
An Inference-Rule-Based Decision Procedure for
Verification of Heap-Manipulating Programs with

Mutable Data and Cyclic Data Structures⋆

Zvonimir Rakamarić1, Jesse Bingham2, and Alan J. Hu1

1 Department of Computer Science, University of British Columbia, Canada
{zrakamar,ajh}@cs.ubc.ca

2 Intel Corporation, Hillsboro, Oregon, USA
jesse.d.bingham@intel.com

Abstract. Research on the automatic verification of heap-manipulating programs
(HMPs) — programs that manipulate unbounded linked data structures via point-
ers — has blossomed recently, with many different approaches all showing leaps
in performance and expressiveness. A year ago, we proposed asmall logic for
specifying predicates about HMPs and demonstrated that an inference-rule-based
decision procedure could be performance-competitive, andin many cases supe-
rior to other methods known at the time. That work, however, was a proof-of-
concept, with a logic fragment too small to verify most real programs. In this
work, we generalize our previous results to be practically useful: we allow the
data in heap nodes to be mutable, we allow more than a single pointer field, and
we add new primitives needed to verify cyclic structures. Each of these exten-
sions necessitates new or changed inference rules, with theconcomitant changes
to the proofs and decision procedure. Yet, our new decision procedure, with the
more general logic, actually runs as fast as our previous results. With these gen-
eralizations, we can automatically verify many more HMP examples, including
three small container functions from the Linux kernel.

1 Introduction

Heap-manipulating programs(HMPs) are programs that access and modify linked data
structures consisting of an unbounded number of uniformheap nodes. They are a some-
what idealized model of programs with dynamic memory allocation, and given that
most real software applications use dynamic memory allocation, they are an important
frontier for software verification.

Research on verification of HMPs has blossomed recently, with over a dozen papers
published in the past year alone, and many different approaches showing incredible
progress. For example, automatically verifying the sortedness of applying bubble sort
to a singly-linked list required well over 4 minutes of runtime for a state-of-the-art
approach a year and a half ago [25], whereas by a year ago, we could verify sortedness
(and no memory leaks or cycles) in less than 2 minutes [2]. Verifying no leaks or cycles

⋆ This work was supported by a research grant from the Natural Sciences and Engineering Re-
search Council of Canada and a University of British Columbia Graduate Fellowship.

(but not sortedness) took us only 11.4 seconds, but this verification could be done in
a mere 0.08 seconds a half year later! [29] While one may quibble about details when
comparing performance results in this research area (e.g.,machine speeds vary slightly,
many papers do not report exact run times or the precise property being verified, amount
of human effort is hard to quantify, etc.), the overall trendof rapid advancement is clear.
Numerous approaches are now efficient enough to be potentially practically relevant.

Given the large amount of related work, we provide here only avery crude sketch
of the research milieu surrounding our work. We can roughly group most work on
HMP verification into three broad categories: shape analysis based on abstract inter-
pretation [13], deductive verification using classical Floyd-Hoare-style pre- and post-
conditions [36] augmented with a specialized logic for heapstructures, or model check-
ing [37] using predicate abstraction [15] to deal with the infinite state space.

Perhaps most widely known is the shape analysis work, epitomized by the TVLA
system [31]. As the name implies, a major strength of these approaches is in the analysis
of the shape of heap structures, and they are able to handle shapes, like trees, that most
other approaches cannot. Data, on the other hand, is commonly abstracted away, e.g.,
the impressively fast 0.08 second verification cited above ignores data in heap nodes.
Earlier shape analysis work also required user assistance to specify “instrumentation
predicates” and how they are affected by updates. More recent work has improved pre-
cision (e.g., [33]) and automation (e.g., [29]).

The deductive approach to verifying HMPs is the most venerable, dating back to
Nelson’s pioneering work [10]. Nelson was working with first-order logic, imposing
a penalty in both performance and manual effort. Much more recently, PALE [18] is
based on the weak, monadic, second-order logic of graph types, which is a decidable
logic for which the MONA decision procedure [30] exists. Unfortunately, the complex-
ity is non-elementary, so the decision procedure must be used with care. Separation
logic [27] is apparently the key to much greater efficiency, with recent results report-
ing fast verification times (e.g., [6]) and interproceduralscalability [4]. A decidable
fragment of separation logic is also known [5]. Deductive approaches typically require
manual effort, particularly to specify loop invariants, but recent work is addressing that
problem as well (e.g., [26, 28]).

Model checking, on the other hand, has always emphasized full automation, includ-
ing automatic computation of invariants via fixpoints, and great precision. Model check-
ing has revolutionized hardware verification, and with the use of predicate abstraction,
has started to impact software verification as well (e.g., [15, 16, 32, 17]). Predicate ab-
straction conservatively abstracts a program into a Boolean program whose state space
is the truth valuations of a finite set of predicates over the concrete program state. Once
the predicates are specified, the method runs fully automatically. (In this paper, we do
not consider heuristics for discovering predicates.) To verify HMPs, we therefore need
a logic for specifying predicates about the heap state. Furthermore, to compute abstract
pre- or post-images, the decision procedure for the logic must be extremely fast, since
most predicate abstraction approaches make numerous queries to the decision proce-
dure. Dams and Namjoshi were the first to explore this approach, but not having a
decision procedure for their logic, they had to rely on manual guidance to assure ter-
mination [14]. Balaban et al. proposed a simple logic and small-model-theorem-based

decision procedure, and demonstrated the feasibility and promise of this approach [7].
Alternatively, Lahiri and Qadeer proposed first-order axioms for their heap properties
and used a first-order prover [23]. In both works, the decision procedure was a ma-
jor bottleneck, and performance was substantially worse than the more established ap-
proaches. We were inspired by these pioneering works and created a simple logic and
novel decision procedure that demonstrated that an approach based on model check-
ing and predicate abstraction could be performance competitive, and often superior,
to other methods available at the time [1, 2].3 (Other recent promising logics for the
predicate-abstraction-based approach include [21] and [34], but no decision procedures
are available yet.)

