Cutpoints for Formal Equivalence Verification
of Embedded Software

Xiushan Feng

Department of Computer Science,

Alan J. Hu

University of British Columbia

{xsfeng, ajh}@cs.ubc.ca

ABSTRACT

Like hardware, embedded software faces stringent design co
straints, undergoes extremely aggressive optimizatiod,there-
fore has a similar need for verifying the functional equévale of
two versions of a design, e.g., before and after an optimoizat
The concept of cutpoints was a breakthrough in the formalegu
lence verification of combinational circuits and is the keglaling
technology behind its successful commercialization. Weduce
an analogous idea for formally verifying the equivalencestofic-
turally similar, “combinational” software, i.e., softwaroutines
that compute a result and return/terminate, rather thanutixg
indefinitely. We have implemented a proof-of-concept cirtpap-
proach in our prototype verification tool for the TI C6x fapnof
VLIW DSPs, and our experiments show large improvementsrin ru
time and memory usage.

Categories and Subject Descriptors
D.2.4 [Software Engineering: Software/Program Verification

General Terms
Verification

Keywords

embedded software, equivalence checking, formal verificat

1. INTRODUCTION

Embedded software shares with hardware — and differs from
desktop and enterprise software — the frequent need foeraxtr
optimization. The software must hit hard performance, powe
consumption, and code-size targets. Code that is sligliy t

big might necessitate moving to a larger, more expensive de-

vice, or code that is slightly too slow might result in unguee
able, non-real-time performance. Therefore, very aggessp-

*This work was supported in part by research grants from tha-Na
ral Sciences and Engineering Research Council of Canadatehd
Corporation.

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

EMSOFT’'05,September 19-22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/000955.00.

timization is the norm, including possible manual tuningwfthe-
sis(hardware)/compiler(software) output. Compoundimg prob-
lem, the underlying embedded processor is often designédud wi
similar optimization goals — maximum performance at loveestt
or power, with minimal consideration to the ease of writing o
understanding code. Embedded processors (including D&Ps)
ten are highly non-orthogonal, have many specializeduntbns,
and perform many operations in parallel, with the resulémt-
facts (exposed pipelines, long branch delays, VLIW, ety

of these features enable very highly optimized, high-permce
code, but they also greatly complicate code generation @tie o
mization. Finally, the embedded market is less toleranefdéctive
software than some other software markets, because patehin
bedded software in the field can be too difficult, too expexsir
unacceptable to customers. All of these factors point tdwary
demanding verification requirements. We focus on a pasgiotgr-
ification problem: verifying the functional equivalencetab sim-
ilar segments of low-level code, as would be needed, for pi@m
after hand-tuning compiler-generated code.

Automatic formal verification of software has been enjoyag
renaissance lately, with much of the focus on extendingefisiate
model checking [10] — which has been successfully appliezbto
quential circuits, protocols, and other reactive systemgo-soft-
ware, viewed at a system-level as a reactive (non-ternnigigys-
tem (e.g., [2, 17, 27]). A complementary line of work, moré re
evant to this paper, has focused on formally verifying theiveq
alence of low-level code, e.g., to higher-level specifuadi [26,
1, 16], to other versions of low-level code [12, 15], or todvar
ware [9, 23]. This line of research typically verifies a risfely
small segment of code as a transformational rather thariiveac
system, i.e., the code computes a result and terminateegana
to a combinational circuit in hardware. The basic approactoi
use symbolic execution of the code to compute the formafiosla
ship between inputs and outputs, and then prove that theisutp
are always equivalent. The lower-level emphasis is wetedifor
the verification of optimizations needed for embedded systand
indeed, we have demonstrated this approach successftiflying
(or finding bugs in) code optimization for complex embeddeat p
cessors [12, 15]. Unfortunately, the basic approach iscaiaible:
the representation of the input/output relationship ordtwaplex-
ity of deciding equivalence blows up in memory, runtime, otb
In one embarrassing example, a 47-line assembly languagieeo
required 15 hours to verify [12]! (Granted, the dynamiciinstion
count after loop-unrolling was a few thousand instructj@ml the
verification would have run much faster had certain expendiut
unnecessary, optimizations been disabled.)

The formal equivalence verification of combinational haadev
went through a similar evolution. Symbolic simulation [&]te-

o 0T o

a
b
c
d

Figure 1: Simple Cutpoint Example. To introduce cutpoint x,
we first verify that (bAc)Ad is equivalent tobA (cAd). Then,
we can verify that f is equivalent tog because both are equal to

a®x,
) >
b

d

oo
o

d

Figure 2: False Inequivalence. Cutpoint verification failsbe-
causef # g whenb =0 and x = 1. However, this is a false
inequivalence, because it = 1, thenb must be 1.

matically computes the input/output relationship for thedts,
which are then compared. BDDs [7] showed considerable m®mi
as an empirically efficient, canonical representation foolBan
functions, but capacity limits prevented the basic apprdaom
scaling to industrial-size problems.

A major practical breakthrough came with the introductidn o
cutpoints [4, 6]. Given two combinational circuits, presdto
be structurally similar, whose functional equivalencedset be
verified, the idea is to look for points in the two circuits tttan
be proven to be equivalent. The equivalent logic is cut ouhef
circuits and is replaced by a new primary input. (Figure 1iyvé
can repeat this process all the way to the primary outputs)ave
proven the two circuits equivalent, thereby reducing thgioal
verification problem into a sequence of simpler verificajiwab-
lems. Note that the method is conservative: if we fail to prov
the circuits equivalent, we cannot conclude that they azquiva-
lent without further computation. (Figure 2.) Minimiziniget cases
where the method is unable to prove the equivalence of egaiva
circuits (called “false negatives” or “false inequivalefichas been
an active research area. The general solution is to redintecon-
straints on the cutpoints, either in advance [6] or as ne¢tigéd
19].

