
Checking for Language Inclusion Using Simulation Preorders

David L. Dill, Alan J. Hu, and Howard Wong-Toi

�

Department of Computer Science

Stanford University

1 Introduction

Systems involving interaction among state machines, such as protocols, concurrent algorithms,

and certain kinds of hardware, often contain subtle design errors that defy detection by con-

ventional means, such as inspection, simulation, and testing a prototype. As a result, formal

veri�cation methods for such systems are of increasing interest.

We are interested in automatic veri�cation using �nite-state models of systems, with the

underlying assumption that systembehavior can be represented as a set of sequences representing

all the possible histories (or traces) of the system (we assume linear-time). In this model,

veri�cation consists of testing for language inclusion: the implementation describes a set of

actual traces and the speci�cation gives the set of allowed traces; the implementation meets the

speci�cation if every actual trace is allowed.

In this paper, we consider only the case where both the implementation and the speci�cation

are represented by �nite-state automata. The automata used here can describe both safety

properties (which intuitively say that nothing bad happens), and liveness properties (which

intuitively assert that something good eventually happens). More speci�cally, we deal with

safety automata and B�uchi automata.

As speci�cations become more complicated, it becomes less natural to express them with

deterministic automata. This occurs because a complicated speci�cation is more likely to have

invisible internal state that is not a function of the externally visible state. Although such

speci�cations can be expressed using deterministic automata, this places an unnecessary burden

on the user. Determinization algorithms may cause exponential blowups and are also di�cult

to program.

Deciding language inclusion for non-deterministic automata is PSPACE-complete. Therefore

it is highly unlikely that a polynomial technique can be used to decide language inclusion.

However, deciding language inclusion for deterministic automata is known to be polynomial.

Our main goal is to provide polynomial methods that work not only for deterministic automata,

but also work for non-deterministic automata in cases of practical interest.

The simulation preorder is one of many preorders and equivalences considered by people

studying branching-time models of concurrency. Simulation preorder is decidable in polynomial

time (proportional to the product of the sizes of the two automata) even when the speci�cation

automaton is nondeterministic. However, the simulation preorder is a stronger relation between

automata than language inclusion. So from our perspective (linear time), the simulation preorder

should be regarded as an approximation (su�cient condition) for language inclusion that is much

easier to check.

�

This work was supported by the NSF under grant MIP-8858807. The second author is also supported by an

ONR Graduate Fellowship.

1

One automaton precedes another in the simulation preorder if there exists a certain kind

of correspondence, called a simulation relation, between states of the two automata (the corre-

spondence is de�ned precisely below). Hence, deciding simulation preorder involves �nding a

simulation relation or proving that none exists. We consider below some variants on the simu-

lation preorder that are expensive to check directly. In such cases, it may still be useful to do

\semi-automatic veri�cation": a human de�nes a candidate relation, and uses a computer to

check automatically whether the candidate is a simulation relation. Hence, the computational

complexity of checking a given simulation is also of interest.

The veri�cation methods presented here are all incomplete, in that they can be used to

prove language inclusion (whenever a simulation relation exists), but cannot decide language

inclusion (that is, an automaton may accept a subset of the language of another without any

simulation relation between them). This de�ciency is a necessary sacri�ce in return for e�ciency.

Nevertheless, we provide evidence that the technique is useful in practice through some examples.

1.1 Background

State relations in one form or another have been studied for a long time, including the weak ho-

momorphisms and coverings of Ginzburg [Gin68] and the simulations of Milner [Mil71]. Many

veri�cation methods consider (possibly) in�nite state automata, and therefore develop proof

methodologies where the human veri�er supplies a relation together with a mathematical proof

that it is a simulation relation (for example, Milner's simulations, Lam and Shankar's protocol

projections [LS84], the possibilities mappings of Lynch and Tuttle [LT87], Klarlund and Schnei-

der's invariants [KS89] and the progress measures of Klarlund [Kla90]).

The Concurrency Workbench [CPS89] is one of several programs that test for simulation

preorder between automata. However, none of these can handle large state spaces or liveness

properties.

For liveness and fairness properties, we are interested in de�ning simulation relations on

B�uchi automata (�nite automata that accept in�nite strings). Park proposed using simulation

relations on Muller automata, which are somewhat similar to B�uchi automata. Checking Park's

relations can be done in polynomial time, but automatically �nding the relation is NP-complete,

which limits their usefulness in practice (his simulations are similar to the relation called BSR-dlc

below).

