
EverLost: A Flexible Platform for Industrial-Strength
Abstraction-Guided Simulation⋆

(Tool Paper)

Flavio M. de Paula and Alan J. Hu

Department of Computer Science, University of British Columbia, Canada
{depaulfm,ajh}@cs.ubc.ca

Abstract. Abstraction-guided simulationis a general framework for automat-
ically harnessing, during simulation, information from abstraction and model
checking. EverLost is our platform for industrial-strength abstraction-guided sim-
ulation. EverLost takes an RTL Verilog design and preimage/abstraction infor-
mation from any BDD-based abstraction/model-checking tool, and automatically
generates code that implements abstraction-guided simulation and directly com-
piles with the design under the widely-used Synopsys VCS simulator. The plat-
form enables flexible exploration of abstraction-guided simulation — different
formal tools and guidance heuristics are easily inserted — while providing the
capacity, speed, and Verilog compatibility of a leading industry-standard tool.

1 Abstraction-Guided Simulation

Automatic formal hardware verification continues to progress, through advances such
as model checking [5, 8], symbolic model checking [3], bounded model checking [1, 2],
and counterexample-guided abstraction refinement [7], which have greatly expanded
the capacity of automatic verification tools. Conventionalsimulation, however, remains
the primary workhorse for industrial hardware validation.Simulation provides unparal-
leled capacity for handling design size and complexity, but(or because) it performs no
analysis of the design. Abstraction and model checking, on the other hand, derive con-
siderable information about the structure of the state space of the design, but (therefore)
suffer from capacity limitations.

Abstraction-guided simulation1 is a general framework for automatically harness-
ing, during simulation, information obtained by model checking and abstraction of the
design. Briefly, abstraction-guided simulation consists of the following:

– We assume the goal of verification is to find an execution sequence that reaches a
specified set of states, e.g., error states or a hard-to-reach coverage target.

⋆ Supported by an NSERC Discovery Grant. We would also like to thank Daniel Kroening and
Himanshu Jain for their help with thevcegartool.

1 The idea of guiding state exploration via abstraction has been independently invented several
times, e.g., as “tracks” [10], “abstraction database” [6],and “distance-guided simulation” [9].
Unlike other work, our emphasis is on working with the capabilities and limits of real, indus-
trial simulation tools. We prefer the nomenclature “abstraction-guided” to “distance-guided”
because the analysis of the abstract model gives not true distances, but only lower bounds on
distances, and the challenge for good guidance heuristics is precisely to handle this inaccuracy.



– Any conservative abstraction technique is used to create a model small enough for
symbolic model checking. The abstract model preserves existence of any paths to
the error states, but may introduce paths that don’t correspond to any concrete path.

– If formal verification succeeds (either finding no abstract error paths, or success-
fully concretizing an abstract error path), we are done. Theinteresting case for
simulation is when formal verification fails (and attempts at abstraction refinement
fail to create a tractable model), as can occur typically with large hardware designs.

– The model checker has computed a series of pre-images from the error states in
the abstract model. From these pre-images, we can dump a sequence of BDDs,
representing sets of abstract states whose shortest (abstract) path to an error state
is i abstract states long. Visualize these sets as concentric “rings” around the error
states. A concrete state that abstracts to an abstract statein ring i is at leasti clock
cycles away from an error state.

– During directed random simulation, the simulator can consult the abstraction in-
formation for guidance by periodically computing the abstraction of the current
simulation state and querying which ring it is in. Thus, the simulator can benefit
from considerable information computed by model checking the abstract model.

An analogy is to driving with a GPS navigation device: one’s concrete location (GPS
coordinates) goes into the device, which contains an abstract model of the terrain and
provides optimum routing for the abstract model; problems arise when the abstract
model is inaccurate (e.g., due to construction); in those cases, the user wanders semi-
lost until the device computes a usable new route. The name “EverLost” is a play on a
pioneering, widely-deployed in-car GPS navigation system.

Abstraction-guided simulation is a broad and flexible framework, so research is
needed to explore trade-offs. Hence, we have created EverLost, as a flexible, yet
industrial-strength platform for exploring abstraction-guided simulation. The key fea-
tures of EverLost are:

– Direct connection into Synopsys VCS, one of the most widely used Verilog simula-
tors, giving true industrial capacity, simulation speed, and language compatibility.

– Simple interfacing to any BDD-based abstraction/model-checking tool. All we
need are the concrete state variables, the abstraction functions, and the BDD rings.

– Easy exploration of different guidance heuristics. Currently, we have implemented
a simple parameterized stochastic search; this is an activeresearch area.

2 EverLost Architecture

The three major components for using EverLost are the logic simulator, the
abstraction/model-checking engine, and the EverLost toolitself (Fig. 1). For tight inte-
gration and highest performance, we had to target a specific logic simulator, although
the tool could be retargeted easily. We chose Synopsys VCS, one of the most widely
used industrially. For the interface with the abstraction/model-checking engine, we de-
signed for maximum flexibility: all we require are a list of the design’s latches, the
abstraction map, and the BDD pre-images that are a by-product of model checking.



