An Effective Guidance Strategy for Abstraction-Guided Siation *

Flavio M. De Paula

Alan J. Hu

Department of Computer Science, University of British Columbia, {depaulfm, ajh}@cs.ubc.ca

ABSTRACT

Despite major advances in formal verification, simulatian-c
tinues to be the dominant workhorse for functional verifaat
Abstraction-guided simulation has long been a promisiagné-
work for leveraging the power of formal techniques to helptsi
lation reach difficult target states (assertion violationgoverage
targets): model checking a smaller, abstracted versiomeodesign
avoids complexity blow-up, yet computes approximate dists
from any state of the actual design to the target; these appate
distances are used during random simulation to guide thalaior.
Unfortunately, the performance of previous work has beeaeliin
able — sometimes great, sometimes poor.

The problem is the guidance strategy. Because the abstsact d
tances are approximate, a greedy strategy will get stuaici bp-
tima. Previous works expanded the search horizon to try eaav
dead-ends. We explore such heuristics and find that theyttend
perform poorly, adding too much search overhead for limétiit-
ity to escape dead-ends. Based on these experiments, wasprap
new guidance strategy, which pursues a more global seattisan
better able to avoid getting stuck. Experiments show thanew
guidance strategy is highly effective in most cases thahare for
random simulation and beyond the capacity of formal vetifica

Categories and Subject Descriptors:B.6.3 [Logic Design]: De-
sign Aids — Verification

General Terms: Verification, Algorithms
Keywords: simulation, RTL, model checking, abstraction

1. INTRODUCTION AND BACKGROUND

Formal verification continues to progress, through adveisaeh
as model checking [5, 17], symbolic model checking [4], kdmoh
model checking [1, 2], and counterexample-guided abstrace-
finement [13], which have greatly expanded the capacity whéb
verification tools. Conventional simulation, however, sns the
dominant workhorse for industrial hardware validatiorm8lation
provides unparalleled capacity for handling design siz @m-
plexity, but (or because) it performs no analysis of theessaiace
of the design. Abstraction and model checking, on the othadh
derive considerable information exploring the entireestgtace, but
(therefore) suffer from capacity limitations.

Researchers have long tried to combine the completenees-of f
mal techniques with the speed, capacity, and ease-of-usinef
ulation. The earliest ideas involved augmenting simutatiy

*This work was supported in part by a research grant from the Na
ural Sciences and Engineering Research Council of Canada.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

DAC 2007, June 4-8, 2007, San Diego, California, USA.

Copyright 2007 ACM 978-1-59593-627-1/07/000655.00.

Abstract Pre-Images

Concrete
Simulation
Trace...

Figure 1: Abstraction-Guided Simulation. The actual (concrete) de-
sign is simplified into an abstract design. An abstraction function a()
maps concrete states into abstract states. Formal verificain of the
abstract design partitions the abstract states into “onionrings” — all
states in theith onion ring can reach the abstract target ini cycles. Dur-
ing simulation, the testbench looks for inputs that move thgconcrete)
simulation state to one that maps into the next closer onioning. Be-
cause the abstraction is conservative, all concrete paths the target
have corresponding abstract paths, but not vice-versa.

small amounts of bounded formal (exhaustive) search ondhe c
crete design itself. For example, we could compute a few pre-
images of the target states, in order to create a larger setr-of
get states, which might be easier to hit via random simuig20,
22, 21]. Dually, we could exhaustively explore a small neigh
borhood around heuristically promising states encoudtdrging
simulation, an approach that has demonstrated usefulngsag-
tice (e.g., “Ketchum” [11], the SCH engine in SixthSense][15
or methodologically [9]). Because these methods perfornmé#b
analysis on the full design under verification, the exterfooial
analysis must be limited, to prevent complexity blow-up.

