I)[log P(X|z = µ(X) + Σ1/2(X) ∗ ε)]−D [Q(z|X)‖P(z)]

]
.

(10)
This is shown schematically in Figure 4 (right). Note that none of the
expectations are with respect to distributions that depend on our model
parameters, so we can safely move a gradient symbol into them while main-
taning equality. That is, given a fixed X and ε, this function is deterministic
and continuous in the parameters of P and Q, meaning backpropagation
can compute a gradient that will work for stochastic gradient descent. It’s
worth pointing out that the “reparameterization trick” only works if we can
sample from Q(z|X) by evaluating a function h(η, X), where η is noise from
a distribution that is not learned. Furthermore, h must be continuous in X so
that we can backprop through it. This means Q(z|X) (and therefore P(z))
can’t be a discrete distribution! If Q is discrete, then for a fixed η, either h
needs to ignore X, or there needs to be some point at which h(η, X) “jumps”
from one possible value in Q’s sample space to another, i.e., a discontinuity.

2.3 Testing the learned model

At test time, when we want to generate new samples, we simply input
values of z ∼ N (0, I) into the decoder. That is, we remove the “encoder,”
including the multiplication and addition operations that would change the
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distribution of z. This (remarkably simple) test-time network is shown in
Figure 5.

Say that we want to evaluate the probability of a testing example un-
der the model. This is, in general, not tractable. Note, however, that
D[Q(z|X)‖P(z|X)] is positive, meaning that the right hand side of Equa-
tion 5 is a lower bound to P(X). This lower bound still can’t quite be
computed in closed form due to the expectation over z, which requires sam-
pling. However, sampling z from Q gives an estimator for the expectation
which generally converges much faster than sampling z from N (0, I) as dis-
cussed in section 2. Hence, this lower bound can be a useful tool for getting
a rough idea of how well our model is capturing a particular datapoint X.

2.4 Interpreting the objective

By now, you are hopefully convinced that the learning in VAEs is tractable,
and that it optimizes something like log P(X) across our entire dataset. How-
ever, we are not optimizing exactly log P(X), so this section aims to take a
deeper look at what the objective function is actually doing. We address
three topics. First, we ask how much error is introduced by optimizing
D[Q(z|X)‖P(z|X)] in addition to log P(X). Second, we describe the VAE
framework—especially the r.h.s. of Equation 5—in terms of information the-
ory, linking it to other approaches based on Minimum Description Length.
Finally, we investigate whether VAEs have “regularization parameters” anal-
ogous to the sparsity penalty in sparse autoencoders.

2.4.1 The error from D[Q(z|X)‖P(z|X)]

The tractability of this model relies on our assumption that Q(z|X) can be
modeled as a Gaussian with some mean µ(X) and variance Σ(X). P(X) con-
verges (in distribution) to the true distribution if only if D[Q(z|X)‖P(z|X)]

goes to zero. Unfortunately, it’s not straightforward to ensure that this hap-
pens. Even if we assume µ(X) and Σ(X) are arbitrarily high capacity, the
posterior P(z|X) is not necessarily Gaussian for an arbitrary f function that
we’re using to define P. For fixed P, this might mean thatD[Q(z|X)‖P(z|X)]

never goes to zero. However, the good news is that there are infinitely many
f functions that result in our model generating any given output distribu-
tion. Any of these functions will maximize log P(X) equally well. Hence,
all we need is one function f which both maximizes log P(X) and results
in P(z|X) being Gaussian for all X. If so, D[Q(z|X)‖P(z|X)] will pull our
model towards that parameterization of the distribution. So, does such a
function exist for all distributions we might want to approximate? I’m not
aware of anyone proving this in general just yet, but it turns out that one
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can prove that such a function does exist, provided σ is small relative to the
curvature of the ground truth distribution’s CDF (at least in 1D; a proof is
included in Appendix A). In practice such a small σ might cause problems
for existing machine learning algorithms, since the gradients would become
badly scaled. However, it is comforting to know that VAEs have zero ap-
proximation error in at least this one scenario. This fact suggests that future
theoretical work may show us how much approximation error VAEs have
in more practical setups. It seems like it should be possible to extend the
proof technique in appendix A to multiple dimensions, but this is left for
future work.

