EverLost: A Flexible Platform for Industrial-Strength

Abstraction-Guided Simulation*
(Tool Paper)

Flavio M. de Paula and Alan J. Hu

Department of Computer Science, University of British @ohia, Canada
{depaul fm aj h}@s. ubc. ca

Abstract. Abstraction-guided simulatiois a general framework for automat-
ically harnessing, during simulation, information froms#laction and model
checking. EverLost is our platform for industrial-stremgbstraction-guided sim-
ulation. EverLost takes an RTL Verilog design and preimalggttaction infor-
mation from any BDD-based abstraction/model-checkindj toal automatically
generates code that implements abstraction-guided sioland directly com-
piles with the design under the widely-used Synopsys VCSilsitor. The plat-
form enables flexible exploration of abstraction-guidedidation — different
formal tools and guidance heuristics are easily inserted hitewproviding the
capacity, speed, and Verilog compatibility of a leadingusitly-standard tool.

1 Abstraction-Guided Simulation

Automatic formal hardware verification continues to pragrehrough advances such
as model checking [5, 8], symbolic model checking [3], baeshchodel checking [1, 2],
and counterexample-guided abstraction refinement [7]chvhave greatly expanded
the capacity of automatic verification tools. Conventicgiadulation, however, remains
the primary workhorse for industrial hardware validatiSimulation provides unparal-
leled capacity for handling design size and complexity,(bubecause) it performs no
analysis of the design. Abstraction and model checkingherother hand, derive con-
siderable information about the structure of the stateespéthe design, but (therefore)
suffer from capacity limitations.

Abstraction-guided simulatidris a general framework for automatically harness-
ing, during simulation, information obtained by model ckiag and abstraction of the
design. Briefly, abstraction-guided simulation consisthe following:

— We assume the goal of verification is to find an execution secpithat reaches a
specified set of states, e.g., error states or a hard-thrceaerage target.

* Supported by an NSERC Discovery Grant. We would also likdhémk Daniel Kroening and
Himanshu Jain for their help with theegartool.

1 The idea of guiding state exploration via abstraction hasbedependently invented several
times, e.qg., as “tracks” [10], “abstraction database” #id “distance-guided simulation” [9].
Unlike other work, our emphasis is on working with the cafiaiés and limits of real, indus-
trial simulation tools. We prefer the nomenclature “abdicm-guided” to “distance-guided”
because the analysis of the abstract model gives not trtendes, but only lower bounds on
distances, and the challenge for good guidance heuristirgcisely to handle this inaccuracy.

— Any conservative abstraction technique is used to createdehsmall enough for
symbolic model checking. The abstract model preservesesxs of any paths to
the error states, but may introduce paths that don’t cooredfo any concrete path.

— If formal verification succeeds (either finding no abstracbepaths, or success-
fully concretizing an abstract error path), we are done. ifiteresting case for
simulation is when formal verification fails (and attemptsiastraction refinement
fail to create a tractable model), as can occur typicallyatge hardware designs.

— The model checker has computed a series of pre-images frerarthr states in
the abstract model. From these pre-images, we can dump arssgof BDDs,
representing sets of abstract states whose shortestaethgtath to an error state
is i abstract states long. Visualize these sets as conceritrgs“raround the error
states. A concrete state that abstracts to an abstracirstatg i is at leasi clock
cycles away from an error state.

— During directed random simulation, the simulator can ctirthie abstraction in-
formation for guidance by periodically computing the aastion of the current
simulation state and querying which ring it is in. Thus, timaudator can benefit
from considerable information computed by model checkitegabstract model.

An analogy is to driving with a GPS navigation device: ona@sarete location (GPS
coordinates) goes into the device, which contains an aftstradel of the terrain and
provides optimum routing for the abstract model; problemseawhen the abstract
model is inaccurate (e.g., due to construction); in thosegahe user wanders semi-
lost until the device computes a usable new route. The namerlest” is a play on a
pioneering, widely-deployed in-car GPS navigation system

Abstraction-guided simulation is a broad and flexible framek, so research is
needed to explore trade-offs. Hence, we have created Esgrhe a flexible, yet
industrial-strength platform for exploring abstractigunided simulation. The key fea-
tures of EverLost are:

— Direct connection into Synopsys VCS, one of the most widebd.Merilog simula-
tors, giving true industrial capacity, simulation speea &anguage compatibility.

— Simple interfacing to any BDD-based abstraction/modele&ing tool. All we
need are the concrete state variables, the abstractiotidnacand the BDD rings.

— Easy exploration of different guidance heuristics. Culyemwe have implemented
a simple parameterized stochastic search; this is an aetearch area.

2 EverLost Architecture

The three major components for using EverLost are the logiculator, the
abstraction/model-checking engine, and the EverLostitself (Fig. 1). For tight inte-
gration and highest performance, we had to target a speaific simulator, although
the tool could be retargeted easily. We chose Synopsys VaSpbthe most widely
used industrially. For the interface with the abstractioodel-checking engine, we de-
signed for maximum flexibility: all we require are a list ofetldesign’s latches, the
abstraction map, and the BDD pre-images that are a by-ptoflurodel checking.