EverLost

Abstraction
Function
In C

Latch
Extractor

Tool

Hierarchical
Latches

Heuristic
Choice

Verification Engineer

Pre−ImagesAbstraction Map

Verilog to C
Function Call
Interface

Standard Compiled Logic Simulation
(Synopsys VCS w/ DirectC)

Pre−Images

NuSMVVCEGAR
Abstract

Counterexample

CEGAR
Abstraction and Model−Checking Engine

Model

RTL Verilog

Fig. 1. Overall Tool Flow with EverLost

Given the needed inputs, EverLost generates a simulation guidance driver in C, the
abstraction function in C, and a C interface in Verilog, which are passed to VCS along
with the Verilog files and the BDD pre-images. The user can specify different simulation
guidance heuristics via EverLost options.

The code generated by EverLost is compiled with VCS into a single executable.
Internally, the simulator calls the EverLost driver every clock cycle. The EverLost code
can read the current simulation state, possibly save it, andpossibly evaluate it using the
abstraction information. The EverLost code can then allow the simulation to continue,
or it can force the simulator to jump to a particular state. Inour current guidance heuris-
tic, from a given state, the simulator exploresn different traces fork cycles and picks
the best state (i.e., the state that abstracts to the pre-image closest to the target states)
from which to continue; one more parameter controls when to resort to a random walk
to try to get around dead-ends.

3 Sample Results and Performance Overhead

We report some results from two publicly available designs:a USB 1.1 PHY [11] inter-
face, and a full USB 2.0 Function Core [12]. We used VCEGAR [7]with NuSMV [4]
as our formal engine; these tools are state-of-the-art, freely available, and support Ver-
ilog. When the designs were too big, the formal engine did notproduce useful abstract
models, so in some experiments, we used only a few sub-modules. VCS and EverLost,
of course, had no capacity problems, including for the full Function Core.

When the formal engine provided enough pre-image rings, EverLost was able to
guide simulation towards a target using up to an order of magnitude fewer simulation
clock cycles than random simulation. For example, while verifying two usbrx phy cov-
erage points, the formal engine generated 27 and 23 pre-images for (1) acknowledging
receiving data and (2) proper synchronization. For (1), over 30 simulation trials, ran-
dom simulation averaged 206K clock cycles and 2.1 seconds CPU time versus 5.3K
clock cycles and 4 seconds for EverLost. For (2), also over 30trials, random simulation



Module LatchesCycles StandardNo-Op C-CallsC-Calls+HeuristicOverhead Ratio
usb rx phy 56 5M 96.3s 145.2s 490.0s 5.1

usbf pl 696 250K 38.2s 232.3s 333.7s 8.7
usb 1785 15K 25.5s 379.5s 421.6s 16.5

Table 1. Simulation Overhead. The columns show, from left to right: the design, the number of
latches, the length of each random trace, and the CPU times for the simulation when EverLost is
absent, when only the C-Interface calls are added, and when both C-Interface calls and guiding
heuristics are present, and the total overhead ratio.

averaged 1.4M clock cycles and 13 seconds versus 0.5M clock cycles and 1.25 seconds
for EverLost.

Simulation overhead has two components: the overhead of calling/returning from
the Verilog test bench to the C interface, and the time required by the heuristic to eval-
uate concrete states and choose an action. To measure the overhead, we ran extended
random simulations on variously sized designs. Table 1 shows the results, averaged
over 5 random runs each, with negligible standard deviations. Notice that as the design
size increases, the predominant overhead is due to the interface between Verilog and C,
rather than the guidance heuristic.

Future work includes reducing overhead and exploring guidance heuristics.

References

1. A. Biere, A. Cimatti, E. M. Clarke, Y. Zhu. Symbolic model checking without BDDs.Tools
and Algorithms for Construction and Analysis of Systems, LNCS 1579, pp. 193–207, 1999.

2. V. Boppana, S. P. Rajan, K. Takayama, M. Fujita. Model checking based on sequential
ATPG. Computer-Aided Verification: 11th Intl Conf, LNCS 1633, pp. 418–430, 1999.

3. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, L. J. Hwang. Symbolic model check-
ing: 1020 states and beyond.Conf on Logic in Computer Science, pp. 428–439, 1990.

4. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M.Pistore, M. Roveri, R. Sebastiani,
A. Tacchella. NuSMV 2: An OpenSource tool for symbolic modelchecking. Computer-
Aided Verification: 14th Intl Conf, LNCS 2404, pp. 359–364, 2002.

5. E. M. Clarke, E. A. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic.Workshop on Logics of Programs, LNCS 131, pp. 52–71,
May 1981.

6. S. Edelkamp, A. Lluch-Lafuente. Abstraction in directedmodel checking.Workshop on
Connecting Planning Theory and Practice, pp. 7–13, 2004.

7. H. Jain, D. Kroening, N. Sharygina, E. Clarke. Word level predicate abstraction and refine-
ment for verifying RTL verilog.42nd Design Automation Conf, pp. 445–450, 2005.

8. J.-P. Queille, J. Sifakis. Specification and verificationof concurrent systems in Cesar.5th
Intl Symp on Programming, LNCS 137, pp. 337–351, 1981.

9. S. Shyam, V. Bertacco. Distance-guided hybrid verification with GUIDO. Design Automa-
tion and Test in Europe, pp. 1211–1216, 2006.

10. C. H. Yang, D. L. Dill. Validation with guided search of the state space.35th Design
Automation Conf, pp. 599–604, 1998.

11. USB 1.1 PHY. http://www.opencores.org/projects.cgi/web/usbphy/overview.
12. USB 2.0 Function Core. http://www.opencores.org/projects.cgi/web/usb/overview.


