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ABSTRACT
Despite major advances in formal verification, simulation con-
tinues to be the dominant workhorse for functional verification.
Abstraction-guided simulation has long been a promising frame-
work for leveraging the power of formal techniques to help simu-
lation reach difficult target states (assertion violationsor coverage
targets): model checking a smaller, abstracted version of the design
avoids complexity blow-up, yet computes approximate distances
from any state of the actual design to the target; these approximate
distances are used during random simulation to guide the simulator.
Unfortunately, the performance of previous work has been unreli-
able — sometimes great, sometimes poor.

The problem is the guidance strategy. Because the abstract dis-
tances are approximate, a greedy strategy will get stuck in local op-
tima. Previous works expanded the search horizon to try to avoid
dead-ends. We explore such heuristics and find that they tendto
perform poorly, adding too much search overhead for limitedabil-
ity to escape dead-ends. Based on these experiments, we propose a
new guidance strategy, which pursues a more global search and is
better able to avoid getting stuck. Experiments show that our new
guidance strategy is highly effective in most cases that arehard for
random simulation and beyond the capacity of formal verification.

Categories and Subject Descriptors:B.6.3 [Logic Design]: De-
sign Aids – Verification

General Terms: Verification, Algorithms

Keywords: simulation, RTL, model checking, abstraction

1. INTRODUCTION AND BACKGROUND
Formal verification continues to progress, through advances such

as model checking [5, 17], symbolic model checking [4], bounded
model checking [1, 2], and counterexample-guided abstraction re-
finement [13], which have greatly expanded the capacity of formal
verification tools. Conventional simulation, however, remains the
dominant workhorse for industrial hardware validation. Simulation
provides unparalleled capacity for handling design size and com-
plexity, but (or because) it performs no analysis of the state space
of the design. Abstraction and model checking, on the other hand,
derive considerable information exploring the entire state space, but
(therefore) suffer from capacity limitations.

Researchers have long tried to combine the completeness of for-
mal techniques with the speed, capacity, and ease-of-use ofsim-
ulation. The earliest ideas involved augmenting simulation by
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Figure 1: Abstraction-Guided Simulation. The actual (concrete) de-
sign is simplified into an abstract design. An abstraction function a()

maps concrete states into abstract states. Formal verification of the
abstract design partitions the abstract states into “onionrings” — all
states in theith onion ring can reach the abstract target ini cycles. Dur-
ing simulation, the testbench looks for inputs that move the(concrete)
simulation state to one that maps into the next closer onion ring. Be-
cause the abstraction is conservative, all concrete paths to the target
have corresponding abstract paths, but not vice-versa.

small amounts of bounded formal (exhaustive) search on the con-
crete design itself. For example, we could compute a few pre-
images of the target states, in order to create a larger set oftar-
get states, which might be easier to hit via random simulation [20,
22, 21]. Dually, we could exhaustively explore a small neigh-
borhood around heuristically promising states encountered during
simulation, an approach that has demonstrated usefulness in prac-
tice (e.g., “Ketchum” [11], the SCH engine in SixthSense [15],
or methodologically [9]). Because these methods perform formal
analysis on the full design under verification, the extent offormal
analysis must be limited, to prevent complexity blow-up.

A complementary approach, which has also been researched ex-
tensively over the past decade, is to formally analyze a simplified
abstract version of the design. The abstract design can be simplified
enough to be amenable to full formal verification, and the analysis
gives a “big picture” global view of the structure of the state space,
which can direct the simulator in promising directions. Forexam-
ple, the earliest works along these lines [12, 22] abstracted away
all datapath, and then directed the simulator to make (concrete)
state changes to cover all (abstract) control state transitions. Sub-
sequent work tried to cover more general abstractions [8]. Most of
the research on abstraction-guided simulation, however, has used
abstract pre-images from abstract target states as an approximate
distance metric, to help the simulator “home-in” on concrete target
states (e.g., [21, 14, 10, 7, 19, 16, 6, 18]). The target states could be
an assertion violation, or a difficult-to-reach coverage target. Fig. 1
sketches this approach.