2.4.2 The information-theoretic interpretation

Another important way to look at the right hand side of Equation 5 is
in terms of information theory, and in particular, the “minimum descrip-
tion length” principle which motivated many of the VAE’s predecessors
like Helmholtz Machines [16], the Wake-Sleep Algorithm [17], Deep Belief
Nets [18], and Boltzmann Machines [19]. log P(X) can be seen as the total
number of bits required to construct X under our model using an ideal
encoding. The right hand side of Equation 5 views this as a two-step pro-
cess to construct X. We first use some bits to construct z. Recall that a
KL-divergence is measured in bits (or nats). We measure the bits required to
construct z using a D[Q(z|X)||P(z)] because under our model, we assume
that any z which is sampled from P(z) = N (z|0, I) can contain no informa-
tion about X. Hence, we need to measure the amount of extra information
that we get about X when z comes from Q(z|X) instead of from P(z) (for
more details, see the “bits back” argument of [20, 21]). In the second step,
P(X|z) measures the amount of information required to reconstruct X from
z under an ideal encoding. Hence, the total number of bits (log P(X)) is the
sum of these two steps, minus a penalty we pay for Q being a sub-optimal
encoding (D[P(z|X)||Q(z|X)]). Note that this second step is a fairly waste-
ful way to encode information about X: P(X|z) does not model any of the
correlations between the dimensions of X under our model, so even an ideal
encoding must essentially encode every dimension separately.

2.4.3 VAEs and the regularization parameter

Looking at Equation 5, it’s interesting to view the D[Q(z|X)||P(z)] as a
regularization term, much like the sparsity regularization in sparse au-
toencoders [10]. From this standpoint, it’s interesting to ask whether the
variational autoencoder has any “regularization parameter.” That is, in the
sparse autoencoder objective, we have a λ regularization parameter in an
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objective function that looks something like this:

‖φ(ψ(X))− X‖2 + λ‖ψ(X)‖0 (11)

where ψ and φ are the encoder and decoder functions, respectively, and
‖ · ‖0 is an L0 norm that encourages the encoding to be sparse. This λ must
be set by hand.

Interestingly, a variational autoencoder does not generally have such a
regularization parameter, which is good because that’s one less parameter
that the programmer needs to adjust. However, for certain models, we can
make it appear like such a regularization parameter exists. It’s tempting to
think that this parameter can come from changing z ∼ N (0, I) to something
like z′ ∼ N (0, λ ∗ I), but it turns out that this doesn’t change the model. To
see this, note that we can absorb this constant into P and Q by writing them
in terms of f ′(z′) = f (z′/λ), µ′(X) = µ(X) ∗ λ, and Σ′(X) = Σ(X) ∗ λ2.
This will produce an objective function whose value (right hand side of
Equation 5) is identical to the loss we had with z ∼ N (0, I). Also, the model
for sampling X will be identical, since z′/λ ∼ N (0, I).

However, there is another place where a regularization parameter can
come from. Recall that P(X|z) ∼ N ( f (z), σ2 ∗ I): therefore, changing this
σ will change P(X|z) without affecting D[Q(z|X)‖P(z)]. In more detail,
log P(X|z) = C − 1

2‖X − f (z)‖2/σ2, where C is a constant that does not
depend on f , and can thus be ignored during optimization. Thus, σ can
be treated as a weighting factor between the two terms of the r.h.s. of
Equation 5. Note, however, that the existence of this parameter relies on
our choice of the distribution of X given z. If X is binary and we use a
Bernoulli output model, then this regularization parameter disappears, and
the only way to bring it back is to use hacks like replicating the dimensions
of X. From an information theory standpoint, this makes sense: when X is
binary, we can actually count the number of bits that are required to encode
X, and both terms on the right hand side of Equation 5 are using the same
units to count these bits. However, when X is continuous, each sample
contains infinite information. Our choice of σ determines how accurately we
expect the model to reconstruct X, which is necessary so that the information
content can become finite.