In this paper, we introduce cutpoint-style analysis to trenial
equivalence verification of embedded software. Althoughmyna
concepts are similar to their hardware-verification anaésy we
address several novel problems as well: how to define cutpfiin
software, how detailed will the cutpoint analysis be, howfital
candidate cutpoints, and how to reduce false inequivateniée
have implemented the ideas in our proof-of-concept vetitica
tool targeting the Texas Instruments C6x family of VLIW DSPs
Our preliminary experiments show large improvements in wrgm
usage and runtime over earlier methods.

2. BASIC VERIFICATION APPROACH

The present work is built on an existing formal software veri
fication paradigm, which we briefly review here. More exteesi
introductions are available elsewhere (e.g., [5, 11]).

The verification task is to take two assembly-language nesti
which compute some values and terminate, and verify thgtahe
equivalent. The user specifies what inputs are initiallyadégund
what outputs should be equal when the routines terminate.ash
sumption is that the two routines have very similar contimiv.

If this assumption is violated, the verifier might declareduiv-

alent two routines that really compute the same value, butllit
not claim equivalence for two routines that are not. As in -
vious work [12, 15, 11], some additional simplifying assuiops
are needed (e.g., no self-modifying code, no recursion,ritb-a
metic performed on the program counter, etc.); we do notatepe
them here.

The verification procedure requires a simple model of the pro
cessor at the instruction set architecture level, and tlses this
model to simulate the two routines. However, instead of agimg
actual values, the simulator is symbolic and computes esjas
that denote the values as a function of the initial inputs states.
For example, consider the following (TI C6200) code segment

B2: =B1+B0
B3: =B2+B0

ADD .L2 B1, BO, B2 ;
ADD .L2 B2, BO, B3 ;

If we denote the initial values of registers BO, B1, and B2B8@g,
B1y, andB2y, then after these two instructions execute, the simula-
tor will compute the “values” in registers B2 and B3 to be sytith
expressionsBlg + B0p” and “(Blg + B0g) + BOp”.

We dub the above style of symbolic simulation the “functiona
translation”, because it computes the values at each pomfunc-
tion of the initial values. An alternative, which we dub the-
lational translation”, computes for each instruction auska that
relates the values before and after execution. For exanfiple,
the above code, we would generdB2; = Blp+ B0g) A (B3 =
B2; + B0g), where the subscripts indicate different versions of the
registers at different times. The functional translation can have
worst-case exponentially-sized expressions; the relativansla-
tion guarantees an expression size linear in the lengtheaéxbcu-
tion sequence, but at the cost of many more variables, whasisb
up the complexity of deciding equivalence. Others haveeddar
the superiority of the relational translation [5]; we widlvisit this
issue later.

To keep the equivalence of symbolic expressions decidablg,
constant propagation and linear arithmetic (i.e., syntbekpres-
sions can be added together and multiplied by constantsinare
terpreted. More complex operations (e.g., multiplicatidrsym-
bolic expressions, or any arbitrarily complex operatiarg)treated
asuninterpreted functions.e., a function about which nothing is
known other than its name and that it is a function in the mathe
matical sense (different calls with the same input valuesipce
the same result). This abstraction hides datapath contplard
is safe, but sometimes too conservative — being unable teepro
the equivalence of a shift and a divide-by-2, for example —ado
ditional domain-specific rewriting rules are needed to lhatiibse
cases. We also use special interpreted functiosasd — which
given a memory and an address, denotes the value at thasaddre
— andwr i t e — which given a memory, an address, and a value,
denotes an updated memory in which the value has been widtten
the address. The key axiom is that

Y if al=a2

reaqwrite(m, al,v),a2) = { readm,a2) otherwise

To successfully verify low-level code, we have found it resagy
to model memory layout accurately. In particular, when fyarg
software written in a high-level language, arrays are oftesumed

1The relational translation may remind some readers of tHe we
known static single assignment (SSA) form [13], but redakthe
simulation is of a dynamic execution trace. A closer analgy
dynamic single assignment form, but since we are consigeain
single execution trace at a time, the translation is triveakus the
standard computation of DSA [14].

to be disjoint, so the read/write functions can be appliesbich ar-
ray separately (e.g., a write to an ariayloes not change the state
of arrayB). In contrast, we model all of memory (or each bank of
memory in a system with multiple banks) as a single array walith
reads and writes directed at this array. This approach keddsge
symbolic expressions, so we rely on some rewriting optitions

to try to keep expression size manageable [12, 11]. Effident
cision procedures exist for this combined logic (lineathamietic,
uninterpreted functions, and read/write); we use the Stdn¥a-
lidity Checker (SVC) [3].

We use simple techniques to handle control flow. These
techniques proved adequate to handle the bottom-levehlyhig
optimized computational kernels we are targeting. For bact
branches, we essentially unroll loops: if the decision pdoce
can prove that the branch is taken, we take the branch; if éhe d
cision procedure can prove that the branch is not taken, wé do
take it; otherwise, we declare that the code contains biagc¢hat
we do not handle. All fixed-count loops, which are the common
case in low-level DSP code, can be handled this way. For fatwa
branches, we again first try to prove the branch certainlgriak
certainly not taken. Otherwise, we case-split. Based onagur
sumption that the two routines being compared have similiairol
structure, we require that the two routines encounter “cibfe”
forward branches in the same order: the two branches muayalw
branch the same way or always branch opposite ways (to atlew r
ordering taken/not-taken paths). If so, our tool proceedgtify
that the routines are equivalent along both paths. If nat,tool
declares that it cannot verify the routines equivalent. hie €6x
family, all instructions are predicated, so we rarely emteufor-
ward branches.