A complementary approach, which has also been researched ex
tensively over the past decade, is to formally analyze a Igfiegh
abstract version of the design. The abstract design camimified
enough to be amenable to full formal verification, and thdyais
gives a “big picture” global view of the structure of the stapace,
which can direct the simulator in promising directions. Egam-
ple, the earliest works along these lines [12, 22] abstdaateay
all datapath, and then directed the simulator to make (ebekr
state changes to cover all (abstract) control state tiansit Sub-
sequent work tried to cover more general abstractions [&)st\f
the research on abstraction-guided simulation, howe,used
abstract pre-images from abstract target states as anxappte
distance metric, to help the simulator “home-in” on conetarget
states (e.g., [21, 14, 10, 7, 19, 16, 6, 18]). The targetstateld be
an assertion violation, or a difficult-to-reach coveraggéa Fig. 1
sketches this approach.

Although abstraction-guided simulation is intuitivelypsaling,
it has yet to deliver on its promise. Results have been insoens
tent — sometimes it works amazingly well, but often it doésn’
The core problem is dead-end states, as shown in Fig. 2. Worse
the effect of dead-end states propagates through the etbptex
images, because a shorter, but false, path through a deastae

Abstract Pre-Images

Concrete

Simulation :
Trace... : o target
Dead End!

Figure 2: Dead-End States. Because two different concrete states may
map to the same abstract state (e.g., in onion ring 2, abovegn abstract
trace might not correspond to any concrete trace. If so, thelastraction
will lead the simulator to a dead-end. Because of the informizon loss

in the abstraction, the simulator doesn’t know whether it isheaded for

a dead-end and should backtrack, or whether it must search haler to
make forward progress.

will pull the simulator away from longer, real paths. Unfarately,
the simulator doesn’t know whether it is headed for a deatj-en
whether it must search harder to make progress. Some rbsearc
resort to full-formal techniques (e.g., explicit model ckiag [7],
SAT [19], or abstraction refinement [16]) as a back-up tatctien-
sure the simulation makes progress. Nevertheless, thafueoctal
research issue is good guidance strategies for the simtilatine
presence of possibly erroneous distance information fioenab-
stract pre-images.

these test cases, so we modified them by hand, then verifiéd equ
alence to the original using Synopsys Formality versior034206-
SP1. All data, modified Verilog models, and the EverLostfptat
are available at http://www.cs.ubc.eaepaulfm/EverLost.

Runtime results for random simulation have enormous vaeian
so statistical analysis is needed to draw valid conclusiBesource
limitations prevented running all experiments with the samm-
ber of trials, so we report the number of trials for each expent.
(Indeed, we could not even complete all of our experimentten
same speed processors, but the processor for each bencismark
reported, and we always compare a single benchmark aciftess di
ent heuristics on the same speed processor.) We reportrtipesa
mean runtime for each experiment, as well as a 95% confidence i
terval for the true mean, based on Studentkstribution. We also
report minimum and maximum data points for each experiment.

With tunable heuristics, there is always the danger of tweing
to a specific benchmark, akin to over-fitting to data in stiats
We prevent this problem using standard experimental dedan
our proposed new guidance strategy, we tune using one dasthn
set of properties (the training set), then evaluate usiniferent
version of the design and different properties (the te$t sath no
changes whatsoever to the heuristic. As a further test, wiy &pe
identical heuristic to a completely different design, agaith no
further tuning. These results are reported in Section 5.

3. LOCAL SEARCH EXPERIMENTS

As mentioned above, current abstraction-guided simuiatio

This paper directly addresses the problem of good guidance heuristics typically search the local neighborhood of accete

strategies. Because the abstract distances are apprexargaeedy
strategy will get stuck in local optima. Previous works exghed
the search horizon to try to avoid dead-ends. In this papefinat
explore such heuristics and find that they tend to perfornripoo
adding too much search overhead for limited ability to escgad-

ends. Based on these experiments, we propose a new guidanc

strategy, that pursues a more global search and is bettertabl
avoid getting stuck. Experimental results show that our gaia-
ance strategy is highly effective in most cases that are foann-
dom simulation and beyond the capacity of formal verifiaatio

2. RESEARCH METHODOLOGY

Because this research is an exploration of heuristics, geod
search methodology is paramount to avoid misleading iesult