3 Conditional Variational Autoencoders

Let’s return to our running example of generating handwritten digits. Say
that we don’t just want to generate new digits, but instead we want to add
digits to an existing string of digits written by a single person. This is similar
to a truly practical problem in computer graphics called hole filling: given
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Figure 6: Left: a training-time conditional variational autoencoder imple-
mented as a feedforward neural network, following the same notation as
Figure 4. Right: the same model at test time, when we want to sample from
P(Y|X).

an existing image where a user has removed an unwanted object, the goal
is to fill in the hole with plausible-looking pixels. An important difficulty
with both problems is that the space of plausible outputs is multi-modal:
there are many possibilities for the next digit or the extrapolated pixels. A
standard regression model will fail in this situation, because the training
objective generally penalizes the distance between a single prediction and
the ground truth. Faced with a problem like this, the best solution the
regressor can produce is something which is in between the possibilities,
since it minimizes the expected distance. In the case of digits, this will most
likely look like a meaningless blur that’s an “average image” of all possible
digits and all possible styles that could occur3. What we need is an algorithm
that takes in a string or an image, and produces a complex, multimodal
distribution that we can sample from. Enter the conditional variational
autoencoder (CVAE) [7, 8], which modifies the math in the previous section
by simply conditioning the entire generative process on an input. CVAEs
allow us to tackle problems where the input-to-output mapping is one-to-

3 The denoising autoencoder [12, 13] can be seen as a slight generalization of the regres-
sion model, which might improve on its behavior. That is, we would say that the “noise
distribution” simply deletes pixels, and so the denoising autoencoder must reconstruct
the original image given the noisy version. Note, however, that this still doesn’t solve the
problem. The standard denoising autoencoder still requires that the conditional distribution
of the original sample given the noisy sample follow a simple, parametric distribution. This
is not the case for complex data like image patches.
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many4, without requiring us to explicitly specify the structure of the output
distribution.

Given an input X and an output Y, we want to create a model P(Y|X)

which maximizes the probability of the ground truth (I apologize for re-
defining X here. However, standard machine learning notation maps X
to Y, so I will too). We define the model by introducing a latent variable
z ∼ N (0, I), such that:

P(Y|X) = N ( f (z, X), σ2 ∗ I). (12)

Where f is a deterministic function that we can learn from data. We can
rewrite Equations 2 through 5 conditioning on X as follows:

D [Q(z|Y, X)‖P(z|Y, X)] = Ez∼Q(·|Y,X) [log Q(z|Y, X)− log P(z|Y, X)]
(13)

D [Q(z|Y, X)‖P(z|Y, X)] =

Ez∼Q(·|Y,X) [log Q(z|Y, X)− log P(Y|z, X)− log P(z|X)] + log P(Y|X)
(14)

log P(Y|X)−D [Q(z|Y, X)‖P(z|Y, X)] =

Ez∼Q(·|Y,X) [log P(Y|z, X)]−D [Q(z|Y, X)‖P(z|X)]
(15)

Note that P(z|X) is still N (0, I) because our model assumes z is sampled
independently of X at test time. The structure of this model is shown in
Figure 6.

At test time, we can sample from the distribution P(Y|X) by simply
sampling z ∼ N (0, I).

4 Examples

Implementations for these examples using Caffe [22] can be found online at:
http://github.com/cdoersch/vae_tutorial

4.1 MNIST variational autoencoder

To demonstrate the distribution learning capabilities of the VAE framework,
let’s train a variational autoencoder on MNIST. To show that the framework
isn’t heavily dependent on initialization or network structure, we don’t
use existing published VAE network structures, but instead adapt the basic

4Often called “structured prediction” in machine learning literature.
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Figure 7: Samples from a VAE trained on MNIST.