In addition to the fast run times and low memory usage, another feature of our ap-
proach was the architecture of the decision procedure. Rather than being based on a
small model theorem, it fires inference rules until saturation, backtracking as needed.
Such a decision procedure promises several potential benefits: it simplifies integration
into a combined satisfiability-modulo-theories solver; itsuggests the ability to gen-
erate proofs automatically, which could be checked for higher assurance; and proof-
generation suggests the possibility of computing interpolants, which have demonstrated
enormous potential for improving model-checking efficiency [35]. Accordingly, there
is value in pursuing an inference-rule-based decision procedure for HMP verification,
as long as the performance is adequate, which it is.

Unfortunately, our previous work was only a proof-of-concept. The logic we pro-
posed is too simplistic: data in heap nodes was not allowed tochange, we could not
specify important properties about cyclic lists, and heap nodes had only a single pointer
field. These restrictions eliminated the vast majority of real programs from considera-
tion.

Contributions: This paper expands and generalizes our previous, preliminary re-
sults to be practically useful:

– The new logic and decision procedure allow data stored in heap nodes to be muta-
ble. With this extension, our method can in principle model any operations on data
to full bit-accuracy. (In practice, of course, data fields will be downsized as much
as possible, as is typical in model checking.) Changing the logic to allow data up-
dates necessitated discovering and adding four new inference rules to the decision
procedure.

– We now allow a finite number of pointer fields per heap node. This is needed by all
but the most simplistic data structures. This change required all inference rules to
be parameterized over the pointer fields, and the proofs mustconsider interacting
constraints arising from the different points-to relations.

– To support cyclic data structures (e.g., cyclic singly- anddoubly-linked lists), we
added a generalized, ternary transitive closure between operatorbtwn f (x,y,z), sim-
ilar to Nelson’s [10]. While the idea of such an operator is not new, how to support
such an operator in an inference-rule-based decision procedure is completely new.

3 The published paper has some minor errors, which are corrected in the technical report [2].
The technical report gives run times for the corrected algorithm, which are also much faster
than in the paper, due to an improved implementation.

This was the most difficult change to our decision procedure,requiring the addition
of 14 new inference rules, most of which are quite complicated.

– Despite the vastly increased complexity of the inference rule set, the essential struc-
ture of the decision procedure remained unchanged — the basic approach is still
empirically very efficient. In fact, with continuing improvements to the implemen-
tation, performance actually improved slightly.

– The additional inference rules did greatly complicate the theoretical underpinnings
of our approach. We report some theoretical results for our new logic and decision
procedure: our decision procedure is sound and always terminates, and the decision
procedure is complete for the fragment of the logic without updates. (In practice,
completeness was not an issue, as we could verify all examples that we could spec-
ify.) The statements of the theorems are completely analogous to our previous work
(e.g., “The decision procedure is sound.”), but the proofs had to be completely re-
worked to account for the greater complexity of the expandedlogic.

Overall, the contributions in this paper enable us to very efficiently verify a much larger
variety of HMPs, including three small container functionsfrom the Linux kernel.

2 Review of Our Previous Logic and Decision Procedure

To make this paper self-contained, we briefly review our original, simple logic and the
proof-of-concept decision procedure. Details are in the published paper and technical
report [1, 2].

One of the most fundamental concepts for verifying HMPs is unboundedreachabil-
ity (a.k.a.transitive closure) between nodes, i.e., can one follow pointers from nodex
to nodey. Several papers have previously identified the importance of transitive closure
for HMPs, e.g., [9–12,7, 23, 38]. Unfortunately, adding support for transitive closure to
even simple logics often yields undecidability [12], henceour decision to start with a
minimal logic and add features as needed to verify real examples.

In particular, the logic we originally proposed in [1] is as minimal as imaginable
while usable to verify some non-trivial HMPs using predicate abstraction. Fig. 1 shows

term ::= v | f (term)
atom ::= f ∗(term, term) | term= term | d(term) | b

literal ::= atom | ¬atom

Fig. 1. Our original, simple transitive closure logic [1].v is any of a finite set of node variables
that point to heap nodes.b is any of a finite set of Boolean variables that model data not contained
in heap nodes. Each heap node has a finite set of data fieldsD, each able to hold a Boolean value,
andd ∈ D. These model data contained in a heap node, with whatever precision is desired. There
is a single pointer fieldf in each heap node, which points to another heap node. The termf (x)
denotes the heap node reached by following thef pointer from nodex. Similarly, the atomd(x)
denotes the content of data fieldd in nodex. Transitive closure is specified withf ∗(x,y), which
denotes whether nodex reaches nodey by following 0 or moref pointers. The decision procedure
decides satisfiability of conjunctions of literals.

f (x)=y f∗(x,z)
x=z f∗(y,z)

FUNC

Fig. 2. Inference rule example. This is a typical inference rule from the decision procedure. Above
the line are antecedents; below the line are consequents. This rule says that if we get to nodey
by following one f pointer from nodex, and if we can get fromx to z by following 0 or more
f pointers, then we conclude thatx = z or that we can get fromy to z by following 0 or moref
pointers.

the logic. While there can be an arbitrary amount of data, allowing modeling with bit-
accurate precision, there is only a single pointer field, with a single transitive closure
operator, which greatly restricts the heap properties thatcould be specified.