Lynch and Tuttle give a manual veri�cation technique similar in spirit to our BSR-aa's

on their IO-automata, which can also express fairness properties. Since they do not consider

�nite-state automata, neither testing a given relation nor �nding one is decidable.

1.2 Notation

Let � be a set. Then �

�

is the set of all �nite sequences over �, and �

!

is the set of all in�nite

sequences over �. We will use �

1

for �

�

[�

!

. If � is in �

1

, its i-th element, if it exists, will

be denoted �

i�1

, and � may be identi�ed with the corresponding string with the same elements.

We let len(�) be the length of any � in �

1

.

Let � be in �

!

. The set of pre�xes of �, pr(�) is de�ned as f�

0

2 �

�

j for all i < len(�

0

); �

0

i

=

�

i

g. Given a set A � �

�

, its closure cl(A) is the set of strings in �

!

such that every pre�x is in

A, i.e. cl(A) = f� j pr(�) � Ag. The set B � �

!

is closed i� B = cl(pr(B)).

2

2 Safety Automata

Intuitively, states of an automaton represent states of the system or process being modeled. A

state is made up of an external visible component, and an internal invisible component. A trace

of an automaton is an in�nite sequence of external states, and models what an external agent

could observe of the process. All automata used here are �nite-state and de�ne languages of

in�nite traces.

A safety automaton A is a tuple hS;E; P;Ni. S is a �nite set of internal state components

and E is a �nite set of external state components. The set of states of the automaton is S �E.

P � S�E is a set of initial states, and N � (S�E)�(S�E) is the next state relation. A run of

A on the in�nite sequence e = e

0

; e

1

; . . . 2 E

!

is an in�nite sequence of states hs

0

; e

0

i; hs

1

; e

1

i . . .

such that hs

0

; e

0

i 2 P , and for all i � 0, (hs

i

; e

i

i; hs

i+1

; e

i+1

i) is in N . The in�nite sequence e is

accepted by A if there is a run of A on e. The language L(A) is the set of all in�nite sequences

for which there are accepting runs.

A is said to be deterministic if P is a singleton set and if for every state hs; ei 2 S and every

external component e

0

2 E there is at most one state hs

0

; e

0

i 2 S �E such that (hs; ei; hs

0

; e

0

i) 2

N .

2.1 Simulation Relations for Safety Automata

We consider �rst simulation relations between safety automata, A

1

= hS

1

; E; I

1

; N

1

i and A

2

=

hS

2

; E; I

2

; N

2

i. Intuitively every state in the implementation must be related to a state in the

speci�cation with the same external component. It must be possible for every transition in the

implementation to be simulated by a transition in the speci�cation. The simulation relations

relate each implementation state to several speci�cation states, like those of Park, Lynch and

Tuttle, and Loewenstein and Dill [Par81, LT87, LD90].

De�nition 1 (SSR) A safety simulation relation between safety automata A

1

and A

2

is any

relation R � S

1

�E � S

2

that satis�es the following properties:

(SR1) (simulation) 8s

1

2 S

1

; e 2 E; s

2

2 S

2

; s

0

1

2 S

1

; e

0

2 E;

[R(s

1

; e; s

2

) ^N

1

(hs

1

; ei; hs

0

1

; e

0

i)]) 9s

0

2

2 S

2

[R(s

0

1

; e

0

; s

0

2

) ^N

2

(hs

2

; ei; hs

0

2

; e

0

i)].

(SR2) (initiality) 8s

1

2 S

1

; e 2 E,

hs

1

; ei 2 P

1

) 9s

2

2 S

2

[hs

2

; ei 2 P

2

^R(s

1

; e; s

2

)].

Theorem 1 (SSR soundness) If there is an SSR between A

1

and A

2

, then L(A

1

) � L(A

2

).

As mentioned in the introduction, one way of verifying language inclusion is to check that a

user-supplied relation is actually a simulation relation.

Algorithm 1 (Checking safety simulation relations) It is straightforward to verify that a

relation satis�es SR1 and SR2 independently. For example, SR1 may be veri�ed by a simple

check that outgoing transitions from implementation states are mimicked in their simulating

speci�cation states. This simple procedure is polynomial in the number of states and edges of

the two automata.