We make the following assumptions about the verification flow
(1) The target states are specified logically, as would bedke for
an assertion violation or an unreached coverage targeRg@)om
simulation is used to hit the easy targets quickly. (3) Fonesfi-
cation is applied to any target that isn’t hit via random daion,
as formal is the only way to prove that a targetds reachable. (4)
Accordingly, abstraction-guided simulation is relevantyowhen
simulation fails to reach the target, and formal verificatiails to
verify unreachability or generate a concrete trace to ttgeta

We conducted our research using the EverLost platform [&. W
used VCEGAR [13] version 0.9 and VIS [3] version 2.1 as our
formal engines; these are the only free formal tools we araw
of that can handle substantial Verilog designs. We used [®y%0
VCS version 7.2 as our simulator. EverLost automaticallyege
ates a testbench that controls VCS via DirectC.

We use real, publicly available benchmarks for all of our ex-
periments. In particular, our experiments were conductede
sign units from the USB 2.0 Function Core, the USB 1.1 PHY, and
the Ethernet MAC 10/100 Mbps designs from www.opencorgs.or
VCEGAR and VIS were unable to handle the original Verilog of

state, trying to find a successor that maps to the next closeno
ring. For example, the original EverLost heuristic was,nira
given concrete simulation state, to simuldtelifferent random
traces, eactd cycles long, and then move to the “best” state on
those traces, according to the abstract onion rings. Weexhis

beuristic space, first varying the breati{rand then the depi.

For these experiments, we used as our design under vatidatio
(DUV) two design units from the USB Function Core and USB
PHY designs. Because we needed a large number of experiments
we focused on two small units from these designs, but as often
arises in practice, we examined the integration of two s#pate-
signs. In particular, the DUV is the USB Packet Disassembiit U
(usbtpd) from the USB Function Core integrated with the USB Re-
ceive Unit (rxphy) from the USB PHY. The DUV contained 121
latches, 4 inputs and 56 outputs. We manually abstracteDthé
using structural abstraction: the abstract design was shépd
unit alone, which had 74 latches, 11 inputs, and 42 outputs.

We selected 4 properties to try on the DUV, relating to reogiv
tokens and/or data with proper acknowledgment:

pl Can usbfpd receive a token?

p2 Does ushfpd acknowledge receiving data?

p3 Can usbfpd receive a valid token or pid acknowledgment?
p4 Does ushfpd acknowledge receiving a valid token?

We used VIS to model check the abstract design, generatiig 5 a
stract onion rings for p1—p3, and 6 for p4.

Keep in mind that guided simulation imposes a substantial pe
formance penalty over conventional simulation. Any guian
mechanism needs to know the design state, so the guided simu-
lator must make additional function calls and memory acess
each simulation cycle. What's worse is that making the satioh
state visible at each cycle can disable some compiler opitioins,
imposing a substantial slowdowin Therefore, abstraction-guided

1Thanks to Valeria Bertacco for explaining this source ofrbead.

14000

12000

10000

8000

6000

4000

2000

Simulation Time To Reach Target (sec.)

Breadth

Figure 3: Mean Simulation Time for Varying Search Breadth. The
overhead swamps the benefit of guidance and grows with breddt Pure
random simulation times for each property (denoted p1r, p2r p3r, and
p4r) average 29.1, 19.7, 27.1 and 67.9 seconds, respecjivdlhe error
bars show 95% confidence intervals for the true mean.

simulation is useful only if the guidance is good enough terev
come the large overhead.

3.1 Varying Search Breadth

The most straightforward search strategy is greedy hitMzing.
From a simulation statg we generatb successors and evaluate all
of them. If any successor is better (maps to a closer onig) tiran
s, we pick the best one. Otherwise, we pick a successor rarydoml
The simulation then proceeds from the chosen successor.

The obvious first experiment is to vary the search brebdbow
many next states do we try when looking for a state that maps to
better onion ring? If the distances computed from the atisna-
images were perfectly accurate, then a greedy search watigén
breadth is guaranteed to find an optimum trace to the tagens
might assume that greater search breadth will yield bettarlts.