Although abstraction-guided simulation is intuitively appealing,
it has yet to deliver on its promise. Results have been inconsis-
tent — sometimes it works amazingly well, but often it doesn’t.
The core problem is dead-end states, as shown in Fig. 2. Worse,
the effect of dead-end states propagates through the abstract pre-
images, because a shorter, but false, path through a dead-end state
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Figure 2: Dead-End States. Because two different concrete states may
map to the same abstract state (e.g., in onion ring 2, above),an abstract
trace might not correspond to any concrete trace. If so, the abstraction
will lead the simulator to a dead-end. Because of the information loss
in the abstraction, the simulator doesn’t know whether it isheaded for
a dead-end and should backtrack, or whether it must search harder to
make forward progress.

will pull the simulator away from longer, real paths. Unfortunately,
the simulator doesn’t know whether it is headed for a dead-end, or
whether it must search harder to make progress. Some researchers
resort to full-formal techniques (e.g., explicit model checking [7],
SAT [19], or abstraction refinement [16]) as a back-up tacticto en-
sure the simulation makes progress. Nevertheless, the fundamental
research issue is good guidance strategies for the simulator, in the
presence of possibly erroneous distance information from the ab-
stract pre-images.

This paper directly addresses the problem of good guidance
strategies. Because the abstract distances are approximate, a greedy
strategy will get stuck in local optima. Previous works expanded
the search horizon to try to avoid dead-ends. In this paper, we first
explore such heuristics and find that they tend to perform poorly,
adding too much search overhead for limited ability to escape dead-
ends. Based on these experiments, we propose a new guidance
strategy, that pursues a more global search and is better able to
avoid getting stuck. Experimental results show that our newguid-
ance strategy is highly effective in most cases that are hardfor ran-
dom simulation and beyond the capacity of formal verification.

2. RESEARCH METHODOLOGY
Because this research is an exploration of heuristics, goodre-

search methodology is paramount to avoid misleading results.
We make the following assumptions about the verification flow:

(1) The target states are specified logically, as would be thecase for
an assertion violation or an unreached coverage target. (2)Random
simulation is used to hit the easy targets quickly. (3) Formal verifi-
cation is applied to any target that isn’t hit via random simulation,
as formal is the only way to prove that a target isnot reachable. (4)
Accordingly, abstraction-guided simulation is relevant only when
simulation fails to reach the target, and formal verification fails to
verify unreachability or generate a concrete trace to the target.

We conducted our research using the EverLost platform [6]. We
used VCEGAR [13] version 0.9 and VIS [3] version 2.1 as our
formal engines; these are the only free formal tools we are aware
of that can handle substantial Verilog designs. We used Synopsys
VCS version 7.2 as our simulator. EverLost automatically gener-
ates a testbench that controls VCS via DirectC.

We use real, publicly available benchmarks for all of our ex-
periments. In particular, our experiments were conducted on de-
sign units from the USB 2.0 Function Core, the USB 1.1 PHY, and
the Ethernet MAC 10/100 Mbps designs from www.opencores.org.
VCEGAR and VIS were unable to handle the original Verilog of

these test cases, so we modified them by hand, then verified equiv-
alence to the original using Synopsys Formality version V-2004.06-
SP1. All data, modified Verilog models, and the EverLost platform
are available at http://www.cs.ubc.ca/∼depaulfm/EverLost.

Runtime results for random simulation have enormous variance,
so statistical analysis is needed to draw valid conclusions. Resource
limitations prevented running all experiments with the same num-
ber of trials, so we report the number of trials for each experiment.
(Indeed, we could not even complete all of our experiments onthe
same speed processors, but the processor for each benchmarkis
reported, and we always compare a single benchmark across differ-
ent heuristics on the same speed processor.) We report the sample
mean runtime for each experiment, as well as a 95% confidence in-
terval for the true mean, based on Student’st-distribution. We also
report minimum and maximum data points for each experiment.