3

2.2 Finding Simulation Relations

Because simulation relations over safety automata are closed under union, there is a largest

simulation relation that contains all others. The algorithm to �nd simulation relations �nds the

largest candidate relation and then veri�es it is indeed a simulation relation. This candidate

relation R is the largest relation satisfying the simulation property, SR1. Since SR2 (initiality) is

a monotone property (that is, if it is true in a relation R

0

, it is true in any larger relation), there

is a simulation relation over S

1

� E � S

2

i� R satis�es SR2. Computing R from the maximum

relation S

1

� E � S

2

involves repeatedly deleting triples which do not locally satisfy SR1. It is

then straightforward to check whether SR2 holds. The algorithm is polynomial in the size of

the automata.

While safety simulation relations are in general incomplete, there are special cases where

language inclusion does imply the existence of a simulation relation. A safety automaton A is

non-deadlocking whenever every �nite string �

0

having a run on A is a pre�x of some in�nite

string in L(A).

Theorem 2 If L(A

1

) � L(A

2

), A

2

is deterministic and A

1

is non-deadlocking, then there is an

SSR between A

1

and A

2

.

2.3 Symbolic Implementation

One way to contain the state explosion problem is to represent automata and relations \symbol-

ically," using some data structure that does not expand as quickly as an explicit list of states.

One such data structure is the binary decision diagram (BDD), which gives a compact repre-

sentation for a Boolean function [Bry86]. These data structures have proven especially e�cient

in many cases. Using the paradigm of symbolic model checking, [BCMDH90, BCMD90] we can

e�ciently perform the computations speci�ed below.

An expression for the maximum relation satisfying the simulation condition (SR1 in De�ni-

tion 1) on a safety simulation relation is:

�Z:�s

1

; e; s

2

�

Z(s

1

; e; s

2

) ^ 8s

0

1

; e

0

�

N

1

(hs

1

; ei; hs

0

1

; e

0

i)) 9s

0

2

�

Z(s

0

1

; e

0

; s

0

2

) ^N

2

(hs

2

; ei; hs

0

2

; e

0

i)

���

where �Z:F [Z] denotes the greatest �xed point of the predicate transformer F . Let Q(s

1

; e; s

2

)

be this �xed point.

Theorem 3 A safety simulation relation exists i� Q satis�es the initiality condition (SR2 in

De�nition 1).

3 Simulation relations for liveness properties

While safety automata can express many useful properties, they cannot express simple liveness

properties, such as \process A will eventually read the variable x". To handle general liveness

properties, we need automata that can handle general !-regular languages. Many such automata

have been proposed: B�uchi automata, Muller automata, Rabin automata, Streett automata, 8-

automata, and L-automata. For simplicity, we choose to work with the conceptually simplest

of these, B�uchi automata. The ideas expressed here can be extended to the other types of

automata, as well.

A B�uchi automaton A = hS;E; P;N;F i is a safety automaton with an additional �fth com-

ponent F � S � E, a set of accepting states. An in�nite run r over the safety automaton

A

S

= hS;E; P;Ni is called a run of the B�uchi automaton A. The run r is an accepting run

4

i� an accepting state occurs in�nitely often in r. The language accepted by A is the set of all

in�nite strings with an accepting run. In the following, it is assumed every state in a B�uchi

automaton is reachable. A safety automaton can be considered to be a B�uchi automaton in

which F = S �E.

Our de�nition of B�uchi automata is non-standard: while our automata have external visible

state components, the usual B�uchi automata have visible labeled transitions between internal

states. This change makes it easy for us to model our examples. However, there is a simple

correspondence between the two de�nitions, and the simulations we propose can easily be applied

to the more conventional de�nition of B�uchi automata, also.

We de�ne various simulation relations between B�uchi automata, as extensions of simulation

relations between safety automata. A B�uchi automaton accepts an in�nite string i� it has a

run r for that string, and r is an accepting run, i.e. it includes in�nitely many accepting states.

Thus B�uchi simulation relations must guarantee the existence not only of simulating runs but

of simulating accepting runs.

Throughout the following we assume A

1

= hS

1

; E; P

1

; N

1

; F

1

i and A

2

= hS

2

; E; P

2

; N

2

; F

2

i

are non-deadlocking B�uchi automata.