Overall, we have found it straightforward to build symbdim-
ulators, even for complex processors [15]. The basic verific
tion approach works well on small, intricately optimizedleseg-
ments. However, as mentioned earlier, the basic approash it
scale well to longer segments of code.

3. CUTPOINTS FOR SOFTWARE

Analogously to formal equivalence verification of combioaal
circuits, we would like to use cutpoints to gain scalabili§bvi-
ously, the method needs to be conservative — it should ndaec

equivalence when the code segments are inequivalent — but we

must also avoid introducing too many false inequivalences.

The most fundamental question is how to define cutpoints for
software. In a combinational circuit, values flow along wirfom
the inputs to the outputs, with gates performing computationg
the way. Similarly, in software, values flow through the catthe
program state (variables for high-level software; regsstmternal
buffers, memory, and other machine state for low-levelvearfe),
with each instruction performing some computation on thHee&
as they pass by. Thus, a cutpoint in software is some parteof th
program state at some point in a program, which is provablyakeq
to some part of the program state at some point in the other pro
gram. In a combinational circuit, we can ignore the logiwidig
the cutpoint and insert a new primary input. Similarly, foftevare,
we can discard the symbolic expression we computed for tue va
at the cutpoint and replace it with a new symbolic variabfevé
can verify equivalence using the cutpoint, then the origirauits
or programs were equivalent.

Control flow adds a wrinkle to the above definition. In combina
tional hardware, every wire always has a value for everyipless
input value. In software, some instructions may never beweel
for some input values, and other instructions may be exdautsd-
tiple times; the value of the program state at a given poira in

program isn't always well-defined. The solution is to definé-s
ware cutpointglynamically based on each dynamic execution path,
rather than on the static code. We will use our existing \eifon
approach to enumerate paths, and we will attempt to useiotgpo
to make the verification of each path more efficient.

Example: For a simple example, consider a short loop that ze-
roes out a 1024-word block of memory. To further simplify the
example, we will verify the equivalence of the loop to itsédfnor-
ing the loop induction variable, the dynamic instructioream is
just 1024 store instructions:

STW. D1 A0, *Ad++
STW. D1 A0, *Ad++
STW. D1 A0, *Ad++

where register AO has been initialized to 0, and registermaiéxes
through the memory block using auto-increment. Using ogidba
verification approach, aftéiterations, the symbolic expression for
memory will be:

write(. .. write(write(mg, Adg, 0),Ado+4,0) ..., Adg+4(i — 1),0)

wheremy andA4 are the initial values of memory and register A4.
The expression is growing linearly with iteration count.irigsthe
relational translation would also give linear-size expiass (lin-
ear number of constant-size clauses), plus a linear nunfbevo
variables. However, if we use cutpoints, we find that, anglyin
enough, the machine states of the “two” programs (the twdesop
of itself) agree completely after each instruction. Heraér each
instruction, we could introduce a new cutpoint memory \zgany
and a new cutpoint address val&, and then at the next instruc-
tion have to prove only the equivalence of witg, A4;,0) in the
two code segments.

Granted, the above example is contrived, but it serves to-hig
light the key design decisions in trying to apply cutpoirdssoft-
ware:

e Where and how fine-grained to look for cutpointsf the
above example, after every instruction, the entire machine
state matched between the programs being compared, so we
could cut the entire state between instructions. That would
work for the example, but would produce false inequivalence
for anything non-trivial. On the other extreme, we could try
to match each register and memory location, or even each bit
of each register and memory location for interpreted values
as a possible cutpoint. Finer-grained cutpoints allow more
flexibility, improving the possibility of matches, but als®-
ploding the set of possible matches to be considered. Also,
we may not want to look for or insert cutpoints for some parts
of the state: for example, in the simple example, if we make
the loop induction variable a cutpoint, we lose the ability t
prove termination.

e How to find cutpoints?in the simple example, the two pro-
grams were synchronized in lock-step, so we could execute
a single instruction from each and find matching cutpoints.
In general, however, computations will be reordered and in-
structions will be optimized away, so we need techniques to
look for possible cutpoints.

e Whether to do the cut?his is the dynamic version of the
first question. Once we find (and prove) a cutpoint, we may
heuristically choose not to use it, perhaps to avoid false in
equivalences.

e How to do the cut?By definition, we create a new sym-
bolic variable to take the place of the expression computed
for the cutpoint. But how aggressively do we propagate this
new cutpoint variable? By the time the tool discovers a cut-
point, the symbolic simulator may have already computed
other symbolic expressions, for other parts of the machine
state, based on the symbolic expression being cut out. &houl
we track down these dependent expressions? How?

How to reduce false inequivalence$fe previous questions
will affect the false negative rate, but this question is amp
tant enough to consider independently. Should we add con-
straints on newly introduced cutpoint variables? Are there
other ways to reduce false inequivalences?

Any implementation of software cutpoints must answer thaevab
questions. Ultimately, the real question is “Do the answerthe
above questions allow verifying real code more efficientlgl aith
an acceptable level of false inequivalences?”

3.1 Proof-of-Concept Implementation

To test the effectiveness of software cutpoints, we havdamp
mented an instance of the idea. Our proof-of-concept imptem
tation is just an initial exploration of the cutpoint idea, \we have
strived for the simplest heuristics that seemed reasoriabkach
of the design questions raised above. The implementatibailis
on top of our existing tool, which uses the basic verificatiqgn
proach from Section 2 and targets assembly code for the Texas
struments’ C6x family of VLIW DSPs [15].