We simulated 60 runs for each property, with varying breadth
We also ran conventional random simulation. Fig. 3 showsehe
sults. Despite the large error bars, two things are cleargtlided
simulation is much slower than conventional simulationd &me
slowdown getsworse with greater breadth. The overhead of run-
ning b simulation cycles for every cycle of progress dominates the
results; guidance is ineffective, and the guided simulest@ppar-
ently getting stuck in dead-ends and then wandering randoml

3.2 Varying Search Depth

Another common heuristic is to allow the simulator to rantiom
search deeper: from a simulation stateun random simulation for
d cycles, and evaluate all states on that trace. If any suocéss
better thars, pick the best one. Otherwise, pick a random state on
the trace. Continue the simulation from the chosen state.

As before, we simulated 60 runs for each property, varging
Fig. 4 presents the results. Exploring depth does muchrtibta
breadth, but still much worse than random. dhimicreases, the per-
formance improves. The explanation is thatdas> «, the depth
heuristic becomes pure random simulation. Indeed, thdtsemsor
pear to be asymptotically approaching the constant fadtv-s
down of guided simulation. In other words, guidance isn’tkiag.

We can try combining breadth and depth, to get a larger sample
of the local neighborhood of the simulation state. Fig. Srshthat
the results are similar: breadth (which would help if thetatise
metric were perfect) imposes @ib) slowdown (vs. Fig. 4), and
depth approaches a slowed-down version of random simuolago
d — . The standard heuristics do not work.

1200

1000

800

600

400

200

Simulation Time To Reach Target (sec.)

100
Depth (Log Scale)

10

Figure 4. Mean Simulation Time for Varying Search Depth. As
search depth increases, guided search becomes pure randoimsla-
tion (whose results are as in Fig. 3), but with a constant factr overhead

1800

1600

1400

1200

1000

800

600

400

Simulation Time To Reach Target (sec.)

200

i

10 100

Depth (Log Scale)

Figure 5: Mean Simulation Time Varying Search Depth with Breadth
of 3. Combining breadth and depth doesn’t help.

3.3 GUIDO’s SimSearch

To evaluate a sophisticated, state-of-the-art guidanaegiie
tic, we tried out the search heuristic proposed in GUIDO [19]
The GUIDO verification tool contains two search modes: an
abstraction-guided simulation mo&mSearch that fits the frame-
work of this paper, backed up by an exhaustive, formal, Sédehl
procedureSmSAT for when SimSearch gets stuck.

Since the focus of this paper is guidance heuristics, wedampl
mented and evaluated SimSearch. SimSearch explores adgzbund
breadthb and depthd from a given state, similarly to the previous
heuristics, but stores all states that reach a differertroning into
a priority queue. The simulation then proceeds from the &iese
in the priority queué. In [19], specific values for neithérnord are
given. We ran 60 simulations for each property, trying dut 5,

10, 50, and 100. These simulations found the target only when
d = 100. Next, we tried several values for simulating 60 runs

for each property, keepind = 100. The results, in Fig. 6, show
that increasing breadth has limited impact on simulatioretipar-
ticularly compared with the random simulation results. Search
alone is not an effective guidance strategy, necessitdtiegnore
expensive SImSAT mechanism in GUIDO.

3.4 Hard Gains, Easy Losses
The intuition behind abstraction-guided simulation istttiee

2|f the priority queue is empty, the description in [19] of Semarch
is undefined. Our implementation continues from the curseate.

1400

1200 |

1000 |

800 |

600 [

400 |

200 |

Simulation Time To Reach Target (sec.)

20 30 50 60

Breadth

40

Figure 6: Mean Simulation Time for SimSearch. Even a sophisticated,
recent heuristic loses to random simulation. We vary searcHreadth,
with search depth fixed at 100. Error bars and random simulatbn
times are as in Figs. 3-5.