RTL Verilog Counterexample
Verification EngineeU VCEGAR NUSMV

Latch Abstract

I —=|Extractor Model cEGAR
1 Heuristic Tool Abstraction and Model-Checking Enging
 Choice Hierarchical i

Latches Abstraction Map Pre-Image:
] - EverLost

Abstraction Verilogto C

Function Function Call Pre-Image:

InC Interface

Standard Compiled Logic Simulation

(Synopsys VCS w/ DirectC)

Fig. 1. Overall Tool Flow with EverLost

Given the needed inputs, EverLost generates a simulatiolagee driver in C, the
abstraction function in C, and a C interface in Verilog, whéze passed to VCS along
with the Verilog files and the BDD pre-images. The user cagifpdifferent simulation
guidance heuristics via EverLost options.

The code generated by EverLost is compiled with VCS into glsiexecutable.
Internally, the simulator calls the EverLost driver eveigok cycle. The EverLost code
can read the current simulation state, possibly save itpasdibly evaluate it using the
abstraction information. The EverLost code can then allssvsimulation to continue,
or it can force the simulator to jump to a particular stateouncurrent guidance heuris-
tic, from a given state, the simulator exploredifferent traces fok cycles and picks
the best state (i.e., the state that abstracts to the prgeilciasest to the target states)
from which to continue; one more parameter controls wheresont to a random walk
to try to get around dead-ends.

3 Sample Results and Performance Overhead

We report some results from two publicly available designdSB 1.1 PHY [11] inter-
face, and a full USB 2.0 Function Core [12]. We used VCEGARWith NuSMV [4]
as our formal engine; these tools are state-of-the-adlyfravailable, and support Ver-
ilog. When the designs were too big, the formal engine didonotiuce useful abstract
models, so in some experiments, we used only a few sub-maddES and EverLost,
of course, had no capacity problems, including for the fulh&ion Core.

When the formal engine provided enough pre-image ringsrlat was able to
guide simulation towards a target using up to an order of ritade fewer simulation
clock cycles than random simulation. For example, whiléyigrg two ushrx_phy cov-
erage points, the formal engine generated 27 and 23 preesrfag (1) acknowledging
receiving data and (2) proper synchronization. For (1)y @2simulation trials, ran-
dom simulation averaged 206K clock cycles and 2.1 seconds t®Re versus 5.3K
clock cycles and 4 seconds for EverLost. For (2), also ovéri83, random simulation

Module |LatchesCycleg|Standar¢gNo-Op C-CallsC-Calls+HeuristigOverhead Ratio
ushrx_phy| 56/ 5M 96.35 145.24 490.09 5.1
usbfpl 696 250K|| 38.25 232.34 333.74 8.7
usb 1785 15K 25.59 379.53 421.64 16.5

Table 1. Simulation Overhead. The columns show, from left to righe tesign, the number of
latches, the length of each random trace, and the CPU timélsegimulation when EverLost is
absent, when only the C-Interface calls are added, and wbignQs Interface calls and guiding
heuristics are present, and the total overhead ratio.

averaged 1.4M clock cycles and 13 seconds versus 0.5M clmbgscand 1.25 seconds
for EverLost.

Simulation overhead has two components: the overhead lifigla¢turning from
the Verilog test bench to the C interface, and the time reguiy the heuristic to eval-
uate concrete states and choose an action. To measure theadewe ran extended
random simulations on variously sized designs. Table 1 shibw results, averaged
over 5 random runs each, with negligible standard deviatibiotice that as the design
size increases, the predominant overhead is due to thésicedvetween Verilog and C,
rather than the guidance heuristic.

Future work includes reducing overhead and exploring guiddneuristics.

References

1. A. Biere, A. Cimatti, E. M. Clarke, Y. Zhu. Symbolic modéiecking without BDDsTools
and Algorithms for Construction and Analysis of SystdthCS 1579, pp. 193—-207, 1999.

2. V. Boppana, S. P. Rajan, K. Takayama, M. Fujita. Model kimgcbased on sequential
ATPG. Computer-Aided Verification: 11th Intl CarifNCS 1633, pp. 418-430, 1999.

3. J. R.Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, L. J. Hang. Symbolic model check-
ing: 1070 states and beyondonf on Logic in Computer Sciengap. 428—439, 1990.

4. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, Mistore, M. Roveri, R. Sebastiani,
A. Tacchella. NuSMV 2: An OpenSource tool for symbolic modeécking. Computer-
Aided Verification: 14th Intl ConfLNCS 2404, pp. 359364, 2002.

5. E. M. Clarke, E. A. Emerson. Design and synthesis of syrihation skeletons using
branching time temporal logicWorkshop on Logics of ProgrameNCS 131, pp. 52-71,
May 1981.

6. S. Edelkamp, A. Lluch-Lafuente. Abstraction in directaddel checking. Workshop on
Connecting Planning Theory and Practjqgp. 7-13, 2004.

7. H. Jain, D. Kroening, N. Sharygina, E. Clarke. Word levadicate abstraction and refine-
ment for verifying RTL verilog.42nd Design Automation Cargp. 445-450, 2005.

8. J.-P. Queille, J. Sifakis. Specification and verificatbdbrconcurrent systems in Cesath
Intl Symp on Programmind-NCS 137, pp. 337-351, 1981.

9. S. Shyam, V. Bertacco. Distance-guided hybrid veriftratvith GUIDO. Design Automa-
tion and Test in Europepp. 1211-1216, 2006.

10. C. H. Yang, D. L. Dill. Validation with guided search ofetlstate space.35th Design
Automation Confpp. 599-604, 1998.

11. USB 1.1 PHY. http://www.opencores.org/projectswgl/ushphy/overview.

12. USB 2.0 Function Core. http://www.opencores.orghuty.cgi/web/usb/overview.