Where and how fine-grained to look for cutpoint&¥e check
the symbolic expressions for only the memory. We do not look
for cutpoints between registers or other parts of the macsiate.
Furthermore, we treat the entire memory as a single possilite
point. Our experience indicated that the symbolic expoessior
memory are the primary source of blow-up in the basic vetifica

in the history buffer the entire machine state, not just tFression
for memory. When we find a cutpoint, we roll back the simulatio
to the cutpoint, and re-simulate any subsequent instngtio
How to reduce false inequivalencedhis is the most complex

question to answer. The simplest answer is to do nothingapec
We initially implemented that choice and found that it watlsic-
cessfully, and very efficiently, on a few examples (e.g.,ahwar-
rassing 47-line industrial example mentioned in the intiabn,
ported to the TI C6x), but produced too many false inequiveds
in general (e.g., on the software pipelining example in iact).
The fundamental problem is the inability to handle reomigmf
independent memory accesses. For example, considerixgrify

LDW. D1 *A3++, Al
NOP 4 ; 4 cycle NOP for
STW. D1 A0, *Ad++

versus

STW. D1 A0, *Ad++
LDW. D1 *A3++, Al
NOP 4 ; 4 cycle NOP for load to conplete

If we know that registers A3 and A4 point to different locaisp
then the two code segments are equivalent, and the basfc veri
cation approach would successfully verify that. Using owon-s
ple cutpoint approach, however, we would introduce a catpaf-

ter the STW instructions. The value of Al at the end of the first
code segment, therefore, will be based on the pre-cutpa@niany
expression, e.g., re@t,q,A3p), whereas the value of Al at the
end of the second code segment will be based on the posticutpo
memory expression, e.g., réathew, A3p), which aren’t equiva-
lent. The verification returns a false inequivalence.

We introduced two ways to eliminate these false inequivaden
We call the first “memory look-through”. In this approache trer-
ification tool records the address written for every stosgrirction.
For each load instruction, the tool tries to prove the indejpace

|l oad to conplete

approach, so we chose to focus on memory. Treating the memoryof the address being read from the addresses that have bien wr

as a single possible cutpoint greatly simplified the taskeafshing
for cutpoints. Leaving registers out of the cutpoint anialgsoids
the possibility of loop induction variables being cut.

How to find cutpointsZThecking only the entire memory makes
this task much easier. The symbolic expression for memory
changes only after a store instruction, so we keep a histaiferb
of the memory expressions from the lastores, for some depth
The verification tool simulates one program throdgstores, then
the other program througki stores, then calls the decision proce-
dure to find the most recent match (if any) of tkfepossibilities.

A larger value ofk handles greater reordering (thereby reducing
false inequivalences), but can slow down the tool if theemaany
recent matches. We choke= 10 arbitrarily, and it seemed work
reasonably.

Whether to do the cut®hen we find a cutpoint, we always do
the cut. Again, this is motivated because memory expressend

ten. The read expression that is generated can read fromeany v
sion of memory back to the most recent store that cannot bepro
independent of the address being read. For our implementati
turned out to be faster to first ask SVC to prove that the loaldess

is independent cdll stores, in a single decision procedure call. If
this succeeds, the read expression reads from the initialane

In the example above, if the address ranges for A3 and A4 prov-
ably never overlap, then the value loaded into Al will alwags
readmp,A3;), whereny is the initial memory. This method re-
duces, but does not eliminate false inequivalences.

The other approach we tried completely eliminates falsguive
alence (from the cutpoints — obviously, false inequivatefrom
other aspects of the verification approach, such as thearpneted
functions, remain). When a new cutpoint variable is intiety
we add an assertion to the decision procedure that the n@wintit
variable is equal to one of the two (proven equivalent) esgions

to blow up, and because we are matching only memory, so loop that it is replacing. This assertion guarantees that thgoduit vari-

induction variables in registers won't be cut.

How to do the cut®Ve could conceivably match a memory ex-
pressiork stores earlier, which could be an unbounded number of
(non-store) instructions in the past. It's hard to imagingng to
compute directly the effect of introducing the cut variable all
the values (and control flow!) that may have been computesesub
quently. Furthermore, the C6x family have very deep pidjrso
searching through all the symbolic expressions in the pipeind
reasoning about any pipeline interactions is a dauntink. tés-
stead, we simply leverage the fact that we already have adienb
simulator for the processor. After each store instructiom record

able will always be properly constrained. We call this ajpgio
“memory assertions”, and it is analogous to the combinatioir-
cuit equivalence technique in which, rather than introdga new
primary input at the cutpoint, we simply drive the cutpoiit®¥oth
circuits from the same circuitry in one [6]. In the exampl@wah
we would assert thatinew = write(mg) 4, Ado, AQp); this constraint
preserves the relationship betweemgq and mnew, eliminating
false inequivalences, but complicating the task of thesiecipro-
cedure.

With plausible answers to all the design decisions, we can pr
ceed to the real question: does it work on real code?

Time Comparison (Software Pipeline) Memory Usage Comparison (Software Pipeline)

T
MRelational —— 4
Func, CutPts, Mem-Assert ---x---
Func, w/o CutPts ------

Func, CutPts, Mem-Look-Thru &

T T T T
4000 - Relatiofial ——
Func, CutPts, Mem-Assert ---x---
Func, w/o GutPts ---%--- |
Func, CutPts, Mem-Logk-Thru &

2000

3500

3000 1500

2500

2000 1000

Time (s)

1500

Memory Usage (MB)

1000 H 500

500 ft

| e
! -
P I I I I

1000 3000 4000 5000
Loop Count

o

2000

6000 3000

Loop Count

4000 5000

Figure 3: Software Pipeline Results. The relational transktion times out even for minuscule numbers of iterations, ad the func-
tional translation with cutpoints and memory assertions times out quickly, too. Our previous functional translation method without
cutpoints is fastest, but the memory usage blows up. The newatpoint method with memory look-through is almost as fast aml uses

very little memory.