To specify the effect of program assignments that modify pointers in the heap, i.e.,
modify f , we need to be able to specify a transition relation between the old and new
values of f . Accordingly, for each assignment of the formf (τ1) := τ2, we allow the
user to specify a pointer function symbolf ′ that represents the value off after the
assignment. The semantic relationship betweenf and f ′ is

f ′ = update(f ,τ1,τ2) (1)

Our decision procedure implicitly constrainsf and f ′ appropriately, which is previous
work. However, our original logic did not have the analogousconstructs to allow heap
data to be modified.

Conjunction and disjunction are conspicuous by their absence. The decision proce-
dure decides satisfiability of a conjunction of literals. The satisfiability of a conjunction
of predicates is the fundamental operation in computing theabstract pre- or post-image
operators in predicate abstraction, potentially being called an exponential number of
times per image, so we designed the decision procedure for that problem. We would
handle a general formula with disjunctions by going to DNF and checking satisfiability
of each disjunct separately.

The decision procedure is based on applying inference rules(IRs). Viewed from a
high level, the decision procedure repeatedly searches foran applicable IR, applies it
(i.e. adds one of its consequents to the set of literals), andrecurses. The recursion is
necessary for those IRs that branch, i.e. have multiple consequents. If the procedure
ever infers a contradiction, it backtracks to the last branching IR with an unexplored
consequent, or returnsunsatisfiableif there is no such IR. If the procedure reaches a
point where there are no applicable IRs and no contradictions, it returns that the set of
literals issatisfiable. Fig. 2 shows one sample inference rule. The decision procedure
for our original logic has 17 inference rules, some of which are parameterized.

3 New Extensions to Logic and Decision Procedure

Our previous work was proof-of-concept: HMP verification based on model-checking
and predicate abstraction could be performance competitive with other approaches,
thanks to our efficient, inference-rule-based decision procedure. But our simplistic logic
was too inexpressive for all but a few examples.

This paper addresses that problem. In the following subsections, we describe three
extensions to our original logic and decision procedure. These extensions are absolutely
indispensable for verifying a wide range of real programs. For each extension, we give
a short example illustrating typical program constructs that motivated the extension,
and then present how we changed the logic and decision procedure. The BNF for the
extended logic is provided in Fig. 3.

3.1 Mutable Data Fields

Fig. 4 presents a simple example of a procedure that mutates data fields. The procedure
sets the values of the data field of all nodes in the non-empty acyclic singly-linked input
list headto true. Necessary assumptions are formalized by theassumestatement on
line 2 of the program. The body of the procedure is simple; it traverses the list, and on
line 5 assignstrue to the data fieldd at each iteration. The specification is expressed by
theassertstatement on line 8, and indicates that whenever line 8 is reached,headmust
point to an acyclic singly-linked list with data fieldd of all nodes set totrue.

Assignments that modify a data fieldd∈D have the general formd(τ) := b, where
τ is a term, andb is a data variable. Line 5 of the HMP of Fig. 4 is an example of such
assignment. In order to be able to handle data mutations, foreach data assignment
we allow the user to introduce a data function symbold′ that representsd after the
assignment. The semantic relationship betweend andd′ is

d′ = update(d,τ,b) (2)

Our decision procedure implicitly enforces the constraint(2) when it encounters the
symbolsd andd′. We accomplished this through the additional set of inference rules
that capture the effects of a data field update. Fig. 5 presents these rules, and for example
PRESERVEVALUE ensures the data values of nodes that are not equal toτ are preserved.

3.2 Cyclicity

We illustrate the extension for supporting cyclic lists with an example called INIT-
CYCLIC in Fig. 6. The procedure takes a nodeheadthat points to a cyclic list and sets
the data fields of all nodes in the list totrue. Necessary assumptions are again formal-
ized by theassumestatement on line 2 of the program. In the predicates required for the
verification of this example, the subformulas of the formbtwn f (x,y,z) express that by
following a sequence off links from nodex, we’ll reach nodey before we reach nodez,
i.e. nodey comes between nodesx andz. The fact thatheadis reachable fromf (head)
enforces the cyclicality assumption. The body of INIT-CYCLIC is straightforward. First,

term ::= v | f (term)
atom ::= f ∗(term, term) | term= term | d(term) | b | btwn f (term, term, term)

literal ::= atom | ¬atom

Fig. 3.The syntax of our new logic. Aside from the addition of the important newbtwn atom, the
pointer function symbolf now ranges over asetof namesF .

the data field ofheadis set totrue on line 4. Then, the loop sets the data fields of all
other nodes in the list totrue. The specification is expressed by theassertstatement on
line 9, and indicates that whenever line 9 is reached, data fields of all nodes in the list
have to be set totrue.

Cyclic lists are commonly used data structures, and therefore supporting cyclicity
is very important. In our experience and others’ [10, 24], expressing “betweenness” is
often necessary to construct invariants to verify cyclic list HMPs. For example, in order
to prove the assertion on line 9 of INIT-CYCLE, the predicate abstraction engine must
be able to construct an appropriate loop invariant (i.e. at line 5). This invariant must be
strong enough to imply that all nodesx lying betweenheadandcurr on the cyclic list
haved(x) = true. It is not hard to show that our base logic of Sect. 2 is not capable of
expressing this.

To solve this deficiency, we have added a generalized, ternary transitive closure
between predicatebtwn f (x,y,z) to our logic, similar to Nelson’s [10]. Formally, the
interpretation of a between atom is defined as follows: a between atombtwn f (τ1,τ2,τ3)
is interpreted astrue iff there existn0,m0 ≥ 0 such thatτ2 = f n0(τ1), τ3 = f m0(τ1),
n0 ≤ m0, and for all n,m such thatτ2 = f n(τ1), τ3 = f m(τ1), we haven0 ≤ n and
m0 ≤ m.