With tunable heuristics, there is always the danger of over-tuning
to a specific benchmark, akin to over-fitting to data in statistics.
We prevent this problem using standard experimental design: for
our proposed new guidance strategy, we tune using one designand
set of properties (the training set), then evaluate using a different
version of the design and different properties (the test set), with no
changes whatsoever to the heuristic. As a further test, we apply the
identical heuristic to a completely different design, again with no
further tuning. These results are reported in Section 5.

3. LOCAL SEARCH EXPERIMENTS
As mentioned above, current abstraction-guided simulation

heuristics typically search the local neighborhood of a concrete
state, trying to find a successor that maps to the next closer onion
ring. For example, the original EverLost heuristic was, from a
given concrete simulation state, to simulateb different random
traces, eachd cycles long, and then move to the “best” state on
those traces, according to the abstract onion rings. We explore this
heuristic space, first varying the breadthb, and then the depthd.

For these experiments, we used as our design under validation
(DUV) two design units from the USB Function Core and USB
PHY designs. Because we needed a large number of experiments,
we focused on two small units from these designs, but as often
arises in practice, we examined the integration of two separate de-
signs. In particular, the DUV is the USB Packet Disassembly Unit
(usbf pd) from the USB Function Core integrated with the USB Re-
ceive Unit (rxphy) from the USB PHY. The DUV contained 121
latches, 4 inputs and 56 outputs. We manually abstracted theDUV
using structural abstraction: the abstract design was the usbf pd
unit alone, which had 74 latches, 11 inputs, and 42 outputs.

We selected 4 properties to try on the DUV, relating to receiving
tokens and/or data with proper acknowledgment:

p1 Can usbfpd receive a token?

p2 Does usbfpd acknowledge receiving data?

p3 Can usbfpd receive a valid token or pid acknowledgment?

p4 Does usbfpd acknowledge receiving a valid token?

We used VIS to model check the abstract design, generating 5 ab-
stract onion rings for p1–p3, and 6 for p4.

Keep in mind that guided simulation imposes a substantial per-
formance penalty over conventional simulation. Any guidance
mechanism needs to know the design state, so the guided simu-
lator must make additional function calls and memory accesses on
each simulation cycle. What’s worse is that making the simulation
state visible at each cycle can disable some compiler optimizations,
imposing a substantial slowdown.1 Therefore, abstraction-guided
1Thanks to Valeria Bertacco for explaining this source of overhead.
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Figure 3: Mean Simulation Time for Varying Search Breadth. The
overhead swamps the benefit of guidance and grows with breadth. Pure
random simulation times for each property (denoted p1r, p2r, p3r, and
p4r) average 29.1, 19.7, 27.1 and 67.9 seconds, respectively. The error
bars show 95% confidence intervals for the true mean.

simulation is useful only if the guidance is good enough to over-
come the large overhead.

3.1 Varying Search Breadth
The most straightforward search strategy is greedy hill-climbing.

From a simulation states, we generateb successors and evaluate all
of them. If any successor is better (maps to a closer onion ring) than
s, we pick the best one. Otherwise, we pick a successor randomly.
The simulation then proceeds from the chosen successor.

The obvious first experiment is to vary the search breadthb: how
many next states do we try when looking for a state that maps toa
better onion ring? If the distances computed from the abstract pre-
images were perfectly accurate, then a greedy search with enough
breadth is guaranteed to find an optimum trace to the target, so one
might assume that greater search breadth will yield better results.

We simulated 60 runs for each property, with varying breadth.
We also ran conventional random simulation. Fig. 3 shows there-
sults. Despite the large error bars, two things are clear: the guided
simulation is much slower than conventional simulation, and the
slowdown getsworse with greater breadth. The overhead of run-
ning b simulation cycles for every cycle of progress dominates the
results; guidance is ineffective, and the guided simulatoris appar-
ently getting stuck in dead-ends and then wandering randomly.