4. EXPERIMENTAL RESULTS

sion size growth of the relational translation is not coritpetwith

We have run experiments using several test cases. Theylare althe savings possible with the memory rewriting tricks of fitnec-

small computational kernels, performing computations aveays,
where we can scale the difficulty of the example by adjustig t
loop count. In each case, we verified the equivalence of inopt
mized and highly optimized versions of the code. We compare
the performance of four different methods: the basic vextifom
approach, using the functional translation; the basicfication
approach, using the relational translation; the functidrensla-
tion with cutpoints, using memory look-through; and thedtional
translation with cutpoints, using memory assertions. Rerftinc-
tional translation methods, we use memory rewriting optations

to try to reduce blow-up [12, 11], but we enable only the réswi
that actually help in the examples. Doing so helps the basic-f
tional translation, but makes no difference for the cutpwiathods,

so we have a fair baseline to compare the cutpoints against.

The first test case is taken from an article written by an exper
on DSP code optimization, explaining how to optimize code fo
high-performance DSPs [22]. The example demonstratesaaft
pipelining a short loop, targeting the C67x. Software pipef is
a powerful instruction scheduling technique that exposdegianal
parallelism in loops, thereby improving performance [Zlje ba-
sic idea of software pipelining is to rearrange the compariatuch
that portions of different loop iterations execute at orsimilarly
to hardware pipelining. A prologue is required to start tipefined
computation, and an epilogue is required to “flush the piglat
the end of the computation. Figure 4 shows the unpipelineié,co
and Figure 5 gives the software pipelined code. The taskuvisrity
the equivalence of the two.

We had previously been able to verify this example, using the
basic verification approach (without cutpoints). Usingpoints,
we were still able to verify equivalence of the two versiotaken
unmodified from the article. Because the cutpoint methods ar
conservative, successfully proving equivalence showsuhgoints
were sufficiently accurate and did not create false inetgrivas.
Figure 3 shows the performance trends as we scaled the numbe
of loop iterations. The relational translation performskatgly
poorly: the run time blows up immediately, but surprisinghe so

tional translation. The method using cutpoints and memesgia
tions also performs disappointingly. Apparently, forcthg deci-
sion procedure to reason about all the cutpoint variableatising
blow-up, similar to the relational approach. Perhaps a nelwei-
sion procedure would help, as SVC is several years old. Nenet
less, cutpoints appear to provide a vast improvement in mgmo
usage at a small cost in run time.

The preceding experiment used compiler-optimized codeaFo
harder experiment, we ran experiments on expert, handaetd
code. Texas Instruments provides the TMS320C67x DSP Li-
brary (DSPLIB), a freely downloadable library of commonly-
used DSP signal-processing routines hand-tuned by TI &xper
to achieve optimal execution speed [25]. Furthermore, diach
brary function includes an equivalent C reference modelicivh
we can compile using TI's TMS320C6x ANSI C compiler to
get an equivalent, non-optimized version. For our expermis)e
we selected three simple routines with numerous memonesvrit
(the main source of expression size blow-up) from the ljorar
block move DSPF_sp_bl k_nmove, 43 lines of code), convolu-
tion (DSPF_sp_convol, 101 lines of code), and FIR filtering
(DSPF_sp_fi r_r 2,270 lines of code).

On our initial attempt to verify these examples, the cutpoin
methods failed immediately with false inequivalences. Pphab-
lem is that the hand-tuned code’s subroutine linkage isefit
from the compiler-generated code: caller state is savedraend
stored slightly differently. This highlights the immatiyriof our
initial heuristics. Trivial, obviously unimportant chaegwere able
to foil our cutpoint implementation. More sophisticateditistics
will obviously be needed in practice.

Fortunately, the subroutine linkage code was easy to remove
so we were able to try the verification (expert-hand-tuned vs
compiler-generated) on only the computational kernelaoheou-
tine. We manually replaced the linkage code with NOPs, added
gertions to the decision procedure to initialize the twatires in
the same way, and re-ran the verification tool. This time, veesw
able to verify equivalence fully automatically, demonstrg that

does the memory usage. We do not have enough data to extrapo.our CUtpOint heuristics were accurate enOUgh for the Comlﬂlmal

late the growth rate, but apparently the theoreticallydimexpres-

kernels of our test cases. Figures 6, 7, and 8 show the peafmen

(... linkage and initialization omtted.

BO is the | oop counter ...)
13 L12: ; PI' PED LOOP KERNEL
14 LDW . D2 *B5++, B4
15 || LDW .D1 * A3++, AQ
16 NOP 2
17 [BO] SUB L2 BO, 1, BO
18 [BO]B .2 L12
19 MPYSP . MLX B4, A0, AO
20 NOP 3
21 STW . D1 AO, * Ad++
(... subroutine return omtted ...)

Figure 4: Unpipelined Assembly Code. The vertical bars indiate instructions executed in parallel. LDW(load word) has 4 delay
slots, branches have 5 delay slots, andPYSP (single-precision multiply) has 3 delay slots. The code poi-wise multiplies two arrays,
storing the result in a third array. The code takes 10 cycles gr iteration. (Listing taken from [22].)