MNIST AutoEncoder example that’s included with Caffe [22]. (However,
we use ReLU non-linearities [9] and ADAM [23], since both are standard
techniques to speed convergence.) Although MNIST is real-valued, it is
constrained between 0 and 1, so we use the Sigmoid Cross Entropy loss
for P(X|z). This has a probabilistic interpretation: imagine that we created
a new datapoint X′ by independently sampling each dimension as X′i ∼
Bernoulli(Xi). Cross entropy measures the expected probability of X′. Thus
we’re actually modeling X′, the randomly binarized version of MNIST, but
we’re only giving q a summary of this data X. Admittedly this is not quite
what the VAE framework prescribes but works well in practice, and is used
in other VAE literature [6]. Even though our model is considerably deeper
than [1] and [3], training the model was not difficult. The training was run to
completion exactly once (though it was re-started the training 5 times to find
the learning rate which made the loss descend the fastest). Digits generated
from noise are shown in Figure 7. It’s worth noting that these samples are
difficult to evaluate since there’s no simple way to measure how different
these are from the training set [24]. However, the failure cases are interesting:
while most of the digits look quite realistic, a significant number are ‘in-
between’ different digits. For example, the seventh digit from the top in the
leftmost column is clearly in-between a 7 and a 9. This happens because we
are mapping a continuous distribution through a smooth function.

17



(a) CVAE

(b) Regressor

(c) Ground Truth

Figure 8: Samples from a CVAE trained on MNIST. The input that the model
is conditioning on is the central column, highlighted in blue and orange in
the top two images. The model must complete the digit given only these
noisy binary values. The three sets above are aligned spatially, so you can
compare the generated images to the ground truth.

In practice, the model seems to be quite insensitive to the dimensionality
of z, unless z is excessively large or small. Too few z’s means the model can
no longer capture all of the variation: less than 4 z dimensions produced
noticeably worse results. Results with 1,000 z’s were good, but with 10,000
they were also degraded. In theory, if a model with n z’s is good, then a
model with m >> n should not be worse, since the model can simply learn
to ignore the extra dimensions. However, in practice, it seems stochastic
gradient descent struggles to keep D[q(z|X)||P(z)] low when z is extremely
large.
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5 MNIST conditional variational autoencoder

I had originally intended to show a conditional variational autoencoder
completing MNIST digits given only half of each digit. While a CVAE works
quite well for this purpose, unfortunately a regressor actually works quite
well also, producing relatively crisp samples. The apparent reason is the size
of MNIST. A network with similar capacity to the one in section 4.1 can easily
memorize the entire dataset, and so the regressor overfits badly. Thus, at test
time, it produces predictions that behave something like nearest-neighbor
matching, which are actually quite sharp. CVAE models are most likely
to outperform simple regression when the output is ambiguous given a
training example. Therefore, let’s make two modifications to the problem to
make it more ambiguous, at the cost of making it somewhat more artificial.
First, the input is a single column of pixels taken from the middle of the digit.
In MNIST, each pixel has a value between 0 and 1, meaning that there is still
enough information even in this single column of pixels for the network to
identify a specific training example. Therefore, the second modification is to
replace each pixel in our column with a binary value (0 or 1), choosing 1 with
probability equal to the pixel intensity. These binary values were resampled
each time a digit was passed to the network. Figure 8 shows the results.
Note that the regressor model handles the ambiguity by blurring its output
(although there are cases where the regressor is suspiciously confident when
making wrong guesses, suggesting overfitting is still an issue). The blur in
the regressor’s output minimizes the distance to the set of many digits which
might have produced the input. The CVAE, on the other hand, generally
picks a specific digit to output and does so without blur, resulting in more
believable images.
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Abhinav Gupta and Alexei Efros for helpful discussions and support, and
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A Proof in 1D that VAEs have zero approximation er-
ror given arbitrarily powerful learners.