3.2 Varying Search Depth
Another common heuristic is to allow the simulator to randomly

search deeper: from a simulation states, run random simulation for
d cycles, and evaluate all states on that trace. If any successor is
better thans, pick the best one. Otherwise, pick a random state on
the trace. Continue the simulation from the chosen state.

As before, we simulated 60 runs for each property, varyingd.
Fig. 4 presents the results. Exploring depth does much better than
breadth, but still much worse than random. Asd increases, the per-
formance improves. The explanation is that asd → ∞, the depth
heuristic becomes pure random simulation. Indeed, the results ap-
pear to be asymptotically approaching the constant factor slow-
down of guided simulation. In other words, guidance isn’t working.

We can try combining breadth and depth, to get a larger sample
of the local neighborhood of the simulation state. Fig. 5 shows that
the results are similar: breadth (which would help if the distance
metric were perfect) imposes anO(b) slowdown (vs. Fig. 4), and
depth approaches a slowed-down version of random simulation as
d → ∞. The standard heuristics do not work.
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Figure 4: Mean Simulation Time for Varying Search Depth. As
search depth increases, guided search becomes pure random simula-
tion (whose results are as in Fig. 3), but with a constant factor overhead
.
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Figure 5: Mean Simulation Time Varying Search Depth with Breadth
of 3. Combining breadth and depth doesn’t help.

3.3 GUIDO’s SimSearch
To evaluate a sophisticated, state-of-the-art guidance heuris-

tic, we tried out the search heuristic proposed in GUIDO [19].
The GUIDO verification tool contains two search modes: an
abstraction-guided simulation modeSimSearch that fits the frame-
work of this paper, backed up by an exhaustive, formal, SAT-based
procedureSimSAT for when SimSearch gets stuck.

Since the focus of this paper is guidance heuristics, we imple-
mented and evaluated SimSearch. SimSearch explores a bounded
breadthb and depthd from a given state, similarly to the previous
heuristics, but stores all states that reach a different onion ring into
a priority queue. The simulation then proceeds from the beststate
in the priority queue.2 In [19], specific values for neitherb nord are
given. We ran 60 simulations for each property, trying outd = 5,
10, 50, and 100. These simulations found the target only when
d = 100. Next, we tried several values forb, simulating 60 runs
for each property, keepingd = 100. The results, in Fig. 6, show
that increasing breadth has limited impact on simulation time, par-
ticularly compared with the random simulation results. SimSearch
alone is not an effective guidance strategy, necessitatingthe more
expensive SimSAT mechanism in GUIDO.

3.4 Hard Gains, Easy Losses
The intuition behind abstraction-guided simulation is that the

2If the priority queue is empty, the description in [19] of SimSearch
is undefined. Our implementation continues from the currentstate.
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Figure 6: Mean Simulation Time for SimSearch. Even a sophisticated,
recent heuristic loses to random simulation. We vary searchbreadth,
with search depth fixed at 100. Error bars and random simulation
times are as in Figs. 3–5.
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Figure 7: Simulation Trace using Depth of 100 and Breadth of 1.

simulation trace will gradually work its way into closer onion rings,
perhaps with some delays or detours due to dead-end states. How-
ever, an informative picture of the progress of a search strategy
emerges by plotting the onion ring number of the simulation state
over time. Although each trace is unique, Fig. 7 is a typical trace.
What is striking is how hard it is to make progress, but how easy to
lose it. In this trace, the heuristic spends almost all of itstime stuck
at onion ring 3, almost never breaking through. It quickly reached
onion ring 1 a bit before 10,000 cycles, which may or may not
have been a dead end, but then immediately gave up this progress
for more than 60,000 cycles before finally succeeding. All ofthe
traces we have plotted for previous heuristics are qualitatively sim-
ilar. Even SimSearch produces a similar graph (Fig. 8). The chal-
lenge is to develop a heuristic that doesn’t get stuck near dead-ends,
yet aggressively pursues promising states.

