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Abstract

The role of automatic formal protocol veri�ca-

tion in hardware design is considered. Principles

are identi�ed that maximize the bene�ts of pro-

tocol veri�cation while minimizing the labor and

computation required. A new protocol description

language and veri�er (both called Mur') are de-

scribed, along with experiences in applying them

to two industrial protocols that were developed as

part of hardware designs.

1 Introduction

Most complex digital designs must be regarded as concur-

rent systems: individual modules run in parallel and must

coordinate by explicit synchronization and communication.

Complexity will continue to increase, portending a shift in

total design e�ort from, for instance, faster arithmetic cir-

cuits, to mechanisms for coordination. Those mechanisms

usually involve protocols: rules that, if followed by each

party in a coordinated action, assure a desired outcome.

Unfortunately, protocol design is a subtle art. Even

when a designer exercises the utmost care, there is a strong

possibility that he or she will fail to anticipate some possi-

ble interaction among rules, resulting in errors and dead-

locks. Even worse, the nondeterminism resulting from dif-

fering internal states or delays means that resulting errors

are often not reliably repeatable, making testing and de-

bugging extremely di�cult.

Consequently, the protocol design problem seems an

obvious target for computer assistance. However, while

protocol simulation is an e�ective way to catch \obvious"

errors, many protocol problems arise when many unusual

conditions arise at once; catching these problems reliably

would require unrealistic amounts of simulation.

Because of these long-standing problems, formal ver-

i�cation of protocols has stimulated a great deal of in-

terest. In particular, automatic methods (\perturbation

analysis") that explicitly enumerate all the system states

reached under a particular protocol have been used for

many years [16, 1, 8]. Generally, these methods have been

applied to communication and network protocols.

We believe that protocol veri�cation is now a digital

CAD problem; protocol veri�ers should be in every digital

designer's toolbox. There have already been some initial

steps in this area: AT&T's COSPAN protocol veri�er has

been used for hardware designs [12], and McMillan's SMV

program was recently applied to a cache coherence protocol

for a shared-memory multiprocessor [10].

�

This research was supported by the National Science Founda-

tion (grant number MIP-8858807), the Defense Advanced Research

Projects Agency (contract number N00039-91-C-0138) and by gifts

from the Powell Foundation and Mitsubishi Electronics. Most of

this work was done using equipment generously donated by Sun

Microsystems.

We report here on our experiences using a protocol de-

scription language and veri�er (both of our own design)

called Mur' on some industrial digital design problems.

We discuss factors that increase the chance for successful

use of a protocol veri�er, overview the particular descrip-

tion language and veri�er we used, and describe the results

of our e�orts.

Protocol Veri�cation

Protocols are needed in hardware to achieve coordinated

action in the presence of complicating factors such as com-

munication channels that impose long and possibly vary-

ing delays or deliver messages unreliably or out-of-order,

bounded bu�ers or other scarce resources that may cause

deadlocks, and components that have unpredictable delays

and other nondeterministic behavior. Of special interest at

this time are protocols for communication over networks

or inter-processor switches and protocols for maintaining

cache coherence in shared-memory multiprocessors.

Formal veri�cation of a protocol proceeds by describing

the protocol in some language and then comparing the be-

havior of this description with a speci�cation of the desired

behavior. A veri�er generates states from the description,

comparing them with the speci�cation as it goes. If the

veri�er detects an inconsistency, this fact is reported, along

with an example sequence of states that illustrates how the

problem can occur, to aid in diagnosis. The description of

the protocol can be in many forms: a program-like nota-

tion, a collection of �nite-state machines, or a Petri net, for

example. The simplest speci�cations are for �xed proper-

ties, such as absence of deadlock, or invariants, which are

properties that should be true of individual states. More

sophisticated veri�cation systems can handle speci�cations

in the form of temporal logic formulas or automata.

The usual assumption about the role of formal veri�ca-

tion is to provide a guarantee of design correctness. Al-

though this is a worthy goal, it is very di�cult to achieve.

We take a more \economic" view: the main potential of

formal veri�cation is to reduce the cost and time of product

development.

One of the most important ways to make veri�cation of

large systems possible is down-scaling | pretending that

they are small systems. Most of the bugs in a protocol to

coordinate thousands of processes can be demonstrated us-

ing two or three processes. In this case, down-scaling would

be formally verifying the protocol with two or three pro-

cesses. In some sense, this is the opposite end of the spec-

trum from simulation: instead of testing a small fraction of

the possibilities for a large model of the system, we check

all of the possibilities for a small instance of the system.

Neither method is guaranteed to catch all of the problems,

but down-scaling will almost certainly catch some prob-

lems that simulation will not (and vice-versa | we are not

advocating the elimination of simulation).