While the idea of such a construct is not new, how to support itin an inference-rule-
based decision procedure is completely new. This was also the most difficult extension
of our decision procedure, requiring the addition of 14 new inference rules presented in
Fig. 7, most of which are quite involved. For instance, BTW9 asserts that if x, y, z, and
w are on the same chain, y is between x and w, and f (z)=w, then y is also between x and
z, unless y=w. Furthermore, the introduction of the betweenatom broke our soundness
and completeness results from the previous paper, and we hadto completely redo all of
our proofs. We give the intuition behind our new theoreticalresults in Sect. 4, while the
complete proofs are presented in the technical report [3].

3.3 Multiple Pointer Fields

Fig. 8 shows a list container procedure LINUX -L IST-DEL from the Linux kernel. It
illustrates the need for both multiple pointer fields and cyclic lists. The procedure takes
a nodeentryand removes it from a cyclic doubly-linked list. Each node inthe list has

1: procedure INIT-L IST(head)
2: assume f ∗(head,t)∧ f ∗(head,nil)∧ f (nil)=nil

3: curr := head;
4: while ¬curr=nil do
5: d(curr) := true;
6: curr := f (curr);
7: end while
8: assert d(t)
9: end procedure

Fig. 4. INIT-L IST initializes the data fields of an acyclic singly-linked list. In the assumeand
assertstatements, variablet represents an arbitrary node (see Sect. 5).

two pointer fields: aprev and anext pointer. The body of the procedure is simple; it
connects theprevandnextpointers ofentry’s neighbors, thus removingentry from the
list. The assumptions and specifications for this example are quite involved and are
given in our technical report [3].

Cyclic doubly-linked lists are widely used data structures. For instance, they are
commonly used in kernels, such as the Linux kernel from wherethis example was
taken. Handling multiple pointer fields is theoretically hard; it is a well-known result
that unrestricted use of reachability in the presence of only two pointer fields is unde-
cidable [12]. We therefore had to take special care in defining our extension. It turns
out that if each individual reachability operator only refers to a single pointer field and
there are no quantifiers, the decidability results still hold. This restriction prevents us
from, e.g., expressing transitive closure in a tree, since that would require formulas like
(left∨ right)∗(root, leaf). However, we can still handle doubly-linked lists and similar
structures.

On the logic side, this extension is reflected in symbolf being an element of a set of
pointer function symbolsF , rather than a single pointer function symbol (see Sect. 2).
Our extended decision procedure supports for multiple pointer fields by instantiating
the inference rules for each pointer field. In a sense, the decision procedure processes
each field as a separate theory, and interaction between these theories is limited to com-
munication of deduced term equalities and disequalities.

4 Correctness of the Decision Procedure

In this section, we will give the soundness and completenesstheorems that show the
correctness of our decision procedure. The detailed proofsof all theorems and more
formal presentation of the decision procedure can be found in the technical report [3].

We’ll start with noting that the problem our decision procedure solves is NP-hard,
hence a polytime algorithm is unlikely to exist.

Theorem 1. Given a set of literalsΦ, the problem of deciding ifΦ is satisfiable is
NP-hard.

Theorem 1 still holds whenΦ contains no pointer function updates, nobtwn predicates,
no data fields, and only mentions a single pointer functionf ; hence it even applies to
our simplistic original logic [1].

d′(τ)
b

¬d′(τ)
¬b

EQDATA

¬τ =x
d(x)
d′(x)

¬d(x)
¬d′(x)

PRESERVEVALUE

d(x) ¬d′(x)
τ =x

EQNODES1
¬d(x) d′(x)

τ =x
EQNODES2

Fig. 5. Data update inference rules. The rules are used to extend ourlogic to support a data
function symbold′ with the implicit constraintd′ = update(d,τ,b), whereτ ∈ V and b is a
boolean variable.

The following theorem tells us that if iterative application of the IRs in the decision
procedure yields a contradiction, then we can conclude thatthe original set of literals is
unsatisfiable.

Theorem 2. The inference rules of Fig. 5, Fig. 7, Fig. 9, and Fig. 10 (see Appendix A)
are sound.

The proof proceeds by arguing in turn that each of the IRs given in the figures is sound.
To prove completeness we first reduce the problem to sets of literals in a certain

normal form, then prove completeness for only normal sets:
Let Vars(Φ) denote the subset of the node variablesV appearing inΦ.

Definition 1 (normal) A set of literalsΦ is said to benormalif all terms appearing in
Φ are variables, except that for each f∈ F and v∈ Vars(Φ) there may exist at most
one equality literal of the form f(v) = u, where u∈ Vars(Φ).

Theorem 3. There exists a polynomial-time algorithm that transforms any setΦ into
a normal setΦ ′ such thatΦ ′ is satisfiable if and only ifΦ is satisfiable.

Thanks to Theorem 3, our decision procedure can without lossof generality assume
thatΦ is normal. Let us call a set of literalsΦ consistentif it does not contain a con-
tradiction, and callΦ closedif none of the IRs of Fig. 7 and Fig. 9 are applicable. Our
completeness theorem may then be stated as follows.

Theorem 4. If Φ is consistent, closed, and normal, thenΦ is satisfiable.

The proof of Theorem 4 is quite technical, and involves reasoning about the dependen-
cies between digraphs of partial functions and the digraphsof their transitive closures.