4. A NEW GUIDANCE STRATEGY
Two key ideas underlie our new guidance strategy: remembering

multiple states from which to search, and balancing betweengreed
and relaxation.

To remember multiple states from which to continue the search,
we keep “buckets” of previously visited states at each onionring
distance. The buckets for the closest onion rings track the best
states encountered during the simulation, overcoming the problem
of easily giving up hard-earned progress. Equally important, hav-
ing buckets for all distances allows flexibly backing up different
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Figure 8: Simulation Trace using SimSearch with Depth 100 and
Breadth 16. We see the same pattern of hard gains, easy losses.
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Figure 9: Simulation Trace using Algorithm 1 with Depth 100 and
Breadth 1. The behavior is radically different.

distances to avoid dead-ends. Recall that a dead-end is caused by
an abstract transition with no corresponding concrete transition, so
one dead-end will affect many nearby states. The multiple states
in each bucket provide a much more global concept of breadth,
spreading the breadth across the history of the simulation,rather
than the local neighborhood of one state. We implement the buck-
ets as bounded FIFOs, guaranteeing no blow-up in space. Further-
more, using a bounded bucket for each onion ring means that states
at distances that are hard to reach will persist, whereas states at
onion rings where we are stuck will be quickly replaced.

The other challenge is to determine when to push forward from
the current state, when to return to previously visited promising
states, and when to back up to outer onion rings to escape the in-
fluence of a dead-end. The right balance will be different fordif-
ferent designs and different properties, and even for different parts
of the search space of one simulation: in a region of the search
space where the distance metric is wrong, leading to a dead-end,
a guidance heuristic should abandon the current state; in a region
where the distance metric is right, the guidance heuristic should
press ahead. We use randomization to solve this problem. In par-
ticular, we start from the closest (lowest numbered) onion ring with
a non-empty bucket and flip a (fair) coin. Heads means we continue
simulation from a random state in that bucket. Tails means wego
on to the next non-empty bucket. If we reach the outermost onion
ring without choosing a bucket, we repeat this process. Thispro-
cess gives an exponential decrease of the probability of choosing
each non-empty bucket, from the closest to the farthest. This prob-



Algorithm 1 New Abstraction Guided Simulation Algorithm
1: procedure AGS()
2: CS = initial state
3: while (CS!=goalstate)do
4: loop BREADTH
5: curr sample = samplenext state(CS)
6: loop DEPTH
7: distance = abstractand evaluate(currsample)
8: savein bucket(distance, currsample)
9: curr sample = samplenext state(currsample)

10: end loop
11: end loop
12: bkt index = 1; restorebkt index = 0
13: while TRUE do
14: if (flip coin AND bucketis not empty[bkt index]) then
15: restorebkt index = bkt index
16: break
17: end if
18: bkt index++
19: if (bkt index>= onion rings) then
20: bkt index = 1
21: end if
22: end while
23: CS = bucket.randompick(restorebkt index)
24: end while

ability distribution is important because it favors persisting with
promising states (hard gains) while keeping a more global search
(avoiding dead ends). The algorithm is presented in Algorithm 1.

Fig. 9 shows a typical simulation trace with our new heuristic.
This is for the same design and property as in Figs. 7 and 8, but
note that the guided simulation reaches the target 2-3x faster. Qual-
itatively, the difference is striking: once the simulationreaches a
closer onion ring, it persists at that distance, but it’s also flexible
enough to back out to outer onion rings.