(... linkage and initialization omtted. N e *
BO is the | oop counter ...) 42 L9: ; PI PED LOOP KERNEL

15 L8: ; PI'PED LOOP PROLOG 43

16 44 [BO] B .82 L9 ; @@

17 LDW .D2 *B5++, B4 45 || LDwW .D2 *B5++, B4 ; @oQQ

18 || LDW .D1 *A3++ A0 ; 46 || LDW .D1 *A3++, A0 ; @3oQ@

19 47

20 NOP 1 48 STW .D1 A5, *Ad++

21 49 || MPYSP . MLX B4, A0, A5 ; @@

22 LDW .D2 *B5++,B4 ;@ 50 || [BO] SUB .L2 BO, 1, BO ; coR

23 || LDW .D1 *A3++, A0 ; @ 51

24 A R *

25 [BO] SuB .L2 BO, 1, BO ; 53 L10: ; PIPED LOOP EPI LOG

26 54 NOP 1

27 [BO] B .82 L9 ; 55

28 || LDwW .D2 *B5++, B4 ; @@ 56 STW .Dl A5 *Ad++ ;@

29 || LDW .D1 *A3++ A0 ;@@ 57 || MPYSP . MLX B4, A0, A5 ; @3

30 58

31 MPYSP . MLX B4, AO, A5 ; 59 NOP 1

32 || [BO] suB .L2 BO, 1, BO ;@ 60

33 61 STW .Dl A5 *Ad++ ;@@

34 [BO] B .82 L9 ;@ 62 || MPYSP . MLX B4, A0, A5 ; @0

35 || LDW .D2 *B5++ B4 ; @@ 64 NOP 1

36 || LDW .D1 *A3++ A0 ; @B 65 STW .DlL A5 *Ad++ ; @0

37 66 NOP 1

38 MPYSP . MLX B4, A0, A5 ;@ 67 STW .Dl A5, *Ad4++ ; @ogd

39 || [BO] SuB .L2 BO, 1, BO ; @@ (... subroutine return omtted ...)

40

Figure 5: Software Pipelined Assembly Code. If the inputs a& declared to beconst , the compiler does software pipelining, improv-
ing performance to 2 cycles per iteration. But, does this dotte same thing as Figure 4? (Listing taken from [22].)

trends for these examples. On the block move example, the per
formance is very similar to the software pipelining exampiee
relational translation times out immediately; the cutpeimethod
with memory assertions times out quickly, too; the basicfiomal
translation is fastest, but blows up in memory; and the dotpo
method with memory look-through is almost as fast and daeesn’
suffer memory blow up. On the convolution and FIR examples,
though, the results are even more interesting: now, theomitp
method with memory look-through is roughly twice as fastlees t
basic functional translation! The reason for this perfanoeadif-
ference appears to be that in the hand-optimized convolwtiw
FIR examples, the computation is much more highly reordered
sulting in a much harder equivalence expression for thesasti
procedure. The overhead of finding cutpoints is swamped &y th
savings of a simpler final verification problem. To test thipdth-
esis, we ran experiments using larger convolutions and riatiRe
filter coefficients and found that the performance advantddgke
cutpoint method increased. Conversely, the block move plam
has no computation at all, simplifying the final verificatiprob-
lem, so the relative overhead of the cutpoints is higher.

In all the test cases, the cutpoint method with memory look-
through vastly reduced memory usage. Run time ranged from a m
nor increase to a significant decrease. Accuracy was goaggéno
to verify all of the computational kernels. Clearly, cutpsi can be
very effective.

Tables 1, 2, 3, and 4 give detailed results comparing the tne ¢
petitive methods: our original basic verification apprqaghhout
cutpoints, using the functional translation and memoryritavg,
and our new cutpoint-based method, using the functionaktaa
tion and memory look-through. All experiments were run on a
2.6Ghz Pentium 4 with 4GB of RAM. We have set the run time
limit to 1 hour.

5. CONCLUSION AND FUTURE WORK

We have introduced the concept of cutpoints to the formalequ
alence verification of low-level software. We have instatsil
the theory in a proof-of-concept implementation and dertratexd
large improvements in memory usage and comparable-osflyatt
time versus previous approaches. Our heuristics for reduailse
inequivalences are immature, yet effective on the kerrfedsioex-
amples.

Future work must try to further improve scalability, handiere
general control-flow differences, and reduce false inexjeiwces.
For scalability, our research has focused on improvingieffizy
and accuracy for verifying paths in programs. An obviousction
for future work is integration with complementary work ordue-
ing the number of paths explored, e.g., by static analys&lyaing
well-structured loop bodies [24], or exploiting informati from
the compiler [21]. Such techniques will also be helpful fanh
dling greater control-flow differences. Beyond reducing thum-
ber of paths explored, static analysis might provide othssaful
information. For example, a fast, approximate points-talysis
might be able to quickly guarantee that certain loads anésiare
non-interfering, allowing faster confirmation of cutpaint

For reducing false inequivalences, the main lines of futuwek
will be finer-grained analysis for cutpoints, and heuristior
quickly finding candidate cutpoints. The instantiation lo¢ the-
ory we have presented here is vulnerable to false inequivateif

the programs make extraneous writes to memory or lay out data[10]

in memory differently. Looking for cutpoints for only spéciad-
dresses or ranges of memory would be more accurate. User guid
ance could be helpful, for example, by defining don’t-cagaes

of memory. Finer-grained analysis, however, makes finding c

points much more expensive, necessitating better ways rfdr fi
ing good candidates. For combinational circuits, the saeshtech-
nique is to simulate the two circuits on a sequence of randem i
puts; wires that always agree during simulation are caneliciat-
points. Unfortunately, with uninterpreted functions, Iswan ap-
proach is meaningless. However, an exciting direction fibure
work is to try our method on bit-accurate, fully interpretgg.,
all operations are fully defined, rather than being abstdjcsoft-
ware models. Not only would such analysis be much more accu-
rate, but there is also potential synergy between bit-ateunod-
eling and cutpoints: the efficiency improvement of cutpeimiakes

it conceivable to verify bit-accurate software models, &melbit-
accuracy might greatly simplify reasoning about cutpoints

Acknowledgments

We would like to thank Shu Li, who was very helpful in generat-
ing the examples for our experiments. We thank the anonymous
reviewers for encouraging us to try public, hand-tuned elam

for our experiments and for suggesting several promisirgsdor
future work.