If the procedure reaches a point where there are no applicable IRs and no contra-
dictions, then the inferred set of literals is consistent, closed, and normal. Hence, by
Theorem 4, it may correctly returnsatisfiable. We still don’t have a proof that the pro-
cedure is complete when its input includes a data or pointer field update. Fortunately,
not having such a theoremdoes notcompromise the soundness of verification by predi-
cate abstraction. In practice, in our experiments of Sect. 5, we never found any property
violations caused by the extended decision procedure erroneously concluding that a set
of literals was satisfiable.

1: procedure INIT-CYCLIC(head)
2: assumef ∗(head,t) ∧ f ∗(f (head),head) ∧ ¬head=nil

3: curr := f (head);
4: d(head) := true;
5: while ¬curr=headdo
6: d(curr) := true;
7: curr := f (curr);
8: end while
9: assert d(t)

10: end procedure

Fig. 6. INIT-CYCLIC sets data fields of all nodes in a cyclic list totrue. Additional predi-
cates required for the verification:curr =head, curr = f (head), btwn f (curr,t,head), t =head,
btwn f (head,t,curr), f ∗(t,curr).

btwn f (x,x,x)
BTWREFLEX

f ∗(x,y) f ∗(y,z) f (z)=x
btwn f (x,y,z)

BTW1

btwn f (x,y,z)
f ∗(x,y)
f ∗(y,z)

BTW2
f (x)=w btwn f (x,y,z)
btwn f (w,y,z) x=y

BTW3

btwn f (x,y,z) btwn f (x,z,y)
y=z

BTW4
f ∗(x,y) f ∗(x,z)

btwn f (x,y,z) btwn f (x,z,y)
BTW5

f ∗(x,y) f ∗(y,z) f ∗(z,x)
btwn f (x,y,z)
btwn f (y,z,x)
btwn f (z,x,y)

btwn f (x,z,y)
btwn f (z,y,x)
btwn f (y,x,z)

x=y x=z y=z
BTW6

f ∗(x,y)
btwn f (x,x,y)
btwn f (x,y,y)

BTW7

btwn f (x,y,z) f (x)=z
y=x y=z

BTW8
f (z)=w btwn f (x,y,w) f ∗(x,z)

btwn f (x,y,z) y=w
BTW9

btwn f (x,y,z) btwn f (w,z,y) f ∗(x,w)

f ∗(z,w) y=z
BTW10

btwn f (w,x,y) btwn f (w,y,z)
btwn f (w,x,z)

BTW11

btwn f (v,u,x) btwn f (v,u,y) btwn f (u,x,y)
btwn f (v,x,y)

BTW12
btwn f (x,y,z) ¬x=z

btwn f ′ (x,y,z)
btwn f (x,τ1,z)
¬τ1=z

UPDBTWN

Fig. 7. Between inference rules. Herex, y, z, etc. range over variablesV and f ∈ F ranges over
pointer fields. UPDBTWN enforces the implicit constraintf ′=update(f ,τ1,τ2), whereτ1 andτ2
are variables (see Sect. 2).

Theorem 5. The decision procedure always terminates.

The theorem follows from the fact that none of the IRs create new terms, and there is
only a finite number of possible literals that one could add given a fixed set of terms.

Our soundness, completeness, and termination results given in this section also en-
sure that the logic without pointer and data field updates is decidable. Furthermore, we
believe that our logic with updates is subsumed by the slightly more general decidable
logic presented in [7], and therefore also decidable.

5 Experimental Results

We ran our experiments using the new decision procedure4 in the same verification set-
up as before [2]: a straightforward implementation of modelchecking with predicate
abstraction. Once the predicates are specified, everythingis fully automatic, including
computation of most-precise abstract images and loop invariants.

Table 1 gives a baseline performance comparison on the same examples from our
previously published work [2]. Table 2 gives results for themore than twice as many
examples that we could not verify previously. We ran all experiments on a 2.6 Ghz
Pentium 4 machine.
4 The decision procedure is publicly available athttp://www.cs.ubc.ca/∼zrakamar

program property CFG edgespredsDP callsold time (s)new time (s)

L IST-REVERSE NL 6 8 184 0.1 0.2
L IST-ADD NL∧AC∧ IN 7 8 66 0.1 0.1

ND-INSERT NL∧AC∧ IN 5 13 259 0.5 0.5
ND-REMOVE NL∧AC∧RE 5 12 386 0.9 0.9

ZIP NL∧AC 20 22 9153 17.8 17.3
SORTED-ZIP NL∧AC∧SO∧ IN 28 22 14251 23.4 22.8

SORTED-INSERTNL∧AC∧SO∧ IN 10 20 5990 14.2 13.8
BUBBLE-SORT NL∧AC 21 18 3444 11.4 11.1
BUBBLE-SORT NL∧AC∧SO 21 24 31446 119.5 114.9

Table 1. Performance comparison against our previous work [2]. Although our extensions re-
quired adding several complex inference rules to the decision procedure, the running times stayed
roughly the same: there was no practical performance penalty. “property” specifies the verified
property; “CFG edges” is the number of edges in the control-flow graph of the program; “preds”
is the number of predicates required for verification; “DP calls” is the number of decision proce-
dure queries; “old time” is the total execution time from [2](faster than [1]); “new time” is the
total execution time using our new decision procedure.

The examples from Table 1 perform operations on acyclic singly linked lists —
reverse, add elements, remove elements, sort, merge, etc. Therefore, we have been able
to verify them without using the extensions described in this paper. The comparison
supports our claim that although we greatly improved the expressiveness of the logic
and therefore extended the decision procedure with a numberof intricate inference
rules, the practical running times haven’t changed.