2 Description language

The Mur' description was designed to be the simplest

possible usable language that supports nondeterministic,

scalable descriptions. Mur' meets these particular goals

(especially simplicity) better than existing hardware and

protocol description languages. [2, 3, 11, 8, 9, 14, 13].

Mur' describes a system using a set of iterated guarded

commands, like Chandy and Misra's Unity language

(which inspired it) [4].

2.1 Mur' Language

A Mur' description consists of constant and type decla-

rations, variable declarations, procedure declarations, rule

de�nitions, a description of the start state, and a collec-

tion of invariants. An invariant is a Boolean expression

that references the variables.

Rules are written

Rule

Boolean{expression

)

stmSeq

Each rule is a guarded command [6], consisting of a condi-

tion and an action. The condition is a Boolean expression

consisting of constants, declared variables, and operators.

The action is a sequence of statements,

A state is a function that gives values to all of the vari-

ables. An execution of the system is a �nite or in�nite

sequence of states s

0

; s

1

; : : :, where s

0

is determined by

the description of the start state that is part of the de-

scription. If s

i

is any state in the sequence, s

i+1

can be

obtained by applying some rule whose condition is true in

s

i

and whose action transforms s

i

to s

i+1

. In general, s

i

can satisfy several conditions, so there is more than one

execution (nondeterminism). A simulator for Mur' might

choose the rule randomly; a veri�er must somehow cover all

the possibilities. In either case, the invariants are applied

whenever a state is explored; if any invariant is violated,

an error is reported.

Mur' is well-suited for an asynchronous, interleaving

model of concurrency, where atomic steps of individual

processes are assumed to happen in sequence, and one pro-

cess can perform any number of steps between the steps of

the other. When two steps are truly concurrent, there will

be executions that allow them to happen in either order in

the interleaving model. In Mur', concurrent composition

is very easy: to model two processes in parallel, just form

a new description using the union of their rules.

Given the importance of down-scaling in veri�cation,

we have put some e�ort into making it possible to change

the scale of a Mur' description by changing a single pa-

rameter. A Mur' description of a protocol that coor-

dinates n processes can be written with a declared con-

stant (e.g. NumProcesses). Then a subrange Processes :

0..NumProcesses-1 can be declared, and the states of the

processes stored in an array indexed by Processes. Fi-

nally, a collection of nearly identical rules can be de�ned

using the ruleset construct:

Ruleset formal : range Do

ruleSet

Endruleset;

A ruleset can be de�ned that allows the rules for a process

to be instantiated for every process number in the type

Processes.

A description written in this style can be scaled by

changing only the constant declarations.

Quanti�ers in expressions also promote scalability:

Forall a: addressType Do v[a] = w[a] Endforall

is a Boolean expression which is true if all v[a] equal w[a]

over some given address range.

Statements have sequential semantics, i.e. assignments

take place in the environment that has been modi�ed by

all previous assignments. The usual conditional statements

if{then{elsif{else and switch (case) are part of Mur'.

There is a restricted for statement that must have compile-

time constant loop bounds. Mur' procedures are essen-

tially \macros" with parameter type-checking. These con-

structs will probably be generalized in the future, but they

were su�cient for examples described here.

2.2 Speci�cations

Mur' has several features for detecting design errors.

First, it can detect deadlocks, which are de�ned to be states

with no successors other than themselves. Second, an Er-

ror statement can appear in the body of a rule (almost al-

ways imbedded in a conditional). This feature is especially

useful when some branches of an If or Switch statements

are not intended to be reachable. The Error statement

prints a user-supplied error message and causes an error

trace to be printed. There is also an Assert statement,

which is an abbreviation for a conditional error statement.

Finally, the user can de�ne invariants in a separate part

of the Mur' description. An invariant is a Boolean ex-

pression that is desired to be true in every state. When

an invariant is violated, an error message and error trace

a generated.

These speci�cation facilities are limited, because they

do not allow one to directly express properties of sequen-

tial behavior. Another important limitation is the lack of

general facilities for dealing with liveness or fairness prop-

erties. For example, we cannot detect livelocks, a deadlock

in part of the system is masked by activity in another part

of the system. However, we have been able to verify im-

portant properties of real examples using only deadlock,

error, and invariant checking. The speci�cation facilities

of the system will be expanded in the future.

2.3 Mur' Compiler and Veri�er

The Mur' compiler takes a Mur' source description and

generates a C++ program, which is compiled together with

code for a veri�er which check for invariant violations, error

statements, assertion violations, and deadlock.