5

p4

Abstract Distance

0 L L L L L L L
0.0e+00 1.0e+06 2.0e+06 3.0e+06 4.0e+06 5.0e+06 6.0e+06 7.0e+06
Explored States

Figure 7: Simulation Trace using Depth of 100 and Breadth of 1.

simulation trace will gradually work its way into closer onirings,
perhaps with some delays or detours due to dead-end staies. H
ever, an informative picture of the progress of a searchegtya
emerges by plotting the onion ring number of the simulaties
over time. Although each trace is unique, Fig. 7 is a typicate.
What is striking is how hard it is to make progress, but hovwy¢as
lose it. In this trace, the heuristic spends almost all diiite stuck

at onion ring 3, almost never breaking through. It quicklsaieed
onion ring 1 a hit before 10,000 cycles, which may or may not
have been a dead end, but then immediately gave up this geogre
for more than 60,000 cycles before finally succeeding. Alfhaf
traces we have plotted for previous heuristics are quiaigtsim-

ilar. Even SimSearch produces a similar graph (Fig. 8). Tia-c
lenge is to develop a heuristic that doesn'’t get stuck nezal-geds,
yet aggressively pursues promising states.

4. A NEW GUIDANCE STRATEGY

Two key ideas underlie our new guidance strategy: rememdperi
multiple states from which to search, and balancing betvgeeed
and relaxation.

To remember multiple states from which to continue the sgarc
we keep “buckets” of previously visited states at each oming
distance. The buckets for the closest onion rings track &t b
states encountered during the simulation, overcoming riblelgm
of easily giving up hard-earned progress. Equally impdrtaav-
ing buckets for all distances allows flexibly backing up eliént

”

Abstract Distance
N w
L

s s s
6.0e+06 8.0e+06 1.0e+07

Explored States

0 s s
0.0e+00 2.0e+06 4.0e+06

Figure 8: Simulation Trace using SimSearch with Depth 100 and

Breadth 16. We see the same pattern of hard gains, easy losses

P4~ -

Abstract Distance

L L L
1.7e+06 2.6e+06 3.4e+06

Explored States

0 L
0.0e+00 8.5e+05

Figure 9: Simulation Trace using Algorithm 1 with Depth 100 and
Breadth 1. The behavior is radically different.

distances to avoid dead-ends. Recall that a dead-end iscchys

an abstract transition with no corresponding concretesttian, so

one dead-end will affect many nearby states. The multiftest

in each bucket provide a much more global concept of breadth,
spreading the breadth across the history of the simulatather
than the local neighborhood of one state. We implement tiok-bu
ets as bounded FIFOs, guaranteeing no blow-up in spacehdrurt
more, using a bounded bucket for each onion ring means titasst

at distances that are hard to reach will persist, whereassséd
onion rings where we are stuck will be quickly replaced.

The other challenge is to determine when to push forward from
the current state, when to return to previously visited psimg
states, and when to back up to outer onion rings to escap@-the i
fluence of a dead-end. The right balance will be differentdifr
ferent designs and different properties, and even for iffeparts
of the search space of one simulation: in a region of the bearc
space where the distance metric is wrong, leading to a dedd-e
a guidance heuristic should abandon the current state; égian
where the distance metric is right, the guidance heuristaukl
press ahead. We use randomization to solve this problemarkn p
ticular, we start from the closest (lowest numbered) oniog with
a non-empty bucket and flip a (fair) coin. Heads means wemoati
simulation from a random state in that bucket. Tails meangave
on to the next non-empty bucket. If we reach the outermosironi
ring without choosing a bucket, we repeat this process. pitds
cess gives an exponential decrease of the probability afsthg
each non-empty bucket, from the closest to the farthest pitub-

Algorithm 1 New Abstraction Guided Simulation Algorithm Property Concrete Model VIS on Abstract Model
VCEGAR | VIS CPU Time | onion rings
1: procedure AGS()

2: CS = initial state ushp0 2128.8s| MemOut 66.8s 26

3: while (CS!=goalstate)do ushpl 42809.2s| MemOut 32277.7s 12

4 loop BREADTH ushp2 MemOut | MemOut 71.0s 28

5: currsample = sampl@ext state(CS) ushp3 MemOut | MemOut 72.58 5

6: loop DEPTH

7. distance = abstragind evaluate(currsample)

8 savein_bucket(distance, cursample) Table 1: Formal Verification Trials. VCEGAR runs were on Intel

9: curr_sample = sampleext state(currsample) P4@3.2GHz; VIS, on Sparcvd@900MHz. MemOut is 800MB.