6. REFERENCES

[1] S. Balakrishnan and S. Tahar. On the formal verificatibn o
embedded systems using multiway decision graphs.
Technical Report TR-402, Concordia University, Montreal,
Canada, 1997.

[2] T.Ball and S. K. Rajamani. The SLAM toolkit. In

Computer-Aided Verification: 13th International Confecen

number 2102 in Lecture Notes in Computer Science, pages

260-264. Springer, 2001.

C. Barrett, D. Dill, and J. Levitt. Validity checking for

combinations of theories with equality. Formal Methods In

Computer-Aided Design: First International Conference

volume 1166 oL ecture Notes in Computer Scienpages

187-201. Springer, 1996. Currently, software is availaile

http://chicory. stanford. edu/ SVC.

C. L.Berman and L. H. Trevillyan. Functional comparisain

logic designs for VLSI circuits. Itnternational Conference

on Computer-Aided Desigpages 456—-459. IEEE, 1989.

C. Blank, H. Eveking, J. Levihn, and G. Ritter. Symbolic

simulation techniques — state-of-the-art and applicatiom

International Workshop on High-Level Design, Validation,

and Testpages 45-50. IEEE, 2001.

D. Brand. Verification of large synthesized designs. In

International Conference on Computer-Aided Desiggiges

534-537. IEEE/ACM, 1993.

R. E. Bryant. Graph-based algorithms for boolean florcti

manipulation|EEE Transactions on Computers

C-35(8):677-691, August 1986.

R. E. Bryant. A methodology for hardware verification eds

on logic simulationJournal of the ACM38(2):299-328,

April 1991.

E. Clarke and D. Kroening. Behavior consistency of C and

Verilog programs using bounded model checking. Technical

Report CMU-CS-03-126, Carnegie Mellon University, May

2003.

E. M. Clarke and E. A. Emerson. Design and synthesis of

synchronization skeletons using branching time temporal

logic. In D. Kozen, editodVorkshop on Logics of Programs
pages 52-71, May 1981. Published 1982 as Lecture Notes in

Computer Science Number 131.

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Time (s)

3500

3000

2500

2000

1500

1000

500

Time Comparison (BLKMV)

‘ ‘ ‘Relational]
Func, CutPts, Mem-Assert ---x---
Func, w/o CutPts ---%---
Func, CutPts, Mem-Look-Thru & -
v-‘D
B &
=3
(3]
- D
I
)
=
i Pl
o
£
[}
=
1
1000 2000 3000 4000 5000

Loop Count

2000

1500

1000

500

Memory Usage Comparison (BLKMV)

T T T
Relational

——
Func, CutPts, Mem-Assert ---x---
Func, w/o CutPts ---%---
Func, CutPts, Mem-Look-Thru &
x*
,'*"
X Lx
- X o m m
0 1000 2000 3000 4000 5000
Loop Count

Figure 6: Block Move Results. Performance trends are similato Fig. 3, except that the time overhead of cutpoints is largr.

Time (s)

Figure 7: Convolution Results. Here, not only does the cutpgat method with memory look-through have the lowest memory on-

3500

3000

2500

2000

1500

1000

500

Time Comparison (Convol)

?('Relational —a— 1
i Func, CutPts, Mem-Assert ---x---
/ Func, w/o CutPts ---%:--
/ Func, CutPts, Mem-Look-Thru &=
1 o
* =3
: o
. — j=2)
. ©
K 1]
. o}
P b
3 T S
X g
. Q
X =
: 8 B
=
o ,
Il Il
800 1000

Loop Count

Memory Usage Comparison (Convol)

800

700

600

500

400

300

200

T T T T
Relational —— |
Func, CutPts, Mem-Assert ---x---

Func, w/o CutPts ---%---

Func, CutPts, Mem-Look-Thru & .
X
x
x - ,
,'/ * m
X x
//'/__x"“]
X
1:_/_3(a
o) g
400 600 800 1000
Loop Count

sumption, but it is fastest, too. The runs were with the numbeof impulse response samples set to 8.

Time (s)

Figure 8: FIR Filter Results. Performance trends are simila to Fig. 7: cutpoints with memory look-through was fastest and used

3500

3000

2500

2000

1500

1000

500

Time Comparison (FIR)

T T T T
X Relational ——
! Func, CutPts, Mem-Assert ---x---
H Func, w/o CutPts ---%---
/ Func, CutPts, Mem-Look-Thru --&-- 7
T o
* =
. (]
— j=2)
. I
o)
¥ =}
.- , g*
X £
. o)
o i =
)
=
a
i T
Il Il
800 1000

Loop Count

vastly less memory. We set the number of filter coefficients t8.