Table 2 presents results of the experiments using examples that involve data field up-
dates, cyclic lists, and doubly-linked lists. We could not handle them using the old logic
and decision procedure. However, we have been successful inverifying them using the
described new features added to our logic and decision procedure. These example pro-
grams are the following:

REMOVE-ELEMENTS – removes from a cyclic list elements whose data field isfalse.
REMOVE-SEGMENT – removes the first contiguous segment of elements whose data

field is true from a cyclic singly-linked list. This example is taken froma paper by
Manevich et al. [24].

1: procedure L INUX -L IST-DEL(entry)
2: p := prev(entry);
3: n := next(entry);
4: prev(n) := p;
5: next(p) := n;
6: next(entry) := nil;
7: prev(entry) := nil;
8: end procedure

Fig. 8. L INUX -L IST-DEL is a standard function that removes a node from a cyclic doubly-linked
list taken from a Linux kernel.

program property CFG edgespredsDP callstime(s)

REMOVE-ELEMENTS NL∧CY∧RE 15 17 3062 8.8
REMOVE-SEGMENT CY 17 15 902 2.2
SEARCH-AND-SET NL∧CY∧DT 9 16 4892 5.3

SET-UNION NL∧CY∧DT∧ IN 9 21 374 1.4
CREATE-INSERT NL∧AC∧ IN 9 24 3020 14.8

CREATE-INSERT-DATA NL∧AC∧ IN 11 27 8710 39.7
CREATE-FREE NL∧AC∧ IN∧RE 19 31 52079 457.4

INIT-L IST NL∧AC∧DT 4 9 81 0.1
INIT-L IST-VAR NL∧AC∧DT 5 11 244 0.2
INIT-CYCLIC NL∧CY∧DT 5 11 200 0.2

SORTED-INSERT-DNODES NL∧AC∧SO∧ IN 10 25 7918 77.9
REMOVE-DOUBLY NL∧DL∧RE 10 34 3238 24.3

REMOVE-CYCLIC-DOUBLY NL∧CD∧RE 4 27 1695 15.6
L INUX -L IST-ADD NL∧CD∧ IN 6 25 1240 6.4

L INUX -L IST-ADD-TAIL NL∧CD∧ IN 6 27 1598 7.3
L INUX -L IST-DEL NL∧CD∧RE 6 29 2057 24.7

Table 2. Results for HMPs that could not be handled in our previous work. “property” specifies
the verified property; “CFG edges” denotes the number of edges in the control-flow graph of the
program; “preds” is the number of predicates required for verification; “DP calls” is the number
of decision procedure queries; “time” is the total execution time.

SEARCH-AND-SET – searches for an element with specified integer value in a cyclic
singly-linked list, and initializes integer data fields of previous elements. Although
this example uses merely 2-bit integers, it shows that our logic and decision proce-
dure support any finite enumerated data type.

SET-UNION – joins two cyclic lists. This example is taken from a paper byNelson [10].
CREATE-INSERT, CREATE-INSERT-DATA , CREATE-FREE – create new nodes (mal-

loc), initialize their data fields, and insert them nondeterministically into a linked
list. Also, remove nodes from a linked list andfree them.5

INIT-L IST, INIT-L IST-VAR, INIT-CYCLIC – initialize data fields of acyclic and cyclic
singly-linked lists, and set values of data variables.

SORTED-INSERT-DNODES – inserts an element into a sorted linked list so that sorted-
ness is preserved. Every node in the linked list has an additional pointer to a node
that contains a data field which is used for sorting.

REMOVE-DOUBLY – removes an element from an acyclic doubly-linked list.
REMOVE-CYCLIC-DOUBLY – removes an element from a cyclic doubly-linked list.

This example is taken from a paper by Lahiri and Qadeer [23].
L INUX -L IST-ADD, L INUX -L IST-ADD-TAIL , L INUX -L IST-DEL – examples from Li-

nux kernel list container that add and remove nodes from a cyclic doubly-linked
list.

Our technical report [3] provides pseudocode and lists the required predicates for all
examples.

The safety properties we checked (when applicable) of the HMPs are roughly:

5 mallocandfreeare modelled as removing and adding nodes to an infinite cyclic list [20].

– no leaks(NL) – all nodes reachable from the head of the list at the beginning of the
program are also reachable at the end of the program.

– insertion (IN) – a distinguished node that is to be inserted into a list is actually
reachable from the head of the list, i.e. the insertion “worked”.

– acyclic(AC) – the final list is acyclic, i.e.nil is reachable from the head of the list.
– cyclic (CY) – list is a cyclic singly-linked list, i.e. the head of the list is reachable

from its successor.
– doubly-linked(DL) – the final list is a doubly-linked list.
– cyclic doubly-linked(CD) – the final list is a cyclic doubly-linked list.
– sorted(SO) – list is a sorted linked list, i.e. each node’s data fieldis less than or

equal to its successor’s.
– data(DT) – data fields of selected (possibly all) nodes in a list are set to a value.
– remove elements(RE) – for examples that remove node(s), this states that the

node(s) was (were) actually removed. For the program REMOVE-ELEMENTS, RE
also asserts that the data field of all removed elements isfalse.

Often, the properties one is interested in verifying for HMPs involve universal quantifi-
cation over the heap nodes. For example, to assert the property NL, we must express
that for all nodest, if t is reachable fromheadinitially, then t is also reachable from
head(or some other node) at the end of the program. Since our logicdoesn’t support
quantification, we introduce a Skolem constantt to represent a universally quantified
variable [8, 7]. Here,t is a new node variable that is initially assumed to satisfy the an-
tecedent of our property, and is otherwise unmodified by the program. For the program
of Fig. 4, we express NL by conjoiningf ∗(head,t) to theassumestatement on line 2,
and conjoiningf ∗(head,t) to the assertion on line 8. Since (after theassume) t can be
any node reachable fromhead, if the assertion is never violated, we have proven NL.