3.1 Accepting-accepting B�uchi simulation relations

Here, safety simulation relations are augmented with a simple condition that guarantees that

whenever the newly entered state of the implementation is accepting, then so must be its simu-

lating A

2

state.

De�nition 2 (BSR-aa) An accepting-accepting B�uchi simulation relation (BSR-aa), is any

relation R � S

1

� E � S

2

that satis�es SR1 (simulation), SR2 (initiality) and the additional

property:

(SR-aa) 8s

1

2 S

1

; e 2 E; s

2

2 S

2

;

R(s

1

; e; s

2

)) [F

1

(hs

1

; ei)) F

2

(hs

2

; ei)].

Theorem 4 (BSR-aa soundness) If there is BSR-aa between A

1

and A

2

, then L(A

1

) �

L(A

2

).

Example 1

<t0,a> <t1,b><t1,b><t1,b>

<t3,b>

<t2,a>

<s1,b><s0,a> <t0,a> <t1,b>

A

1

A

2

A

3

The relation R = f(s

0

; a; t

0

); (s

0

; a; t

2

); (s

1

; b; t

1

)g is a BSR-aa between A

1

and A

2

. However,

there is no BSR-aa between A

1

and A

3

, since the accepting states of one automaton are not

\synchronized" with those of the other, even though clearly L(A

1

) � L(A

3

).

3.2 Algorithms

As for safety simulation relations, we demonstrate algorithms for checking and �nding each

B�uchi simulation relation. B�uchi simulation relations are de�ned as safety simulation relations

5

with an additional fairness property. When this additional property is of a certain form, the

algorithms are trivial extensions of those for the safety case.

Suppose the fairness property determines a priori which pairings of automaton states are

permitted in a simulation relation, independent of what other pairings appear in the simulation

relation. Then a relation is a simulation relation whenever all pairings of states are permitted,

or \good". Checking whether a relation is a B�uchi simulation relation is then just checking it

is a safety simulation relation and that all state pairings are good. Finding B�uchi simulation

relations is simply �nding safety simulation relations among the good pairs.

De�nition 3 A property P of relations in S

1

�E�S

2

is locally-determined if P = 2

W

for some

W � S

1

�E � S

2

.

Intuitively P is locally-determined i� R satis�es P whenever all triples in R are in some

maximum relation W . We may interpret the triples in W as the good triples in S

1

� E � S

2

.

De�nition 4 Let BSR-P de�ne the class of simulation relations that satisfy the properties

SR1, SR2 and SR� P .

Lemma 1 If SR�P = 2

W

is locally-determined, then a relation R is a BSR-P i� it is a safety

simulation relation and contained in W .

Theorem 5 If SR � P = 2

W

is locally-determined and W is polynomially decidable, then

checking whether a relation is a BSR-P is polynomial.

Lemma 2 If SR� P is locally-determined, then BSR-P 's are closed under union.

Theorem 6 If SR � P = 2

W

is locally-determined, and W is polynomially decidable, then

deciding whether there is a BSR-P between two automata is polynomial.

The property SR-aa is locally-determined, with SR-aa = 2

W

, where W = f(s

1

; e; s

2

) j

F

1

(hs

1

; ei)) F

2

(hs

2

; ei)g. Determining SR-aa is linear in the sizes of S

1

and S

2

, so by the above

results there are polynomial algorithms for checking and �nding BSR-aa's.

3.3 Live-cycles B�uchi simulation relations

We may relax the condition of having to simulate every F

1

state with an F

2

state. It is su�cient

to simulate F

1

states by some state in S

2

from which it is guaranteed every A

2

-run will later

pass through an accepting state. Equivalently, it must be impossible to continue simulation of

A

1

in a cycle from hs

1

; ei 2 F

1

with a cycle of A

2

from hs

2

; ei to hs

2

; ei which does not pass

through any states in F

2

. In fact the converse is true, and this condition is also su�cient for

language inclusion. Furthermore, it is locally-determined and polynomially decidable.