Memory Usage Comparison (FIR)

800

700

600

500

400

300

200

T T T
Relational

T
—_—

Func, CutPts, Mem-Assert ---x---
Func, w/o CutPts ---%---

Func, CutPts, Mem-Look-Thru &
X
* n
x i
.'*"l -
X *
P T
X
Jrrctal —
= 8)
400 600 800 1000
Loop Count

Functional w/o Cutpoints

Functional with Cutpointg

Loop Count|| Time(s) | Memory(MB) || Time(s)| Memory(MB)
200 6.13 10.6 6.29 5.3
400 24.32 27.1 24.49 6.0
600 54.50 53.7 54.65 6.7
800 97.22 90.0 96.84 7.6
1000 149.96 132 150.13 8.7
2000 600.98 513 596.47 13.7
3000 1425.63 1150 || 1363.85 23.4
4000 2461.32 2023 || 2490.58 27.6
5000 mem out|| 3939.21 29.3

Table 1: Software Pipeline Detailed Results

Functional w/o Cutpointg| Functional with Cutpoints
Loop Count|| Time(s) | Memory(MB) || Time(s)| Memory(MB)
200 3.59 8.7 4.15 5.0
400 14.05 20.3 15.99 5.6
600 31.53 39.1 35.90 6.1
800 56.00 64.6 63.65 6.7
1000 87.22 96.5 99.04 7.3
2000 349.06 353 || 395.70 10.2
3000 793.32 796 || 903.46 16.1
4000 1420.66 1401 || 1665.15 19.3
5000 mem out || 2615.88 21.0

Table 2: Block Move Detailed Results

Functional w/o Cutpointg| Functional with Cutpoints
Loop Count|| Time(s) | Memory(MB) || Time(s)| Memory(MB)
100 23.32 12.5 11.34 6.0
200 91.64 33.7 41.96 7.2
300 204.96 67.1 91.42 8.5
400 363.38 111 | 159.91 9.7
500 569.05 169 | 247.60 10.9
600 818.84 240 || 354.77 12.2
700 1109.54 323 || 481.52 13.4
800 1451.09 418 || 627.45 14.6
900 1836.78 526 || 792.95 15.9
1000 2267.42 646 || 976.55 17.1

Table 3: Convolution Detailed Results

Functional w/o Cutpoints| Functional with Cutpoints
Loop Count]|| Time(s) | Memory(MB) || Time(s) | Memory(MB)
100 22.83 12.4 10.72 6.0
200 88.01 33.6 39.38 7.3
300 195.28 66.4 85.21 8.6
400 345.95 110 || 149.41 9.7
500 539.08 167 || 231.48 11.0
600 776.26 237 || 332.31 12.2
700 1058.00 320 || 451.26 13.4
800 1381.92 414 || 587.61 14.6
900 1752.31 521 | 742.46 15.9
1000 2216.26 640 || 915.77 17.1

Table 4: FIR Filter Detailed Results

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

D. Currie, X. Feng, M. Fujita, A. J. Hu, M. Kwan, and

S. Rajan. Embedded software verification using symbolic
execution and uninterpreted functiothsternational Journal
of Parallel ProgrammingTo appear.

D. W. Currie, A. J. Hu, S. Rajan, and M. Fujita. Automatic
formal verification of DSP software. [B7th Design
Automation Conferen¢gpages 130-135. ACM/IEEE, 2000.
R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck. Efficiently computing static single assignimen
form and the control dependence grap&M Transactions
on Programming Languages and Systetr84):451-490,
October 1991.

P. Feautrier. Dataflow analysis of array and scalaresfees.
International Journal of Parallel Programming
20(1):23-53, February 1991.

X. Feng and A. J. Hu. Automatic formal verification for
scheduled VLIW code. Idoint Conference on Languages,

Compilers, and Tools for Embedded Systems, and Software

and Compilers for Embedded Systepmges 85-92. ACM
SIGPLAN, 2002.

K. Hamaguchi, H. Urushihara, and T. Kashiwabara.
Symbolic checking of signal-transition consistency for
verifying high-level designs. IRormal Methods in
Computer-Aided Design: Third International Conference

pages 455-469. Springer, 2000. Lecture Notes in Computer

Science \ol. 1954.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. SutreylLaz
abstraction. IrConference on Principles of Programming
Languagespages 58-70. ACM SIGPLAN-SIGACT, 2002.
J. Jain, A. Narayan, M. Fujita, and

A. Sangiovanni-Vincentelli. Formal verification of
combinational circuits. Ifnternational Conference on VLSI
Design 1997.

A. Kuehlmann and F. Krohm. Equivalence checking using
cuts and heaps. IB4th Design Automation Conference
pages 263-268. ACM/IEEE, 1997.

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

M. S. Lam. Software pipelining: An effective schedyjin
technique for VLIW machines. I€onference on
Programming Language Design and Implementatjmeges
318-328. ACM SIGPLAN, 1988.

G. C. Necula. Translation validation for an optimizing
compiler. InConference on Programming Language Design
and Implementatigrpages 83-94. ACM SIGPLAN, 2000.
R. Oshana. Optimization techniques for high-perfanoea
DSPsEmbedded Systems Programmiktarch 1999. We
accessed the on-line articletdtt p: / / ww. enbedded.
com 1999/ 9903/ 99030sha. ht m

H. Saito, T. Ogawa, T. Sakunkonchak, M. Fujita, and

T. Nanya. An equivalence checking methodology for
hardware oriented C-based specificationdnternational
High-Level Design, Validation, and Test Workshppges
139-144. IEEE, 2002.

K. C. Shashidhar, M. Bruynooghe, F. Catthoor, and

G. Janssens. Automatic functional verification of memory
oriented global source code transformationdnbernational
Workshop on High-Level Design, Validation, and Tesiges
31-36. IEEE, 2003.

Texas InstrumentdMS320C67x DSP Libraryersion 1.00,
February 17, 2003. Part Number SPRC121.
http://focus.ti.conl docs/tool sw fol ders/
print/sprcl2l. htnl.

O. Thiry and L. Claesen. A formal verification technicfoe
embedded software. BEEE International Conference on
Computer Designpages 352-357, New York, USA, 1996.
IEEE Computer Society Press.

W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda.
Model checking program#utomated Software Engineering
10(2):203-232, April 2003.