10: end loop

11: endloop

12: bktindex = 1; restoréoktindex = 0) L

13: while TRUE do We chose these properties to meet three criteria: first,aheyeal

14: if (flip_coin AND bucketis_not empty[bktindex]) then properties, describing interesting behavior of the desggrond,

15: restorebkt.index = bktindex the properties are non-trivial for simulation; and thirtley are

16: break challenging to the formal tools as well.

1r end if Recall that we use VCEGAR and VIS as our formal tools. VCE-

18: bkt.index++ - .

19: if (bktindex >— onion rings)then GAR automatically abstracts the Qe5|gn, Wheregs for \{|SNHB-

20: bkt index = 1 ually created a structural abstraction by removing desigts unot

21: end if directly mentioned in the properties being verified. Thefysb

22: end while comprises 4 units: Packet Assembly, Packet DisassemblyA DM

23: CS = bucket.randonpick(restorebkt index) and Memory Interface, and Protocol Engine. Altogether,ais h

24: end while 536 latches, 157 inputs, and 143 outputs. The abstract niodel
cluded only the Protocol Engine and the DMA and Memory Inter-

o) L face units, and had 397 latches, 170 inputs, and 159 outputs.

ability distribution is important because it favors petisig with Table 1 presents the formal verification results. Both tdwald

promising states (hard gains) while keeping a more globaicke {royple with the concrete design, but VIS was able to modetkh

(avoiding dead ends). The algorithm is presented in Algorif. the structural abstraction for all four properties. Beesiln struc-

Fig. 9 shows a typical simulation trace with our new hewisti {13l abstraction also generated more onion rings, we Useskt
This is for the same design and property as in Figs. 7 and 8, but ;oqits for the guided simulation runs.

note that the guided simulation reaches the target 2-3arfaQual- Table 2 compares guided simulation using the new heuristic t
itatively, the difference is striking: once the simulati®aches a random simulation. In three of the four cases, the guidedilsim
closer onion ring, it persists at that distance, but it®dlsxible tion performed better than both random simulation and fores
enough to back out to outer onion rings. ification. More specifically, for the property ugi, VIS blows up
when model checking the concrete design, and guided siionilat
5. EXPERIMENTAL EVALUATION is two orders of magnitude faster than VCEGAR or conventiona
simulation. For uslkpl, VIS again blows up, but the other methods
5.1 Tuning the Heuristic on the Training Set succeed. Random simulation is more than 10x faster than VCE-

Our new heuristic presented in Section 4 has only two parame- GAR or guided simulation (including the abstract mode! &ireg
ters: depth, andbreadth. From the experiments in Section 3, we 1Me). On the harder properties, upB and ustp3, both formal
selectectlepth andbreadth to be 100 and 1. As noted in Section 2, tools ran out of memory, and the random simulations timecdaut

we use these parameters for all evaluations of our heynisitic no every trial, despite running for several days for each.t@lided
further tuning. simulation took only hours, and never timed out.

5.2 AClean Test Set 5.3 Case Study on a Separate Design
The task now is to evaluate the heuristic in a different desig As an additional test of the robustness of our guided-sesiral
In this section, we report results for the USB Function Caaekiét egy, we selected a completely different design and follothied/er-

Layer Unit (usbfpl). Although, this design shares one unit with the ification flow methodology assumptions made in Section 2. dée
DUV of the training set, namely the uspfi, none of the properties sign is the Ethernet MAC 10/100 Mbps from www.opencores.org
verified in this section relates to the training set. Furthee, the The verification focused on the core functions of the desigm-c

interconnects we are interested in do not share any sigritishve prising four units: MAC Control, Transmit, Receive, and tB&a
ones in the DUV of the training set. units. We tried to hit 14 properties in all. We started withadam
We looked into four ushpl properties: simulation and quickly reached 12 of these. The remaininy tw

properties seemed reasonably difficult for simulation, sotred
ush p0 After receiving a transfer command request from the host to formally verify them.

processor, does the uspftime out if the host does not fol- After some hand modifications (verified with an equivalence

low the request with a packet? checker) to accommodate the Verilog limitations of VCEGARI a
usb_pl Has a packet been received and is it ready to be DMAed to VIS, we attempted to formally verify the remaining two prope