The veri�er attempts to enumerate all the states of the

system, checking for error conditions as it proceeds. Be-

cause space is at a premium in veri�cation, states are repre-

sented compactly by encoding all scalar types in the mini-

mum possible number of bits, then concatenating the �elds

without regard to byte and word alignment constraints.

This slows down access to �elds somewhat, but is justi�ed

by the massive space savings that result. A hash table

with double hashing that stores reached states is used to

decide e�ciently if a newly-reached state is old (has been

reached already) or new (has not been reached already).

New states are stored in a queue of active states (states

that still need to be explored). Depending on the organi-

zation of this queue, the veri�er does a breadth{�rst search

or a depth{�rst search. Every state in the hash table has

a pointer to a predecessor state that can be used to gener-

ate an error trace if a problem is detected. Breadth{�rst

search is used by default, because it causes the error-traces

to be as short as possible.

3 Experience on larger examples

We have used Mur' on two hardware designs that are

\real" in the sense that they were intended to become

commercial products: a directory-based cache coherence

protocol for a multiprocessor, and a synchronous link-level

communication protocol. In both cases, we began verifying

early in the design phase, basing our Mur' descriptions on



an informal design speci�cation. In both cases, we found

signi�cant errors and omissions and spent a great deal of

time modifying and enhancing the designs to meet our cor-

rectness conditions.

Veri�cation goes through several stages: deciding how

to model the problem (especially, what details to omit);

writing the description; using veri�cation to �nd descrip-

tion errors; and only then discovering genuine design er-

rors.

When the �rst serious design error is discovered, the

system design needs to be modi�ed. But, even if the mod-

i�cation avoids introducing more bugs, more bugs in the

original design are uncovered. The veri�cation process

then enters a tight loop redesign-reverify loop much like

the more traditional edit-compile-debug that programmers

experience.

3.1 Cache coherence protocol

Directory-based cache coherence is a way of implementing

a shared-memory abstraction on top of a message-passing

network, by recording in a central directory which proces-

sors have cached readable or writable copies of a memory

location. Maintaining cache coherence can be somewhat

complicated. For example, if a processor p wants a writable

copy of a location which is cached read-only by processors

fq

i

g, a request for a writable copy is �rst sent from p to

the directory. The directory then sends a writable copy to

p (which can then proceed) and an invalidation message

to every q

i

. Each q

i

invalidates its copy and sends and

acknowledge back to the directory, which is waiting for

all the invalidations to arrive before processing any more

transactions on that location.

Although this single transaction sounds simple enough,

the problem becomes more complicated when one consid-

ers scenarios in which several di�erent transactions on the

same location have been initiated at the same time, espe-

cially when messages are not guaranteed to arrive in the

same order they were sent. A protocol veri�er methodi-

cally explores all of these possibilities.

Since Mur' has no built-in support for message com-

munication, the network was modeled as an array with a

counter of the number of messages it contained. Out-of-

order message reception was modeled using a rule set that

had the position of the message in the array as a param-

eter. The has the e�ect of nondeterministically choosing

a message to process, regardless of the order of message

transmission.

The description has separate scaling parameters (con-

stant declarations) for: number of main memories and di-

rectories, number of caches and processors, number of ad-

dresses, number of legal memory values, size of directory

entry (number of cached entries that can be kept track of),

and capacity of the message network.

The speci�cation of the protocol is not complete. In-

stead, we have speci�ed a set of properties that seem to

be obvious necessary conditions for correct operation. Our

speci�cation made use of in-line error statements, invari-

ants, and deadlock checking. The in-line error statements

were used for several purposes, including reporting on com-

mon description errors, such as over
owing the network

array or the directory. However, the most important error

statements were those that we inserted methodically on ev-

ery unused branch of an if or case, to 
ag presumed impos-

sible occurrences. These error statements were especially

useful for detecting \unspeci�ed receptions" of messages.

Other properties were speci�ed using three invariants.

The �rst checked for conditions that were empirically likely

to be violated by description errors. For example, if the

directory state for a particular memory address is \INV"

(indicating that there are no cached copies), the directory

list of cached copies should be empty.

The other two invariants check for cache consistency

properties. One of these basically asserts that there are

never two modi�able cached copies of the same address,

although the condition is made much more complicated by

various exceptions for transient states. For example, in

this particular protocol there may legally be two modi�-

able copies if one is already being written back to main

memory. Most of these conditions were determined exper-

imentally by starting with simple invariant, running the

veri�er, and inspecting the results to see whether the vio-

lation is because the invariant is too strong or because of

a genuine error.