6 Future Work and Conclusions

We have introduced a logic for verifying HMPs that is expressive enough, and an
inference-rule-based decision procedure for the logic that is efficient enough, to ver-
ify a wide range of small, but realistic programs. There are many directions for future
research, some of which are outlined here.

We have found that even minimal support for universally quantified variables (as in
the logic of Balaban et al. [7]) would allow expression of many common heap structure
attributes. For example, the current logic cannot assert that two termsx andy point to
disjoint linked lists; a single universally quantified variable would allow for this prop-
erty (see Nelson [9, page 22]). We also found that capturing disjointedness is necessary
for verifying that LIST-REVERSEalways produces an acyclic list; hence we were un-
able to verify this property. We believe that our decision procedure can be enhanced to
handle this case, either by introducing limited support forquantifiers, or by adding a
new “disjoint predicate” with appropriate inference rules.

A broader expressiveness deficiency is the expression of more involved heap struc-
ture properties, such as for trees. Though our logic cannot capture “x points to a tree”,
we believe that it is possible that an extension could be usedto verify simple proper-
ties of programs that manipulate trees, for example that there are no memory leaks. It

may also be possible to use techniques like structure simulation [22] or field constraint
analysis [19], which use decidable logics to verify data structures originally beyond
the scope of such logics (e.g., skip lists). We have run our decision procedure on some
queries for MONA generated by the field constraint analysis tool Bohne [19], where we
appear to be faster than MONA, but the queries have run so quickly on both tools that
the comparison is meaningless.

We also plan on investigating how existing techniques for predicate discovery and
more advanced predicate abstraction algorithms mesh with our decision procedure.

We have initial results showing the possibility of incorporating our decision proce-
dure into a combined satisfiability-modulo-theories decision procedure and have started
exploring such integration. We believe that by doing so, it would be possible to improve
the precision of heap abstraction used by the existing software verification tools that
employ theorem provers. We also plan to look into extending our decision procedure to
generate proofs and interpolants.6

References

1. J. Bingham and Z. Rakamarić. A Logic and Decision Procedure for Predicate Abstraction
of Heap-Manipulating Programs. InConf. on Verification, Model Checking and Abstract
Interpretation (VMCAI), 2006.

2. J. Bingham and Z. Rakamarić. A Logic and Decision Procedure for Predicate Abstraction
of Heap-Manipulating Programs, 2005. UBC Dept. Comp. Sci. Tech Report TR-2005-19,
http://www.cs.ubc.ca/cgi-bin/tr/2005/TR-2005-19.

3. Z. Rakamarić, J. Bingham, and A. J. Hu. A Better Logic and Decision Procedure for Predi-
cate Abstraction of Heap-Manipulating Programs, 2006. UBCDept. Comp. Sci. Tech Report
TR-2006-02, http://www.cs.ubc.ca/cgi-bin/tr/2006/TR-2006-02.

4. A. Gotsman, J. Berdine, and B. Cook. Interprocedural Shape Analysis with Separated Heap
Abstractions. InStatic Analysis Symposium (SAS), 2006.

5. J. Berdine, C. Calcagno, and P. W. O’Hearn. A Decidable Fragment of Separation Logic. In
Conf. on Foundations of Software Technology and Theoretical Computer Science (FSTTCS),
2004.

6. J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular Automatic Assertion
Checking with Separation Logic. InIntl. Symp. on Formal Methods for Components and
Objects (FMCO), 2006.

7. I. Balaban, A. Pnueli, and L. Zuck. Shape Analysis by Predicate Abstraction. InConf. on
Verification, Model Checking and Abstract Interpretation (VMCAI), 2005.

8. C. Flanagan and S. Qadeer. Predicate Abstraction for Software Verification. InSymp. on
Principles of Programming Languages (POPL), 2002.

9. G. Nelson. Techniques for Program Verification. PhD thesis, Stanford University, 1979.
10. G. Nelson. Verifying Reachability Invariants of LinkedStructures. InSymp. on Principles

of Programming Languages (POPL), 1983.
11. M. Benedikt, T. Reps, and M. Sagiv. A Decidable Logic for Describing Linked Data Struc-

tures. InEuropean Symposium on Programming (ESOP), 1999.
12. N. Immerman, A. Rabinovich, T. Reps, M. Sagiv, and G. Yorsh. The Boundary Between

Decidability and Undecidability for Transitive Closure Logics. InWorkshop on Computer
Science Logic (CSL), 2004.

6 Thanks to Ken McMillan for the proof-generation and interpolant suggestion.

13. P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis
of Programs by Construction or Approximation of Fixpoints.In Symp. on Principles of
Programming Languages (POPL), 1977.

14. D. Dams and K. S. Namjoshi. Shape Analysis Through Predicate Abstraction and Model
Checking. InConf. on Verification, Model Checking and Abstract Interpretation (VMCAI),
2003.

15. S. Graf and H. Saidi. Construction of Abstract State Graphs with PVS. InConf. on Computer
Aided Verification (CAV), 1997.

16. S. Das, D. L. Dill, and S. Park. Experience with PredicateAbstraction. InConf. on Computer
Aided Verification (CAV), 1999.

17. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. LazyAbstraction. InSymp. on
Principles of Programming Languages (POPL), 2002.

18. A. Møller and M. I. Schwartzbach. The Pointer Assertion Logic Engine. InConf. on Pro-
gramming Language Design and Implementation (PLDI), 2001.

19. T. Wies, V. Kuncak, P. Lam, A. Podelski, and M. Rinard. Field Constraint Analysis. InConf.
on Verification, Model Checking and Abstract Interpretation (VMCAI), 2006.