Let Pgt(X) be a 1D distribution that we are trying to approximate using
a VAE. We assume that Pgt(X) > 0 everywhere, that it is infinitely dif-
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ferentiable, and all the derivatives are bounded. Recall that a variational
autoencoder optimizes

log Pσ(X)−D[Qσ(z|X)‖Pσ(z|X)] (16)

where Pσ(X|z) = N (X| f (z), σ2) for z ∼ N (0, 1), Pσ(X) =
∫

z Pσ(X|z)P(z)dz,
and Qσ(z|X) = N (z|µσ(X), Σσ(X)). We make the dependence on σ explicit
here since we will send it to 0 to prove convergence. The theoretical best pos-
sible solution is where Pσ = Pgt and D[Qσ(z|X)‖Pσ(z|X)] = 0. By “arbitrar-
ily powerful” learners, we mean that if there exist f , µ and Σ which achieve
this best possible solution, then the learning algorithm will find them. Hence,
we must merely show that such an f , µσ, and Σσ exist. First off, Pgt can
actually be described arbitrarily well as Pgt(X) =

∫
zN (X| f (z), σ2)P(z)dz as

σ approaches 0. To show this, let F be the cumulative distribution function
(CDF) of Pgt, and let G be the CDF of N (0, 1), which are both guaranteed
to exist. Then G(z) is distributed Uni f (0, 1) (the uniform distribution), and
therefore f (z) = F−1(G(z)) is distributed Pgt(X). This means that as σ→ 0,
the distribution P(X) converges to Pgt.

From here, we must simply show that D[Qσ(z|X)‖Pσ(z|X)] → 0 as
σ → 0. Let g(X) = G−1(F(X)), i.e., the inverse of f , and let Qσ(z|X) =

N (z|g(X), (g′(X) ∗ σ)2). Note that D[Qσ(z|X)||Pσ(z|X)] is invariant to
affine transformations of the sample space. Hence, let Q0(z0|X) = N (z0|g(X), g′(X)2)

and P0
σ(z0|X) = Pσ(z = g(X) + (z0 − g(X)) ∗ σ|X) ∗ σ. When I write

P(z = ...), I am using the PDF of z as a function, and evaluating it at
some point. Then:

D[Qσ(z|X)‖Pσ(z|X)] = D[Q0(z0|X)‖P0
σ(z

0|X)] (17)

where Q0(z0|X) does not depend on σ, and its standard deviation is greater
than 0. Therefore, it is sufficient to show that P0

σ(z0|X)→ Q0(z0|X) for all z.
Let r = g(X) + (z0 − g(X)) ∗ σ. Then:

P0
σ(z0|X) = Pσ(z = r|X = X) ∗ σ

=
Pσ(X = X|z = r) ∗ P(z = r) ∗ σ

Pσ(X = X)
.

(18)

Here, Pσ(X) → Pgt(X) as σ → 0, which is a constant, and r → g(X) as
σ → 0, so P(r) also tends to a constant. Together with σ, they ensure that
the whole distribution normalizes. We will wrap them both in the constant
C.

= C ∗ N (X| f (g(X) + (z0 − g(X)) ∗ σ), σ2). (19)
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Next, we do a Taylor expansion of f around g(X):

= C ∗N
(

X

∣∣∣∣∣X + f ′(g(X)) ∗ (z0 − g(X)) ∗ σ +
∞

∑
n=2

f (n)(g(X))((z0 − g(X)) ∗ σ)n

n!
, σ2

)
.

(20)
Note that N (X|µ, σ) = (

√
2πσ)−1 exp

(
−(x−µ)2

2σ2

)
. We rewrite the above

using this formula, rearrange terms, and re-write the result as a Gaussian to
obtain:

=
C ∗ f ′(g(X))

σ
∗N

(
z0

∣∣∣∣∣g(X)−
∞

∑
n=2

f (n)(g(X))((z0 − g(X)) ∗ σ)n

n! ∗ f ′(g(X)) ∗ σ
,

1
f ′(g(X))2

)
.

(21)
Note 1/ f ′(g(X)) = g′(X), since f = g−1. Furthermore, since f (n) is
bounded for all n, all terms in the sum tend to 0 as σ→ 0. C must make the
distribution normalize, so we have that the above expression:

→ N
(
z0|g(X), g′(X)2) = Q0(z0|X) (22)

Looking at Equation 21, the bulk of the approximation error in this setup
comes from the curvature of g, which is mostly determined by the curvature
of the c.d.f. of the ground truth distribution.
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