The �nal invariant asserts that if a cache entry is read-

only, its value is the same as the corresponding value in

main memory. This, too, is tempered by various excep-

tions for transient conditions. For example, the protocol

allows a modi�able copy to be converted to a read-only

copy by writing back the modi�ed value to main memory

and changing the cache entry state. While the writeback

message is in transit, the value of the (now) read-only

cache entry may be di�erent from the (not-yet-written-

back) memory value.

Surprisingly, almost all of the errors found were

found with a description consisting of one main mem-

ory/directory, two processors/caches, and one memory lo-

cation with one possible value (zero bits of data). Verify-

ing at this scale required examining on the order of two

thousand states. Scaling up to three processors, two val-

ues, and two main memories revealed only trivial errors,

such as the use of the constant 0 for a value instead of

the proper variable. In this case, hundreds of thousands

of states were examined. The state explosion problem was

only an issue in verifying scaled-up versions of the system,

where, in fact, no additional problems were discovered.

Many of the in-line error statements were triggered, ev-

ery invariant was violated, and several deadlocks were de-

tected. There were many errors in the modeling, particu-

larly in the handling of the network (e.g. failing to remove

a message after it had been handled). Another more signif-

icant common error was a message arriving at a processor

in an unexpected state, detected by an error statement in

the default case of a switch statement. In many cases, this

represented a legitimate possibility that could be handled

by augmenting the design. In other cases, deeper changes

were required. Many other errors were manifested in ille-

gal global states, such as two processors having writable

copies of a location. Only one memory value was required

because most problems that would lead to inconsistencies

showed up earlier as illegal states.

3.2 Link-level protocol

We also applied Mur' to the problem of verifying a link-

level communication protocol. The protocol is basically

a complicated version of the well-known alternating bit

protocol, in that it uses one-bit sequence numbers to catch

lost and duplicated messages. One of the complications

is that the protocol has the capability of transmitting a

group of several packets as a single unit.

Veri�cation with Mur' caught several fundamental er-

rors in the initial design. Many of these stemmed from

a group of packets being disrupted by the retransmission

of another single packet or group of packets. Redesigning

the protocol to be correct and also meet given performance

goals was quite di�cult, and required over a month of ef-

fort (with countless iterations of the veri�cation{ redesign

cycle).

Three major properties were speci�ed. The �rst two

were that that messages were not lost or duplicated. These

were speci�ed entirely by in-line error checks by exploiting

data independence [15]: the control of the protocol does

not depend on the data being sent.



The description checks for lost and duplicated packets

by sending exactly one packet with a \1" value; all other

packets have value 0. The time at which to send the \1"

packet packet is chosen nondeterministically. If there is

a possibility of a packet being lost or duplicated, there is

a possibility that that packet will be the \1" packet. So

it is su�cient to verify that the \1" packet is not lost or

duplicated. This trick works because the veri�er considers

all of the possible rule executions.

The third property was that a group of packets arrived

together. This property was checked by choosing to send

no more than one group of packets, all of where the data

value in every packet of the group was 1. All other packets

carried the value 0. The description contains in-line error

statements that look for the acceptance of at most one

group of packets with the all values set to 1. A group has

been disrupted if and only if some of its packets are 1 and

some are 0.

We believe that this speci�cation is essentially com-

plete. However, the same approach as we suggested for

the cache coherence protocol of comparing the implemen-

tation protocol with another, more abstract protocol could

be applied. In this case, the more abstract protocol would

model communication over a reliable channel.

Verifying the link-level protocol generally required deal-

ing with larger state spaces than the cache-coherence pro-

tocol; however, all detected design errors were found exam-

ining fewer than 1 million states, which used 11 megabytes

of memory.

4 Conclusions

In summary, automatic formal protocol veri�cation can be

a valuable design aid if

� it is used by a designer in the earliest design phases;

� it is regarded as a debugging tool, not a guarantee of

total correctness;

� the system is modeled at a high level of abstraction;

and

� the system description is down-scaled.

The adoption of these principles maximizes the utility of

veri�cation given the current state of the art: they gain

maximum economic advantage by catching the most ex-

pensive design errors as early as possible, and reduce the

sizes of the state spaces that need to be explored, making

veri�cation computationally feasible.

Our �ndings on the industrial examples we have tried

are:

� There are many bugs to be found in the early design

phase. Veri�cation �nds them quickly.

� The state explosion problem was not severe (because

of adherence to the principles above).

� We were able to catch many errors using relatively

weak speci�cation methods, such as invariants and

deadlock checking.

Formal veri�cation is also feasible without these as-

sumptions, for example in comparing low-level sequential

circuits [5, 7]. Techniques will advance in the future to

increase the payo� for a broader range of problems. How-

ever, for the near-term future, we believe that the highest

payo� can be obtained with these principles.
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