20. T. Reps, M. Sagiv, and A. Loginov. Finite Differencing ofLogical Formulas for Static Anal-
ysis. InEuropean Symposium on Programming (ESOP), 2003.

21. G. Yorsh, A. Rabinovich, M. Sagiv, A. Meyer, and A. Bouajjani. A Logic of Reachable
Patterns in Linked Data-Structures. InFoundations of Software Science and Computation
Structures (FOSSACS), 2006.

22. N. Immerman, A. Rabinovich, T. Reps, M. Sagiv, and G. Yorsh. Verification via Structure
Simulation. InConf. on Computer Aided Verification (CAV), 2004.

23. S. K. Lahiri and S. Qadeer. Verifying Properties of Well-Founded Linked Lists. InSymp. on
Principles of Programming Languages (POPL), 2006.

24. R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. Predicate Abstraction and Canonical
Abstraction for Singly-Linked Lists. InConf. on Verification, Model Checking and Abstract
Interpretation (VMCAI), 2005.

25. A. Loginov, T. W. Reps, and S. Sagiv. Abstraction Refinement via Inductive Learning. In
Conf. on Computer Aided Verification (CAV), 2005.

26. D. Distefano, P. W. O’Hearn, and H. Yang. A Local Shape Analysis Based on Separation
Logic. InTools and Algorithms for the Construction and Analysis of Systems (TACAS), 2006.

27. S. Ishtiaq and P. W. O’Hearn. BI as an Assertion Language for Mutable Data Structures. In
Symp. on Principles of Programming Languages (POPL), 2001.

28. S. Magill, A. Nanevski, E. M. Clarke, and P. Lee. Inferring Invariants in Separation Logic
for Imperative List-processing Programs. InWorkshop on Semantics, Program Analysis, and
Computing Environments for Memory Management (SPACE), 2006.

29. T. Lev-Ami, N. Immerman, and M. Sagiv. Abstraction for Shape Analysis with Fast and
Precise Transformers. InConf. on Computer Aided Verification (CAV), 2006.

30. N. Klarlund, A. Møller, and M. I. Schwartzbach. MONA Implementation Secrets. InConf.
on Implementation and Application of Automata (CIAA), 2000.

31. T. Lev-Ami and M. Sagiv. TVLA: A System for Implementing Static Analyses. InStatic
Analysis Symposium (SAS), 2000.

32. T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani.Automatic Predicate Abstraction
of C Programs. InConf. on Programming Language Design and Implementation (PLDI),
2001.

33. G. Yorsh, T. Reps, and M. Sagiv. Symbolically Computing Most-Precise Abstract Operations
for Shape Analysis. InTools and Algorithms for the Construction and Analysis of Systems
(TACAS), 2004.

34. S. Ranise and C. G. Zarba. A Theory of Singly-Linked Listsand its Extensible Decision
Procedure. InIEEE Int. Conf. on Software Engineering and Formal Methods (SEFM), 2006.

35. K. L. McMillan. Applications of Craig Interpolants in Model Checking. InTools and Algo-
rithms for the Construction and Analysis of Systems (TACAS), 2005.

36. C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communications of the
ACM, 12(10):576–583, 1969.

37. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite-State Con-
current Systems Using Temporal Logic Specifications.ACM Transactions on Programming
Languages and Systems (TOPLAS), 8(2):244–263, 1986.

38. T. Lev-Ami, N. Immerman, T. W. Reps, M. Sagiv, S. Srivastava, and G. Yorsh. Simulat-
ing Reachability using First-Order Logic with Applications to Verification of Linked Data
Structures. InConf. on Automated Deduction (CADE), 2005.

A Inference Rules from Previous Work [1, 2]

x=x
IDENT

f ∗(x,x)
REFLEX

f (x)=y
f ∗(x,y)

TRANS1

f ∗(x,y) f ∗(y,z)
f ∗(x,z)

TRANS2
f (x)=y f∗(x,z)

x=z f∗(y,z)
FUNC

f (x1)=x2 f (x2)=x3 · · · f (xk)=x1 f ∗(x1,y)
y=x1 y=x2 · · · y=xk

CYCLEk

f ∗(x,y) f ∗(y,x) f ∗(x,z)
x=y f∗(z,x)

SCC
f ∗(x,y) f ∗(x,z)

f ∗(y,z) f ∗(z,y)
TOTAL

f (x)=z f(y)=z f∗(x,y) f ∗(y,x)
x=y

SHARE
d(x) ¬d(y)

¬x=y
NOTEQNODES

Fig. 9. Basic inference rules. Herex, y, z, etc. range over variablesV andd ∈ D ranges over data
fields. Note that CYCLEk actually defines a separate rule for eachk≥ 1.

f ′(τ1)=τ2
f (τ1)=w

UPDATE

f (x)=y
x=τ1
y=w

f ′(x)=y UPDFUNC1
f ′(x)=y

x=τ1
y=τ2

f (x)=y UPDFUNC2

f ∗(x,y)
f ′∗(x,τ1)
f ′∗(w,y)

f ′∗(x,y) UPDTRANS1
f ′∗(x,y)

f ∗(x,τ1)
f ∗(τ2,y)

f ∗(x,y) UPDTRANS2

f ∗(x,τ1) f ′∗(x,y)
f ∗(x,y) f ′∗(τ1,y)

UPDTRANS3
f ′∗(x,τ1) f ∗(x,y)

f ′∗(x,y) f ∗(τ1,y)
UPDTRANS4

Fig. 10.Pointer update inference rules. The rules are used to extendour logic to support a pointer
function symbolf ′ with the implicit constraintf ′ =update(f ,τ1,τ2), whereτ1 andτ2 are vari-
ables, andw is a fresh variable used to capturef (τ1).