We �rst de�ne the pseudo-product machine A

12

= hS

12

; P

12

; N

12

i, where S

12

= S

1

�E� S

2

,

P

12

= fhs

1

; e; s

2

i j P

1

(hs

1

; ei) and P

2

(hs

2

; ei)g, and the next-state relation N

12

� S

12

� S

12

is

de�ned by N

12

(hs

1

; e; s

2

i; hs

0

1

; e; s

0

2

i) i� N

1

(hs

1

; ei; hs

0

1

; e

0

i) and N

2

(hs

2

; ei; hs

0

2

; e

0

i). A product-

state hs

1

; e; s

2

i is an F

1

state i� hs

1

; ei 2 F

1

, and likewise an F

2

state i� hs

2

; ei 2 F

2

.

De�nition 5 (BSR-lc) A live-cycles B�uchi simulation relation (BSR-lc), between A

1

and A

2

is any relationR � S

1

�E�S

2

that satis�es SR1 (simulation), SR2 (initiality) and the additional

property:

(SR-lc) 8s

1

2 S

1

; e 2 E; s

2

2 S

2

;

R(s

1

; e; s

2

)) [F

1

(hs

1

; ei)) LC(hs

1

; e; s

2

i)].

6

where LC(hs

1

; e; s

2

i) holds if every cycle through hs

1

; e; s

2

i in the pseudo-product machine A

12

passes through an F

2

state (the cycle is \live").

Theorem 7 (BSR-lc soundness) If there is a BSR-lc between A

1

and A

2

, then L(A

1

) �

L(A

2

).

Example 2 Here R = f(s

0

; a; t

0

); (s

1

; b; t

1

)g is a BSR-lc, because the pseudo-product machine

has the same structure as A

1

. However, A

1

and A

2

have no BSR-ma.

<s1,b> <t0,a> <t1,b><s0,a>

A

1

A

2

Theorem 8 (BSR-lc completeness for deterministic speci�cations) If L(A

1

) � L(A

2

)

and A

2

is deterministic, then there is a BSR-lc between A

1

and A

2

.

3.4 Dynamic-live-cycles B�uchi simulation relations

The fairness properties of all the B�uchi simulation relations de�ned so far have been locally-

determined, and static in the sense that they are given as predetermined safety conditions over

the state-pairings allowable. They do not take into consideration exactly which state pairings

appear in the relation. However, in order to guarantee simulating runs are accepting, we need

only consider runs permitted by R. Consider the pseudo-machine A

0

12

= hS

0

12

; P

0

12

; N

0

12

i, with

state set S

0

12

= (S

1

�E�S

2

)\R, initial states P

0

12

= P

12

\R, and the next-state relation given by

N

0

12

(hs

1

; e; s

2

i; hs

0

1

; e

0

; s

0

2

i) i�N

1

(hs

1

; ei; hs

0

1

; e

0

i),N

2

(hs

2

; ei; hs

0

2

; e

0

i), and hs

1

; e; s

2

i; hs

0

1

; e; s

0

2

i 2 R.

The machine A

0

12

is simply A

12

restricted to R, so there will be fewer non-live cycles and thus

more simulation relations between the automata. The SR-dlc condition is merely SR-lc with

cycles taken with respect to A

0

12

instead of A

12

.

De�nition 6 (BSR-dlc) A dynamic-live-cycles B�uchi simulation relation (BSR-dlc), is any

relation R � S

1

� E � S

2

that satis�es SR1 (simulation), SR2 (initiality) and the additional

property:

(SR-dlc) 8s

1

2 S

1

; e 2 E; s

2

2 S

2

;

R(s

1

; e; s

2

)) [F

1

(hs

1

; ei)) LC

0

(hs

1

; e; s

2

i)].

where LC

0

(hs

1

; e; s

2

i) i� every cycle through hs

1

; e; s

2

i in the pseudo-product machine A

0

12

is

live, i.e. it passes through an F

2

state.

Theorem 9 (BSR-dlc soundness) If there is a BSR-dlc between A

1

and A

2

, then L(A

1

)�

L(A

2

).

Theorem 10 (BSR-dlc deterministic completeness) If A

2

is deterministic and L(A

1

) �

L(A

2

), then there is a BSR-dlc between A

1

and A

2

.

While SR-dlc is still polynomially decidable, it is not locally-determined. Thus checking

BSR-dlc's is polynomial, and in fact �nding BSR-dlc's is NP-complete.

7

Deterministic

completeness Checking Finding

BSR-aa no poly poly

BSR-lc yes poly poly

BSR-dlc yes poly exponential

Figure 1: Completeness and Complexity of B�uchi simulation relations.