Memory? ties. Both tools exhausted the memory available (memorit lim

was 800Mbytes). For VIS, we manually abstracted the design,

. . - selecting the Receive unit to be the abstract model, sifdhel
mand, does the usll time out if no acknowledgment is . ,herties were related to this unit. During the abstracpeo-
properly signaled by the host? cess, we realized a problem with the model: it had multifbeics,

ush_p3 Upon receiving data, is the data PID in sequence? and neither formal tool supports this feature. We updatetbait

ush_p2 After sending data to the host in response to a host com-

Table 2: Random vs. Guided Simulation Time. The time to reach the targt is measured in seconds. Simulation times for usp1 were on a Sparcv9

Property (Run) || #of Trials || Avg (s) (95% Conf. Interval)] (Min; Max) (s)
ushp0 (Random) 30 1011.3 (656.8; 1365.8) (27.5; 3999.3)
ushpO (Guided) 30 1.4 (1.25;1.72) (0.4;2.9)
ushpl (Random) 30 3510.1 (2224.2; 4795.9) (106.8; 10885.5)
ushpl (Guided) 30 6681.6 (4015.6; 9347.7) (150.8; 28865)
ushp2 (Random) 22 TimeOut0 NA
ushp? (Guided) 30 10585.6 (6109.7; 15061.4) (481;51444.4)
ushp3 (Random) 16 TimeOutl NA
ushp3 (Guided) 30 71687.4 (53804.9;89570) | (4424.3;224962.7

1.3GHz; others, on a Sparcv9 900MHz. TimeOut8 100 hours. TimeOut1>150 hours.

With better heuristics and broader applicability, abgtome
guided simulation will be a valuable tool in the verificatiarsenal,
filling the gap between formal verification and simulation.

7. REFERENCES

Property VIS Avg (s) (Min; Max) (s)
abstract (95% Conf. Interval)
model (s)
eth p0
Random NA 19 out of 30 TimeOut0 NA
Guided 1777 20.9 (13.9; 27.9) (1.7;92)
ethpl
Random NA TimeOutl NA
Guided 11373 16.1(12.9; 19.3) (3.7, 38.8)

Table 3: Random vs. Guided Simulation Time. Times were on a

Sparcv9 900MHz. TimeOut0> 3 hours. TimeOutl > 6 hours

units (to maintain synchrony with the simulations) by haagain,
equivalence checked) and tried again. VCEGAR was still lentb
handle both properties due to either failing to find new pratts
or exhausting the memory available. VIS, however, was able t
verify the abstract model, so we used the VIS results to gthide

simulation. We ran 30 simulations comparing random andeglid

simulation on these two properties. The results in Tableo8/ghat
on a completely different design, guided simulation helpd the
targets, whereas random simulation is usually timing out.
Unfortunately, we later realized that we had not tried VIS on
the concrete model (which had blown-up earlier) after fixihg
multiple-clock issue. It turns out VIS finds these two tasget

less than five minutes. Although our oversight weakens tise ca

study, the results still demonstrate that guided simuhadii help
find these two hard-to-reach targets much faster than rarsiiom
ulation, on a different design, with no heuristic tuning.

6. CONCLUSION AND FUTURE WORK

Our study of the typical local search heuristics used by st
vious works on abstraction-guided simulation shows they #re
not effective in avoiding dead-ends. Based on these expatin
we propose a new heuristic that is better able to avoid dedd-ey
tracking multiple promising states and backing-off wheitigg
stuck. Experimental results on a variety of designs shovelexat

results on hard-to-reach targets, with no heuristic tuning

The direct line of future work is further experimentationcm-

firm our results and illuminate the way towards better ancheve

more robust guidance strategies. More generally, a ctydldor
abstraction-guided simulation is how to deal with targeescified
via a non-synthesizable software testbench. Handling wargets
is necessary to truly and seamlessly bridge formal and sitionl3
Fortunately, the simulation side needs no modification:ttang
that can be done in a simulator can be done in a guided simulato [22]
To compute the abstract pre-images, we believe softwaresimod
checking techniques can apply.