5. EXPERIMENTAL EVALUATION

5.1 Tuning the Heuristic on the Training Set
Our new heuristic presented in Section 4 has only two parame-

ters:depth, andbreadth. From the experiments in Section 3, we
selecteddepth andbreadth to be 100 and 1. As noted in Section 2,
we use these parameters for all evaluations of our heuristic, with no
further tuning.

5.2 A Clean Test Set
The task now is to evaluate the heuristic in a different design.

In this section, we report results for the USB Function Core Packet
Layer Unit (usbfpl). Although, this design shares one unit with the
DUV of the training set, namely the usbfpd, none of the properties
verified in this section relates to the training set. Furthermore, the
interconnects we are interested in do not share any signals with the
ones in the DUV of the training set.

We looked into four usbfpl properties:

usb p0 After receiving a transfer command request from the host
processor, does the usbfpl time out if the host does not fol-
low the request with a packet?

usb p1 Has a packet been received and is it ready to be DMAed to
Memory?

usb p2 After sending data to the host in response to a host com-
mand, does the usbfpl time out if no acknowledgment is
properly signaled by the host?

usb p3 Upon receiving data, is the data PID in sequence?

Property Concrete Model VIS on Abstract Model
VCEGAR VIS CPU Time onion rings

usbp0 2128.8s MemOut 66.8s 26
usbp1 42809.2s MemOut 32277.7s 12
usbp2 MemOut MemOut 71.0s 28
usbp3 MemOut MemOut 72.5s 5

Table 1: Formal Verification Trials. VCEGAR runs were on Intel
P4@3.2GHz; VIS, on Sparcv9@900MHz. MemOut is 800MB.

We chose these properties to meet three criteria: first, theyare real
properties, describing interesting behavior of the design; second,
the properties are non-trivial for simulation; and third, they are
challenging to the formal tools as well.

Recall that we use VCEGAR and VIS as our formal tools. VCE-
GAR automatically abstracts the design, whereas for VIS, weman-
ually created a structural abstraction by removing design units not
directly mentioned in the properties being verified. The usbf pl
comprises 4 units: Packet Assembly, Packet Disassembly, DMA
and Memory Interface, and Protocol Engine. Altogether, it has
536 latches, 157 inputs, and 143 outputs. The abstract modelin-
cluded only the Protocol Engine and the DMA and Memory Inter-
face units, and had 397 latches, 170 inputs, and 159 outputs.

Table 1 presents the formal verification results. Both toolshad
trouble with the concrete design, but VIS was able to model check
the structural abstraction for all four properties. Because the struc-
tural abstraction also generated more onion rings, we used those
results for the guided simulation runs.

Table 2 compares guided simulation using the new heuristic to
random simulation. In three of the four cases, the guided simula-
tion performed better than both random simulation and formal ver-
ification. More specifically, for the property usbp0, VIS blows up
when model checking the concrete design, and guided simulation
is two orders of magnitude faster than VCEGAR or conventional
simulation. For usbp1, VIS again blows up, but the other methods
succeed. Random simulation is more than 10x faster than VCE-
GAR or guided simulation (including the abstract model checking
time). On the harder properties, usbp2 and usbp3, both formal
tools ran out of memory, and the random simulations timed outon
every trial, despite running for several days for each trial. Guided
simulation took only hours, and never timed out.

5.3 Case Study on a Separate Design
As an additional test of the robustness of our guided-searchstrat-

egy, we selected a completely different design and followedthe ver-
ification flow methodology assumptions made in Section 2. Thede-
sign is the Ethernet MAC 10/100 Mbps from www.opencores.org.
The verification focused on the core functions of the design com-
prising four units: MAC Control, Transmit, Receive, and Status
units. We tried to hit 14 properties in all. We started with random
simulation and quickly reached 12 of these. The remaining two
properties seemed reasonably difficult for simulation, so we tried
to formally verify them.