MemoryMemoryCache Reads
Writes

Reads
Writes

Reads
Writes

Implementation Specification

Figure 2: In the �rst veri�cation example, a cached memory (nondeterministic) implements a

memory (deterministic).

3.5 Summary/Comparative Expressiveness

Figure 1 summarizes the results above. Of the alternatives for B�uchi simulations here, BSR-

lc is the only one whose preorder is complete for deterministic speci�cations and decidable in

polynomial time. Hence, we believe it is the one most likely to be of practical use in veri�cation.

4 Veri�cation Examples

The �rst example is adapted from an earlier paper using simulation relations [LD90]. We have

a very general model of a cache (that allows prefetch, concurrent operations, etc.) and would

like to show that a cached memory implements a memory. The cache model is nondeterministic

and the memory model is deterministic. (See Figure 2.) Running on a DecStation 3100, �nding

a safety simulation relation took less than 5 seconds.

As CPU speeds have increased, the cache-memory port has become a bottleneck. Many

architectures now incorporate a write bu�er between the cache and the memory to reduce this

problem. The second example considers a weaker memory model that allows the memory to

bu�er writes (delayed arbitrarily, but preserving the order of the writes) while allowing reads

to bypass the bu�er and read directly from memory. While this is not entirely realistic (real

machines do not do it, at least intentionally), but it is similar to some consistency models used

in multi-processor caching. We assume a �nite-length write bu�er.

We would like to show that the same cache from the �rst example can be attached to a

write-bu�ered memory, with the result implementing a write-bu�ered memory. (See Figure 3.)

Note that both the implementation and the speci�cation are nondeterministic, demonstrating

this important feature of simulation relations.

In under a minute, the veri�er reported that no simulation relation exists. Additional queries

to the system suggested the following scenario that demonstrates that in this case, the imple-

mentation is not correct with respect to the speci�cation:

8

MemoryCacheReads
Writes

Implementation Specification

Write
BufferWrites

Reads

Memory

Write
BufferWrites

Reads

Figure 3: In the second example, a cached memory with write bu�er (nondeterministic) fails to

implement a memory with write bu�er (nondeterministic).

1. Processor writes the value A to location X and receives an acknowledge from the memory

system.

2. Processor performs operations not related to location X .

3. Processor writes a sequence of B's to locationX (and receives acknowledgements for each).

The number of B's written must be greater than the length of the write bu�er.

4. Processor performs operations not related to location X .

5. Processor reads location X .

For the speci�cation (a write-bu�ered memory), step 3 must result in aB being stored at location

X because the write bu�er must write B's to location X in order to keep from overowing.

Therefore, at step 5, the read must return the value B. For the cached implementation, however,

consider the following possible scenario:

1. During step 1, the cache has a dirty copy of location X equal to the value A.

2. During step 2, the cache writes back its dirty copy. At some point, the write makes its

way through the write bu�er, so location X now equals A.

3. During step 3, the cache misses, reads a clean copy of X = A, and modi�es its copy to a

dirty copy X = B. Memory location X still holds value A.

4. During step 4, the cache writes back its dirty copy of X = B. This write gets bu�ered.

5. During step 5, the processor attempts to read location X . The cache misses and gets a

clean copy of X = A from the memory. The cache returns X = A.

This trace is possible in the implementation, but not in the speci�cation.

To correct that bug, the third example again veri�es that a cached, write-bu�ered memory

implements a write-bu�ered memory, but the write bu�er is modeled di�erently. We add an

interlock to the memory to block a read to any location that has a write pending in the write

bu�er. (See Figure 4.) With this modi�cation, the cached memory operates correctly. The

veri�er found a simulation relation in just over 20 seconds.

The following table summarizes the results. All runs used a DecStation 3100 with 16MB

of memory. The implementation uses Brace, Rudell, and Bryant's package for boolean decision

diagram manipulation. [BRB90]

9

MemoryCacheReads
Writes

Implementation Specification

Write
BufferWrites

Reads

Memory

Write
BufferWrites

Reads

Interlock Interlock

Figure 4: In the third example, a modi�ed write bu�er now blocks reads to locations that

have a write pending in the bu�er. Both the speci�cation and the implementation are still

nondeterministic.