3Thanks to Eyal Bin and Gil Shurek for pointing this out.

(1
(2]

3

[4

(6]

[7

&l
0]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]
(18]
[29]
[20]

[21]

A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic mel checking
without BDDs.TACAS, pp. 193-207. Springer, 1999. LNCS 1579.

V. Boppana, S. P. Rajan, K. Takayama, and M. Fujita. Mathelcking based on
sequential ATPGCAV, pp. 418-430. Springer, 1999. LNCS 1633.

R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincenielf. Somenzi, A. Aziz,
S.-T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. PardoQ&deer, R. K.
Ranjan, S. Sarwary, T. R. Shiple, G. Swamy, and T. Villa. \ASystem for
verification and synthesi€AV, pp. 428-432. Springer, 1996. LNCS 1102.
J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and LJ. Hwang.
Symbolic model checking: £0 states and beyontlICS, pp. 428-439, 1990.
E. M. Clarke and E. A. Emerson. Design and synthesis otkyanization
skeletons using branching time temporal log\kshp Logics of Programs, pp.
52-71, 1981. LNCS 131.

F. M. de Paula and A. J. Hu. EverLost: A flexible platfornt fo
industrial-strength abstraction-guided simulatiGAV, pp. 282—-285. Springer,
2006. LNCS 4144.

S. Edelkamp and A. Lluch-Lafuente. Abstraction in diestmodel checking.
Wkshp Connecting Planning Theory and Practice, pp. 7-13, 2004.

M. K. Ganai and A. Aziz. Rarity based guided state spaceceGLSVLS, pp.
97-102. ACM, 2001.

S. Gorali, S. Biswas, L. Bhatia, P. Tiwari, and R. S. Mitbérected-simulation
assisted formal verification of serial protocol and bridgaC, pp. 731-736.
ACM/IEEE, 2006.

A. Gupta, A. E. Casavant, P. Ashar, X. G. S. Liu, A. Mulaiya, and

K. Wakabayashi. Property-specific testbench generatioguioled simulation.
ASPDAC and VLSID, pp. 524-531. IEEE, 2002.

P.-H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano, \érBacco, J. Taylor,
and J. Long. Smart simulation using collaborative formal simulation
enginesICCAD, pp. 120-126. IEEE/ACM, 2000.

R. C. Ho, C. H. Yang, M. A. Horowitz, and D. L. Dill. Arctecture validation
for processord.SCA, 1995.

H. Jain, D. Kroening, N. Sharygina, and E. Clarke. Waael predicate
abstraction and refinement for verifying RTL verilddAC, pp. 445-450.
ACM/IEEE, 2005.

A. Kuehimann, K. L. McMillan, and R. K. Brayton. Probdibtic state space
searchl|CCAD, pp. 574-579. IEEE/ACM, 1999.

H. Mony, J. Baumgartner, V. Paruthi, R. Kanzelman, an&aehlmann.
Scalable automated verification via expert-system guidedsformations.
FMCAD, pp. 159—173. Springer, 2004. LNCS 3312.

K. Nanshi and F. Somenzi. Guiding simulation with iresengly refined
abstract trace©AC, pp. 737-742. ACM/IEEE, 2006.

J.-P. Queille and J. Sifakis. Specification and verfaaof concurrent systems
in Cesarlntl Symp Programming, pp. 337-351. Springer, 1981. LNCS 137.
N. Rungta and E. G. Mercer. An improved distance heiarfsnction for
directed software model checkingMCAD, pp. 60-67. IEEE, 2006.

S. Shyam and V. Bertacco. Distance-guided hybrid \eifon with GUIDO.
DATE, pp. 1211-1216, 2006.

C. H. Yang and D. L. Dill. SpotLight: Best-first searchl6M state space.
HLDVT, 1996.

C. H. Yang and D. L. Dill. Validation with guided searchtbe state space.
DAC, pp. 599-604. ACM/IEEE, 1998.

J. Yuan, J. Shen, J. Abraham, and A. Aziz. On combinimgnéd and informal
verification.CAV, pp. 376-387. Springer, 1997. LNCS 1254.