After some hand modifications (verified with an equivalence
checker) to accommodate the Verilog limitations of VCEGAR and
VIS, we attempted to formally verify the remaining two proper-
ties. Both tools exhausted the memory available (memory limit
was 800Mbytes). For VIS, we manually abstracted the design,
selecting the Receive unit to be the abstract model, since all the
properties were related to this unit. During the abstraction pro-
cess, we realized a problem with the model: it had multiple-clocks,
and neither formal tool supports this feature. We updated all four



Property (Run) #of Trials Avg (s) (95% Conf. Interval) (Min; Max) (s)
usbp0 (Random) 30 1011.3 (656.8; 1365.8) (27.5; 3999.3)
usbp0 (Guided) 30 1.4 (1.25; 1.72) (0.4; 2.9)

usbp1 (Random) 30 3510.1 (2224.2; 4795.9) (106.8; 10885.5)
usbp1 (Guided) 30 6681.6 (4015.6; 9347.7) (150.8; 28865)

usbp2 (Random) 22 TimeOut0 NA
usbp2 (Guided) 30 10585.6 (6109.7; 15061.4) (481; 51444.4)

usbp3 (Random) 16 TimeOut1 NA
usbp3 (Guided) 30 71687.4 (53804.9; 89570) (4424.3; 224962.7)

Table 2: Random vs. Guided Simulation Time. The time to reach the target is measured in seconds. Simulation times for usbp1 were on a Sparcv9
1.3GHz; others, on a Sparcv9 900MHz. TimeOut0>100 hours. TimeOut1>150 hours.

Property VIS Avg (s) (Min; Max) (s)
abstract (95% Conf. Interval)

model (s)

eth p0
Random NA 19 out of 30 TimeOut0 NA
Guided 1777 20.9 (13.9; 27.9) (1.7; 92)

eth p1
Random NA TimeOut1 NA
Guided 11373 16.1 (12.9; 19.3) (3.7; 38.8)

Table 3: Random vs. Guided Simulation Time. Times were on a
Sparcv9 900MHz. TimeOut0> 3 hours. TimeOut1> 6 hours

units (to maintain synchrony with the simulations) by hand (again,
equivalence checked) and tried again. VCEGAR was still unable to
handle both properties due to either failing to find new predicates
or exhausting the memory available. VIS, however, was able to
verify the abstract model, so we used the VIS results to guidethe
simulation. We ran 30 simulations comparing random and guided
simulation on these two properties. The results in Table 3 show that
on a completely different design, guided simulation helps find the
targets, whereas random simulation is usually timing out.

Unfortunately, we later realized that we had not tried VIS on
the concrete model (which had blown-up earlier) after fixingthe
multiple-clock issue. It turns out VIS finds these two targets in
less than five minutes. Although our oversight weakens the case
study, the results still demonstrate that guided simulation did help
find these two hard-to-reach targets much faster than randomsim-
ulation, on a different design, with no heuristic tuning.

6. CONCLUSION AND FUTURE WORK
Our study of the typical local search heuristics used by mostpre-

vious works on abstraction-guided simulation shows that they are
not effective in avoiding dead-ends. Based on these experiments,
we propose a new heuristic that is better able to avoid dead-ends by
tracking multiple promising states and backing-off when getting
stuck. Experimental results on a variety of designs show excellent
results on hard-to-reach targets, with no heuristic tuning.

The direct line of future work is further experimentation tocon-
firm our results and illuminate the way towards better and even
more robust guidance strategies. More generally, a challenge for
abstraction-guided simulation is how to deal with targets specified
via a non-synthesizable software testbench. Handling suchtargets
is necessary to truly and seamlessly bridge formal and simulation.3

Fortunately, the simulation side needs no modification: anything
that can be done in a simulator can be done in a guided simulator.
To compute the abstract pre-images, we believe software model
checking techniques can apply.

3Thanks to Eyal Bin and Gil Shurek for pointing this out.

With better heuristics and broader applicability, abstraction-
guided simulation will be a valuable tool in the verificationarsenal,
filling the gap between formal verification and simulation.
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