Memory Implementation (w/cache) Speci�cation Simulation Time

Model Det States Det States Relation (in sec)

Plain No 64K Yes 64 Yes 5

w/write buf No 500K No 500 No 41

w/interlock No 500K No 500 Yes 22

5 Conclusion

We have implemented an e�cient veri�er for language inclusion, using simulation relations as a

heuristic. The examples above demonstrate the promise of this approach. Since the method is

incomplete, more examples need to be veri�ed to determine its practical usefulness. Future work

along these lines includes development of improved diagnostics during veri�cation, especially to

suggest counterexamples when no simulation relation exists.

We plan to extend the implementation to �nd B�uchi simulation relations. We are also

investigating simulation relations de�ned over other forms of !-automata.

Our framework deals only with the logical sequencing of events in trace traces. We are

currently working on including timing properties in our speci�cations (cf. [LA89, Bes90]).

6 Acknowledgements

We would like to thank Andreas Drexler for his help in implementing the veri�er.

References

[BCMD90] J.R. Burch, E.M. Clark, K.L. McMillan, and David L. Dill, \Sequential Circuit Veri�cation

Using Symbolic Model Checking," 27th ACM/IEEE Design Automation Conference, 1990,

pp. 46-51.

[BCMDH90] J.R. Burch, E.M. Clark, K.L. McMillan, D.L. Dill, and L.J. Hwang, \Symbolic Model

Checking: 10

20

States and Beyond," Proceedings of the Conference on Logic in Computer

Science, 1990, pp. 428{439.

[Bes90] A.A. Bestavros, \The input-output timed automaton: a model for real-time parallel com-

putation", Presentation at Workshop on Timing Issues in the Speci�cation and Synthesis

of Digital Systems, 1990.

10

[BRB90] Karl S. Brace, Richard L. Rudell, and Randal E. Bryant, \E�cient Implementation of a

BDD Package," 27th ACM/IEEE Design Automation Conference, 1990, pp. 40-45.

[Bry86] Randal E. Bryant, \Graph-Based Algorithms for Boolean Function Manipulation," IEEE

Transactions on Computers, Vol. C-35, No. 8 (August 1986), pp. 677-691.

[CPS89] R. Cleaveland, J. Parrow, B. Ste�en, \The Concurrency Workbench", Proceedings of the

International Workshop on Automatic Veri�cation of Finite State Systems, June 1989, LNCS

407, J. Sifakis (ed.), Springer-Verlag 1989, pp. 24{37.

[Gin68] A. Ginzburg, \Algebraic Theory of Automata", ACM Monograph Series, Academic Press,

1968.

[Kla90] N. Klarlund, \Progress Measures and Finite Arguments for In�nite Computations", Ph.D

Thesis, Cornell University, TR 90-1153, September 1990.

[KS89] N. Klarlund and F.B. Schneider, \Verifying safety properties using in�nite-state automata",

Technical report TR-1036, Cornell University, 1989.

[Kur90] R. Kurshan, \Analysis of discrete event coordination", in Stepwise Re�nement of Distributed

Systems: Models, Formalisms, Correctness, LNCS 430, J.W. deBakker, W.-P. de Roever,

G. Rozenberg (eds.), Springer-Verlag 1990, pp. 414{453.

[LA89] N.A. Lynch, H. Attiya, \Using mappings to prove timing properties", MIT-LCS-TM-412.b,

1989.

[LD90] Paul Loewenstein and David Dill, \Formal Veri�cation of Cache Systems using Re�nement

Relations," IEEE International Conference on Computer Design, 1990, pp. 228-233.

[LS84] S.S. Lam, A.U. Shankar, \Protocol veri�cation via projections", IEEE Transactions on

Software Engineering, SE-10(4):325{342, July 1984

[LT87] N.A. Lynch, M.R. Tuttle, \Hierarchical correctness proofs for distributed algorithms", in

Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Computing,

1987, pp. 137{151.

[Mil71] R. Milner, \An algebraic de�nition of simulation between programs", Proceedings of the 2nd

International Joint Conference on Arti�cial Intelligence, British Computer Society, 1971,

pp. 481{489.

[Par81] D.M.R. Park, \Concurrency and automata on in�nite sequences", in Proc. 5th GI conference

(P. Deussen. ed.), LNCS 104, 1981, pp. 167{183.

11

